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's results. Applications include the twosample testing procedures together with the change-point problems. We also consider the strong approximation of integrated empirical processes when the parameters are estimated. Finally, we study the behavior of the self-intersection local time of the partial sum process representation of integrated empirical processes.

Introduction

Let F = {F (t), t ∈ R} be a continuous distribution function [d.f.] and denote by Q = {Q(u), u ∈ [0, 1]} the usual quantile function (generalized inverse) pertaining to F defined as Q(u) := inf{t ∈ R : F (t) ≥ u} for u ∈ (0, 1),

Q(0) := lim u↓0 Q(u) and Q(1) := lim u↑1 Q(u).
The function Q is strictly increasing and we have F (Q(u)) = u for any u ∈ [0, 1]. Consider now a sequence of independent, identically distributed [i.i.d.] random variables [r.v.'s] {U i : i ∈ N * } uniformly distributed on [0, 1] and, for each i ∈ N * , set X i := Q(U i ). The sequence {X i : i ∈ N * } consists of i.i.d. r.v.'s with d.f. F : F (t) = P{X 1 ≤ t} for t ∈ R (cf., e.g., [START_REF] Shorack | Empirical processes with applications to statistics[END_REF], p. 3 and the references therein). Moreover, we conversely have U i = F (X i ).

For each n ∈ N * , let F n and U n be the empirical d.f.'s based upon the respective samples X 1 , . . . , X n and U 1 , . . . , U n defined by

F n (t) := 1 n #{i ∈ {1, . . . , n} : X i ≤ t} = 1 n n i=1 ½ {X i ≤t} for t ∈ R, U n (u) := 1 n #{i ∈ {1, . . . , n} : U i ≤ u} = 1 n n i=1 ½ {U i ≤u} for u ∈ [0, 1],
where # denotes cardinality. For each n ∈ N * , we introduce the empirical process α n and the uniform empirical process β n defined by α n (t) := √ n (F n (t) -F (t)) for t ∈ R, (1.1)

β n (u) := √ n (U n (u) -u) for u ∈ [0, 1]. (1.2)
We have of course the usual relations between the empirical process and uniform empirical process:

α n (t) = β n (F (t)) for t ∈ R, n ∈ N * , (1.3) β n (u) = α n (Q(u)) for u ∈ [0, 1], n ∈ N * .
(1.4)

In this paper, we consider integrated empirical d.f.'s based upon the samples X 1 , . . . , X n and U 1 , . . . , U n together with the corresponding integrated empirical processes in the following sense.

F n (s p ) dF n (s p ), together with the corresponding family of integrated empirical processes as α (p) n (t) := √ n F (p) n (t) -F (p) (t) .

(1.5)

Notice that F (p) (resp.

F (p)
n ) is a kind of p-fold integral with respect to the measure dF (resp. dF n ). Hence, we will call F (p) (resp.

F (p) n , α (p)
n ) throughout the paper p-fold integrated d.f. (resp. p-fold integrated empirical d.f., p-fold integrated empirical process). Finally, we define exactly in the same manner the p-fold integrated uniform empirical d.f. U (p) n and the p-fold integrated uniform empirical process β (p) n . Below, we provide explicit expressions for F (p) and F (p) n , the proof of which are postponed to Section 7.

Proposition 1.2 For each p ∈ N, we explicitly have, with probability 1,

F (p) (t) = F (t) p+1 (p + 1)! , F (p) n (t) = 1 n p+1
nF n (t) + p p + 1 for t ∈ R, n ∈ N * .

(1.6)

The particular case where p = 1 has often been considered in the literature. Henze andNikitin (2000, 2002) introduced and deeply investigated the goodness-of-fit testing procedures based on the integrated empirical process. Indeed, the asymptotic properties of their procedures, Kolmogorov-Smirnov, Cramér-von Mises and Watson-type statistics, can be derived from the limiting behavior of the integrated empirical process. [START_REF] Henze | Two-sample tests based on the integrated empirical process[END_REF] considered a two-sample testing procedure and focused on the approximate local Bahadur efficiencies of their statistical tests. It is noteworthy to point out that tests based on some integrated empirical processes turn out to be more efficient for certain distributions. In [START_REF] Lachal | Study of some new integrated statistics: computation of Bahadur efficiency, relation with non-standard boundary value problems[END_REF], another version of the p-fold integrated empirical process (p ∈ N * ) was introduced. For the extension to the multivariate framework, we may refer to [START_REF] Jing | Testing the equality of multivariate distributions using the bootstrap and integrated empirical processes[END_REF] and [START_REF] Jing | Testing the equality of multivariate distributions using the integrated empirical processes[END_REF] where some projected integrated empirical processes for testing the equality of two multivariate distributions are considered. Inspired by the work of [START_REF] Henze | Two-sample tests based on the integrated empirical process[END_REF], [START_REF] Bouzebda | New two-sample tests based on the integrated empirical copula processes[END_REF] developed multivariate two-sample testing procedures based on the integrated empirical copula process that are extended to the K-sample problem in [START_REF] Bouzebda | K-sample problem using strong approximations of empirical copula processes[END_REF]. Emphasis is placed on the explanation of the strong approximation methodology. The asymptotic behavior of weighted multivariate Cramér-von Mises-type statistics under contiguous alternatives was characterized by [START_REF] Bouzebda | Asymptotic behavior of weighted multivariate Cramér-von Mises-type statistics under contiguous alternatives[END_REF]. For more recent references, we refer to [START_REF] Durio | Local efficiency of integrated goodness-of-fit tests under skew alternatives[END_REF] and [START_REF] Alvarez-Andrade | Some asymptotic results for the integrated empirical process with applications to statistical tests[END_REF].

