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Nous nous intéressons au problème aux valeurs propres (1) posé dans un domaine borné Ω partitionné en deux régions Ω 1 , Ω 2 . Le problème (1) met en jeu des coefficients ς, µ que nous supposons constants non nuls sur Ω 1 , Ω 2 . Ces constantes peuvent être de signes différents. Nous fournissons d'abord des critères assurant que le spectre de [START_REF] Abdulle | An optimization-based numerical method for diffusion problems with sign-changing coefficients[END_REF] est discret, propriété qui n'est pas toujours satisfaite lorsqu'à la fois ς et µ changent de signe. Lorsqu'un seul coefficient (ς ou µ) change de signe, on peut aussi montrer que le spectre de [START_REF] Abdulle | An optimization-based numerical method for diffusion problems with sign-changing coefficients[END_REF] est réel, constitué de deux suites de valeurs propres (λ ±n ) n≥1 telles que lim n→+∞ λ ±n = ±∞. Dans un second temps, moyennant certaines hypothèses sur le maillage, nous expliquons comment on peut utiliser les méthodes éléments finis classiques pour approcher le spectre ainsi que les fonctions propres. Pour ce faire, nous utilisons la théorie d'approximation des opérateurs compacts développée notamment par Babuška et Osborn [START_REF] Babuška | Eigenvalue problems, Handbook of numerical analysis[END_REF]. Il est à noter que lorsque ς et/ou µ change(nt) de signe, l'approximation numérique de [START_REF] Abdulle | An optimization-based numerical method for diffusion problems with sign-changing coefficients[END_REF] doit être réalisée avec soin pour éviter la pollution spectrale [START_REF] Séré | Spectral pollution and how to avoid it (with applications to Dirac and periodic Schrödinger operators)[END_REF]. Nous établissons ensuite un résultat de localisation des fonctions propres u ±n associées aux λ ±n dans le cas où un seul coefficient (ς ou µ) change de signe. Plus précisément, nous prouvons que les u ±n deviennent confinées ou

1. Introduction Consider a bounded set Ω ⊂ R d , d ≥ 1, partitioned into two subsets Ω 1 , Ω 2 such that Ω = Ω 1 ∪ Ω 2 and Ω 1 ∩ Ω 2 = ∅.
We assume that Ω, Ω 1 , Ω 2 are bounded open sets that have Lipschitz boundaries ∂Ω, ∂Ω 1 , ∂Ω 2 . Introduce ς, µ two functions such that for i = 1, 2, ς| Ωi = ς i , µ| Ωi = µ i where ς i = 0, µ i = 0 are some real constants. The goal of this work is to study the eigenvalue problem

Find (u, λ) ∈ H 1 0 (Ω) \ {0} × C such that -div(ς∇u) = λµu in Ω (1)
as well as its Finite Element (FE) approximation. In the present note, we are particularly interested in situations where ς and/or µ change sign over Ω. Such problems appear for instance while considering timeharmonic Maxwell's equations in structures involving negative materials (ς = ε -1 < 0 for metals at optical frequencies, ς = ε -1 < 0 and µ < 0 for some metamaterials). Set a(u, v) = (ς∇u, ∇v), b(u, v) = (µu, v) and using the Riesz representation theorem, define the bounded linear operators A, B :

H 1 0 (Ω) → H 1 0 (Ω) such that, for all u, v ∈ H 1 0 (Ω), (∇(Au), ∇v) = a(u, v), (∇(Bu), ∇v) = b(u, v).
In these definitions, (•, •) stands indistinctly for the usual inner products of L 2 (Ω) or L 2 (Ω) d . With such a notation, (u, λ) is an eigenpair of Problem (1) if and only if