The main purpose of this paper is to investigate the strong approximation of the p-fold integrated empirical process. Next we use the obtained results for studying the asymptotic properties of statistical tests based on this process. We point out that strong approximations are quite useful and have received considerable attention in probability theory. Indeed, many well-known and important probability theorems can be considered as consequences of results about strong approximation of sequences of sums by corresponding Gaussian sequences.

We will first obtain an upper bound in probability for the distance between the p-fold integrated empirical process and a sequence of appropriate Brownian bridges (see Theorem 2.3). This is the key point of our study. From this, we will deduce a strong approximation of the p-fold integrated empirical process by this sequence of Brownian bridges (see Corollary 2.5). As an application, we will derive the rates of convergence for the distribution of smooth functionals of each p-fold integrated empirical process (see Corollary 2.4). Moreover, we will deduce strong approximations for the Kolmogorov-Smirnov and Cramér-von Mises-type statistics associated with the p-fold integrated empirical processes (see Corollary 2.8).

Second, we will obtain a strong approximation of the p-fold integrated empirical process by a Kiefer processes (see Theorem 2.6). This latter is of particular interest; indeed, for instance, any kind of law of the iterated logarithm which holds for the partial sums of Gaussian processes may then be transferred to the p-fold integrated empirical processes (see Corollary 2.7). We may refer to DasGupta (2008) (Chapter 12), [START_REF] Csörgő | Weighted approximations in probability and statistics[END_REF] (Chapter 3), [START_REF] Csörgő | Strong approximations in probability and statistics[END_REF] (Chapters 4-5) and [START_REF] Shorack | Empirical processes with applications to statistics[END_REF] (Chapter 12) for expositions, details and references about this problem.

We refer to [START_REF] Csörgő | The Komlós-Major-Tusnády approximations and their applications[END_REF], [START_REF] Csörgő | A glimpse of the KMT (1975) approximation of empirical processes by Brownian bridges via quantiles[END_REF] and [START_REF] Mason | Quantile coupling inequalities and their applications[END_REF] for a survey of some applications of the strong approximation and many references. There is a huge literature on the strong approximations and their applications. It is not the purpose of this paper to survey this extensive literature.

The layout of the article is as follows. In Section 2, we first present some strong approximation results for the p-fold integrated empirical process; our main tools are the results of [START_REF] Komlós | An approximation of partial sums of independent RV's and the sample DF[END_REF]. Sections 3 and 4 are devoted to statistical applications, namely the two-sample and change-point problems respectively. In Section 5, we deal with the strong approximation of the p-fold integrated empirical process when parameters are estimated. Section 6 is concerned with the behavior of the self-intersection local time of the partial sum process representation of the p-fold integrated empirical process. To prevent from interrupting the flow of the presentation, all mathematical developments are postponed to Section 7.

Strong approximation

Some processes

First, we introduce some definitions and notations. Let W = {W(s) : s ≥ 0} and B = {B(u) : u ∈ [0, 1]} be the standard Wiener process and Brownian bridge, that is, the centered Gaussian processes with continuous sample paths, and covariance functions

E(W(s)W(t)) = s ∧ t for s, t ≥ 0 and E(B(u)B(v)) = u ∧ v -uv for u, v ∈ [0, 1]. A Kiefer process K = {K(s, u) : s ≥ 0, u ∈ [0, 1]
} is a two-parameters centered Gaussian process, with continuous sample paths, and covariance function

E(K(s, u)K(t, v)) = (s ∧ t) (u ∧ v -uv) for s, t ≥ 0 and u, v ∈ [0, 1].
It satisfies the following distributional identities:

{K(s, u) : u ∈ [0, 1]} L = √ s B(u) : u ∈ [0, 1] for s ≥ 0 and {K(s, u) : s ≥ 0} L = u(1 -u) W(s) : s ≥ 0 for u ∈ [0, 1],
where L = stands for the equality in distribution. The interested reader may refer to [START_REF] Csörgő | Strong approximations in probability and statistics[END_REF] for details on the Gaussian processes mentioned above.