a(u, v) = λ b(u, v) ∀v ∈ H 1 0 (Ω) ⇔ Au = λBu. (2) 
When ς changes sign, properties of the operator A have been extensively studied, in particular using the T-coercivity approach [START_REF] Bonnet-Ben Dhia | Time harmonic wave diffraction problems in materials with signshifting coefficients[END_REF][START_REF] Bonnet-Ben Dhia | T-coercivity for scalar interface problems between dielectrics and metamaterials[END_REF]. It has been shown that A is a Fredholm operator if and only if the contrast κ ς := ς 2 /ς 1 lies outside a closed interval I of (-∞; 0). For d = 1, we have I = ∅. Whereas for d ≥ 2, I always contains the value -1, and its definition depends on the properties of the interface Σ := ∂Ω 1 ∩∂Ω 2 . Note that when Σ ∩ ∂Ω = ∅, it holds I = {-1} if and only if Σ is smooth. In the present work, we shall systematically assume that κ ς / ∈ I so that A is a Fredholm operator. In addition, we shall assume that A is injective. Under these two assumptions, A is an isomorphism and (u, λ) is an eigenpair of Problem [START_REF] Abdulle | An optimization-based numerical method for diffusion problems with sign-changing coefficients[END_REF] if and only if Ku = λ -1 u with K = A -1 B. Since B is compact without any asumption on the sign of µ, K is compact. As a consequence, the spectrum of Problem (1) is discrete and made of isolated eigenvalues.

In the particular case where d = 1 and µ = ς, explicit calculus can be done. If Ω 1 = (a; 0) and Ω 2 = (0; b), with a < 0, b > 0, we find that λ ∈ C \ {0} is an eigenvalue of Problem (1) if and only if (ς 1 + ς 2 ) sin(λ(b -a)) = (ς 2 -ς 1 ) sin(λ(b + a)). Moreover, 0 is an eigenvalue if and only ς 2 /b -ς 1 /a = 0. When ς 2 = -ς 1 ⇔ κ ς = -1 and b = -a, we see that the spectrum of Problem (1) covers the whole complex plane despite the fact that A is Fredholm. However this situation shall be discarded in the following analysis because we impose that A is injective (which is not the case in the above particular setting). With these explicit calculations, one can also verify that complex spectrum can exist when both ς and µ are (real) sign changing.

In any dimension d ≥ 1 and when only one coefficient (ς or µ) changes sign, one finds that the spectrum of Problem ( 1) is real by taking the imaginary part of a(u, u) = λ b(u, u). Moreover, constructing functions

u n ∈ H 1 0 (Ω) such that a(u n , u n )/b(u n , u n ) → ±∞ as n → +∞
, one proves that it coincides with two sequences (λ ±n ) n 1 such that:

• • • λ -n • • • λ -1 < 0 λ 1 • • • λ n . . . and lim n→+∞ λ ±n = ±∞. ( 3 
)
The outline is as follows. In Section 2, we explain how to approximate numerically the spectrum of Problem (1) using classical FE methods. We prove FE convergence under some conditions on the mesh. Note that the numerical approximation has to be handled carefully to avoid spectral pollution [START_REF] Séré | Spectral pollution and how to avoid it (with applications to Dirac and periodic Schrödinger operators)[END_REF]. Then, we show some localization results for the eigenfunctions in the case where only one coefficient changes sign. Finally, in Section 4, we present numerical illustrations.

Numerical approximation

In this section, we focus on the numerical analysis of the eigenvalue problem [START_REF] Abdulle | An optimization-based numerical method for diffusion problems with sign-changing coefficients[END_REF]. We follow the classical approach developed for instance in [START_REF] Babuška | Eigenvalue problems, Handbook of numerical analysis[END_REF] by Babuška and Osborn. Let (V h ) h be a sequence of finite-dimensional subspaces of H 1 0 (Ω) indexed by a parameter h > 0 tending to zero. We assume that V h approximates H 1 0 (Ω) as h tends to zero in the sense that for all u ∈ H 1 0 (Ω), lim

h→0 inf u h ∈V h u -u h H 1 0 (Ω) = 0.
In practice, V h will be a space of globally continuous, piecewise polynomial functions defined on a mesh of Ω of characteristic size h. Consider the family of discrete eigenvalue problems

Find (u h , λ h ) ∈ V h \ {0} × C such that a(u h , v h ) = λ h b(u h , v h ) ∀v h ∈ V h . ( 4 
)
Next we introduce some definitions. For λ an eigenvalue of Problem (1), we call ascent of λ the smallest integer α such that ker(λ -1 -K) α = ker(λ -1 -K) α+1 and algebraic multiplicity of λ the number m := dim ker(λ -1 -K) α ≥ 1. The elements of ker(λ -1 -K) α are called the generalized eigenvectors of (1) associated with λ. In the following, we will assume that the form a(•, •) satisfies a uniform discrete inf-sup condition, i.e. we will assume that

∃β > 0, ∀h inf u h ∈V h , u h H 1 0 (Ω) =1 sup v h ∈V h , v h H 1 0 (Ω) =1 |a(u h , v h )| ≥ β. (P)
Admittedly, when ς changes sign, it is not clear whether or not (P) holds. We address this issue after Proposition 2.1 below. When (P) is true, we can define the operator

K h : H 1 0 (Ω) → V h such that a(K h u, v h ) = b(u, v h ) for all u ∈ H 1 0 (Ω), v h ∈ V h . Note that K h = P h K where P h denotes the projection of H 1 0 (Ω) onto V h such that a(P h u, v h ) = a(u, v h ) for all u ∈ H 1 0 (Ω), v h ∈ V h .
Using the fact that V h approximates H 1 0 (Ω) as h → 0, we can prove that K h converges in norm to K. We deduce that m eigenvalues λ h 1 , . . . , λ h m converge to λ. The eigenvalues λ h j are counted according to the algebraic multiplicities of the (λ h j ) -1 as eigenvalues of K h . Let M (λ) = {u | u is a generalized eigenvector of (1) associated with λ} M h (λ) = {u | u in the direct sum of the generalized eigenspaces of (4) corresponding to the eigenvalues λ h j that converge to λ}.

Denote δ(M (λ), M h (λ)) = sup u∈M (λ), u H 1 0 (Ω) =1 dist(u, M h (λ)).
Finally, define the quantity

ε h = sup u∈M (λ), u H 1 0 (Ω) =1 inf v h ∈V h u -v h H 1 0 (Ω) .
The results of [2, Chap. II, Sect. 8] are as follows.

Proposition 2.1 Assume that κ ς / ∈ I, that A is injective and that property (P) holds. Then, there is a constant C > 0 such that for all h

δ(M (λ), M h (λ)) ≤ C ε h , λ - 1 m m j=1 (λ h j ) -1 -1 C (ε h ) 2 , |λ -λ h j | ≤ C (ε h ) 2/α .
From now on, we assume that (V h ) h are spaces of globally continuous, piecewise polynomial functions of degree at most ≥ 1, that are defined on a shape-regular family (T h ) h of geometrically conformal meshes of Ω. In addition, every mesh T h is such that if τ ∈ T h , then τ ∈ Ω 1 or τ ∈ Ω 2 (if T h is a triangulation, no triangle crosses the interface Σ). The question of the verification of (P) has been addressed in [START_REF] Nicaise | A posteriori error estimates for a finite element approximation of transmission problems with sign changing coefficients[END_REF][START_REF] Bonnet-Ben Dhia | T-coercivity for scalar interface problems between dielectrics and metamaterials[END_REF][START_REF] Chesnel | T-coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients[END_REF][START_REF] Bonnet-Ben Dhia | Mesh requirements for the finite element approximation of problems with sign-changing coefficients[END_REF] where the source term problem associated with Problem (1) has been considered. More precisely, in these works the authors provide sufficient conditions on the mesh of Ω so that (P) holds. Let us try, in short, to give an idea of the results. In [START_REF] Nicaise | A posteriori error estimates for a finite element approximation of transmission problems with sign changing coefficients[END_REF][START_REF] Bonnet-Ben Dhia | T-coercivity for scalar interface problems between dielectrics and metamaterials[END_REF], when ς changes sign and when κ ς / ∈ I, it is shown how to construct bounded linear operators T : H 1 0 (Ω) → H 1 0 (Ω), based on geometrical transformations, such that |a(u, Tu)| ≥ β u 2 H 1 0 (Ω) for all u ∈ H 1 0 (Ω) where β > 0 is a constant. In [START_REF] Chesnel | T-coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients[END_REF], it is established that this is equivalent to prove that a(•, •) satisfies an inf-sup condition. And if the mesh is such that T(V h ) ⊂ V h , then we infer that a(•, •) satisfies property (P). Practically, this boils down to assume that the mesh of Ω verifies some geometrical conditions of symmetry with respect to the interface Σ. The general version is presented in [START_REF] Bonnet-Ben Dhia | Mesh requirements for the finite element approximation of problems with sign-changing coefficients[END_REF]. In the latter article, the authors show that for (P) to hold, it is sufficient that the meshes satisfy some symmetry properties in a neighbourhood of Σ.

In order to complement the result of Proposition 2.1, it remains to assess ε h . As usual in FE methods, the dependence of ε h with respect to h varies according to the regularity of u. The later question has been investigated in [START_REF] Chesnel | Compact imbeddings in electromagnetism with interfaces between classical materials and meta-materials[END_REF]. To set ideas, we shall assume that Ω 1 , Ω 2 are polygons. Define P H t (Ω) := {v ∈ H 1 (Ω)| v i ∈ H t (Ω i ), i = 1, 2}. In [START_REF] Chesnel | Compact imbeddings in electromagnetism with interfaces between classical materials and meta-materials[END_REF], it is proved that when κ ς / ∈ I, there is some s > 0, which can be computed, such that {v ∈ H 1 0 (Ω)| div(ς∇v) ∈ L 2 (Ω)} ⊂ P H 1+s (Ω) (algebraically and topologically). The exponent s > 0 depends both on the geometrical setting and on the value of κ ς . Moreover, it can be arbitrarily close to zero. For a FE approximation of degree , one has for h small enough ε h ≤ C h min(s, ) .

Let us make some comments regarding this analysis. First, a direct application of the Aubin-Nitsche lemma allows one to derive results of approximation of the eigenfunctions in the L 2 (Ω)-norm. Using isoparametric quadrilateral FE, one can deal with curved interfaces. Recently, in [START_REF] Abdulle | An optimization-based numerical method for diffusion problems with sign-changing coefficients[END_REF], an alternative approach, based on an optimisation method, has been proposed to consider the source term problem associated with [START_REF] Abdulle | An optimization-based numerical method for diffusion problems with sign-changing coefficients[END_REF]. It has the advantage of requiring no geometrical assumption on the mesh. It would be interesting to investigate if it can be employed to deal with the eigenvalue problem (1).

Localisation results for eigenvalue problems with one sign-changing coefficient

When only one coefficient (ς or µ) changes sign, we said above that the spectrum of Problem ( 1) is real and coincides with two sequences (λ ±n ) n 1 that fulfill (3). Here we prove that the normalized eigenfunctions u ±n ( u ±n H 1 0 (Ω) = 1) associated with λ ±n tend to be localized in one of the subdomains Ω 1 , Ω 2 as n → +∞ (see Figure 1 

(right) for numerical illustrations).

Let us first consider the case where ς changes sign and µ ≡ 1 in Ω, that is we look at the problem -div(ς∇u) = λ u. To fix ideas, we assume that ς 1 > 0 and ς 2 < 0. Denote d Σ the distance to the interface such that for x ∈ Ω, d Σ (x) = inf z∈Σ |x -z|. Define the weight functions χ ± n such that, for α > 0,

χ + n (x) = 1 in Ω 1 e αdΣ(x) √ λn/|ς2| in Ω 2 and χ - n (x) = e αdΣ(x) √ |λ-n|/ς1 in Ω 1 1 in Ω 2 . (5) 
Observe that χ + n (resp. χ - n ) blows up in Ω 2 (resp. Ω 1 ) as n → +∞.

Proposition 3.1 For all α ∈ (0; 1), n ∈ N * , we have

ς 1 ∇u n 2 L 2 (Ω1) ≥ λ n u n 2 L 2 (Ω1) + (1 -α) (λ n χ + n u n 2 L 2 (Ω2) + |ς 2 | χ + n ∇u n 2 L 2 (Ω2) ) (6) 
|ς 2 | ∇u -n 2 L 2 (Ω2) ≥ |λ -n | u -n 2 L 2 (Ω2) + (1 -α) (|λ -n | χ - n u -n 2 L 2 (Ω1) + ς 1 χ - n ∇u -n 2 L 2 (Ω1) ). (7) 
Corollary 3.1 Let ω 1 ⊂ Ω 1 , ω 2 ⊂ Ω 2 be two non-empty sets such that ω 1 ∩ Σ = ω 2 ∩ Σ = ∅. For β 1 ∈ (0; dist(ω 1 , Σ)), β 2 ∈ (0; dist(ω 2 , Σ)), there are some constants C 1 , C 2 > 0 such that for all n ∈ N * u n H 1 (ω2) ≤ C 2 e -β2 √ λn/|ς2| and u -n H 1 (ω1) ≤ C 1 e -β1 √ |λ-n|/ς1 .
Thus, the eigenfunctions associated with positive eigenvalues tend to be confined in the positive material Ω 1 whereas the ones associated with negative eigenvalues become confined in the negative material Ω 2 .

Proof. In the following, we prove Estimate (6) for u n . One proceeds similarly with u -n to get [START_REF] Chesnel | T-coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients[END_REF]. For all v ∈ H 1 0 (Ω), we have (ς∇u n , ∇v) = λ n (u n , v). Take v = (χ + n ) 2 u n . One can show that such a v is indeed an element of H 1 0 (Ω) because χ + n belongs to W 1, ∞ (Ω) (since Σ is a Lipschitz manifold, see [8, Chap. 6, Thm. 3.3, (vii)]). Expanding the term ∇((χ + n ) 2 u n ) and using that ∇χ + n = 0 in Ω 1 , we obtain

ς 1 ∇u n 2 L 2 (Ω1) = λ n χ + n u n 2 L 2 (Ω) + |ς 2 | χ + n ∇u n 2 L 2 (Ω2) + 2|ς 2 | Ω2 χ + n u n ∇χ + n • ∇u n dx. ( 8 
)
Noticing that ∇χ

+ n = α λ n /|ς 2 | χ + n ∇d Σ and |∇d Σ | = 1 a.e.
in Ω 2 , we can write

2|ς 2 | Ω2 χ + n u n ∇χ + n • ∇u n dx ≤ αλ n χ + n u n 2 L 2 (Ω2) + α|ς 2 | χ + n ∇u n 2 L 2 (Ω2) . (9) 
Plugging ( 9) in ( 8) leads to [START_REF] Chesnel | Compact imbeddings in electromagnetism with interfaces between classical materials and meta-materials[END_REF]. Then the first estimate of Corollary 3.1 is a direct consequence of ( 6)

(with α = β 2 /dist(ω 2 , Σ)) because χ + n (x) ≥ e αdist(ω2,Σ) √ λn/|ς2| in ω 2 .
Remark 1 A result similar to the one of Proposition 3.1 can be obtained assuming only that ς ∈ L ∞ (Ω) is such that ς ≥ C > 0 a.e. in Ω 1 and ς ≤ -C < 0 a.e. in Ω 2 for some C > 0. Now, we just state the results in the case where ς ≡ 1 in Ω and µ changes sign (-∆u = λµu). To set ideas, we assume that µ 1 > 0 and µ 2 < 0. Define the weight functions ζ ± n such that, for α > 0,

ζ + n (x) = 1 in Ω 1 e αdΣ(x) √ λn |µ2| in Ω 2 and ζ - n (x) = e αdΣ(x) √ |λ-n| µ1 in Ω 1 1 in Ω 2 .
Proposition 3.2 For all α ∈ (0; 1), n ∈ N * , we have

λ n µ 1 u n 2 L 2 (Ω1) ≥ ∇u n 2 L 2 (Ω1) + (1 -α) (λ n |µ 2 | ζ + n u n 2 L 2 (Ω2) + ζ + n ∇u n 2 L 2 (Ω2) ) |λ -n | |µ 2 | u -n 2 L 2 (Ω2) ≥ ∇u -n 2 L 2 (Ω2) + (1 -α) (|λ -n | µ 1 ζ - n u -n 2 L 2 (Ω1) + ζ - n ∇u -n 2 L 2 (Ω1) ). Corollary 3.2 Let ω 1 ⊂ Ω 1 , ω 2 ⊂ Ω 2 be two non-empty sets such that ω 1 ∩ Σ = ω 2 ∩ Σ = ∅. For β 1 ∈ (0; dist(ω 1 , Σ)), β 2 ∈ (0; dist(ω 2 , Σ)), there are some constants C 1 , C 2 > 0 such that for all n ∈ N * u n H 1 (ω2) ≤ C 2 e -β2 √ λn |µ2| and u -n H 1 (ω1) ≤ C 1 e -β1 √ |λ-n| µ1 .
Remark 2 In [START_REF] Fleckinger | Eigenvalues of elliptic boundary value problems with an indefinite weight function[END_REF], the authors study the asymptotic behaviour of (λ ±n ) as n → +∞ (Weyl formulas) in the case ς ≡ 1 and µ changes sign (-∆u = λµu). This question in the situation µ ≡ 1 and ς changes sign (-div(ς∇u) = λu) remains open.

Remark 3 In the case, ς ≡ 1 and µ changes sign (-∆u = λµu), using min -max formulas, one can show that for n ≥ 1, λ n ≤ λ h n (as for the usual Dirichlet Laplacian operator) and λ -n ≥ λ h -n . Here λ h ±n refers to an eigenvalue of (4) which converges to λ ±n .

Numerical illustrations

Let us illustrate these results on a simple example. We take Ω = (-1; 1) × (-1; 1), Ω 2 = (0; 1) × (0; 1) and Ω 1 = Ω \ Ω 2 . In this geometry, A : H 1 0 (Ω) → H 1 0 (Ω) is an isomorphism if and only κ ς = ς 2 /ς 1 / ∈ I = [-3; -1/3] (see [START_REF] Bonnet-Ben Dhia | T-coercivity for scalar interface problems between dielectrics and metamaterials[END_REF]). Set ς 1 = 1, ς 2 = -4 and µ ≡ 1. We use meshes with symmetries like the one of Figure 1 (left) for which we know that the uniform discrete inf-sup condition (P) above holds. In Figure 1 refers to the approximation λ h 1 of λ 1 obtained with a very refined mesh and = 4. From [START_REF] Chesnel | Compact imbeddings in electromagnetism with interfaces between classical materials and meta-materials[END_REF] and Section 2, one can expect a convergence order equal to 2 min(s, ) where, for this interface with a right angle, s = min(η, 2 -η) ≤ 1, η = 2 arccos((ς 1 -ς 2 )/(2(ς 1 + ς 2 ))/π. For κ ς = -4, we find s ≈ 0.37 so that for = 1, 2, 3, we have 2 min(s, ) ≈ 0.74. In Figure 1 (right), we display the eigenfunctions associated with λ h ±1 , . . . , λ h ±4 . In accordance with the result of Proposition 3.1, we observe that the eigenfunctions associated with λ n (resp. λ -n ) tend to be more and more localized in Ω 1 (resp. Ω 2 ) as n grows. 
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 1 Figure 1. Left: coarse symmetric mesh. Centre : relative error vs. h (log-log scale) for λ 1 ≈ 13.2391. Right: eigenfunctions associated with λ h 1 , . . . , λ h 4 (top) and λ h -1 , . . . , λ h -4 (bottom).