Brownian approximation

It is well-known that the empirical uniform process {β n : n ∈ N * } converges to B in D[0, 1] (the space of all right-continuous real-valued functions defined on [0, 1] which have left-hand limits, equipped with the Skorohod topology; see, for details, [START_REF] Billingsley | Convergence of probability measures[END_REF]). The rate of convergence of this process to B is an important task in statistics as well as in probability that has been investigated by several authors. We can and will assume without loss of generality that all r.v.'s and processes introduced so far and later on in this paper can be defined on the same probability space (cf. Appendix 2 in [START_REF] Csörgő | Weighted approximations in probability and statistics[END_REF]). Komlós, Major, and Tusnády [KMT] [START_REF] Komlós | An approximation of partial sums of independent RV's and the sample DF[END_REF], Theorem 3; refer also to [START_REF] Komlós | An approximation of partial sums of independent RV's and the sample DF[END_REF]) stated the following Brownian bridge approximation for {β n : n ∈ N * } (Formula (2.2)), along with a description of its proof with few details, which has been subsequently refined by [START_REF] Mason | A refinement of the KMT inequality for the uniform empirical process[END_REF] (Formula (2.1)).

Theorem A On a suitable probability space, we may define the uniform empirical process {β n : n ∈ N * }, in combination with a sequence of Brownian bridges {B n : n ∈ N * }, such that, for any d, n ∈ N * satisfying d ≤ n and any positive number x,

P sup u∈[0,d/n] |β n (u) -B n (u)| ≥ 1 √ n (c 1 log d + x) ≤ c 2 e -c 3 x (2.1)
where c 1 , c 2 and c 3 are suitable absolute constants. The same inequality holds when replacing the interval

[0, d/n] by [1 -d/n, 1]. In particular, for d = n, P sup u∈[0,1] |β n (u) -B n (u)| ≥ 1 √ n (c 1 log n + x) ≤ c 2 e -c 3 x . (2.2)
In (2.2), suitable explicit values for c 1 , c 2 , c 3 were exhibited by [START_REF] Bretagnolle | Hungarian constructions from the nonasymptotic viewpoint[END_REF], Theorem 1: c 1 = 12, c 2 = 2, c 3 = 1/6. In his manuscript, [START_REF] Major | The approximation of the normalized empirical distribution function by a brownian bridge[END_REF] details the original proof of (2.2). [START_REF] Chatterjee | A new approach to strong embeddings[END_REF] provided a new alternative approach for proving the famous KMT theorem.

Remark 2.1 In the sequel, the precise meaning of "suitable probability space" is that an independent sequence of Wiener processes, which is independent of the originally given sequence of i.i.d. r.v.'s, can be constructed on the assumed probability space. This is a technical requirement which allows the construction of the Gaussian processes displayed in our theorems, and which is not restrictive since one can expand the probability space to make it rich enough (see, e.g., Appendix 2 in Csörgő andHorváth (1993), de Acosta (1982), [START_REF] Csörgő | Strong approximations in probability and statistics[END_REF] and Lemma A1 in [START_REF] Berkes | Approximation theorems for independent and weakly dependent random vectors[END_REF]).

Throughout this paper, it will be assumed that the underlying probability spaces are suitable in this sense.

In the following theorem, we state the key point to access the strong Brownian approximation of the p-fold integrated uniform empirical process β

(p) n : n ∈ N * .
Theorem 2.2 Fix p ∈ N * . On a suitable probability space, we may define the p-fold integrated uniform empirical process β 

β (p) n (u) -B (p) n (u) ≥ 1 √ n (c 1 log d + x) ≤ B p p+1 k=2 exp -C p x 2/k n 1-2/k (2.3)
where B p and C p are positive constants depending on p, c 1 is the constant arising in (2.2) and, for each

n ∈ N * , B (p) 
n is the process defined by 

B (p) n (u) := 1 p! u p B n (u) for u ∈ [0, 1].
α (p) n (t) -B (p) n (F (t)) ≥ 1 √ n (c 1 log n + x) ≤ B p p+1 k=2 exp -C p x 2/k n 1-2/k . (2.4)
An important consequence of Theorem 2.3 is an upper bound for the convergence of distributions of smooth functionals of α (p) n . Indeed, applying (2.4) with x = c log n for a suitable constant c yields the result below.

Corollary 2.4 Fix p ∈ N * . Let B be a Brownian bridge and B (p) the process defined by

B (p) (u) := 1 p! u p B(u) for u ∈ [0, 1].
If Φ(•) is a Lipschitz functional defined on D[0, +∞) such that the r.v. Φ B (p) (F (•)) admits a bounded density function, then, as n → ∞,

sup x∈R P Φ α (p) n (•) ≤ x -P Φ B (p) (F (•)) ≤ x = O log n √ n .
(2.5)

For more comments on this kind of results, we may refer to [START_REF] Csörgő | Approximation for bootstrapped empirical processes[END_REF], Corollary 1.1 and p. 2459. By applying (2.4) to x = c ′ log n for a suitable constant c ′ and appealing to Borel-Cantelli lemma, one can obtain the following almost sure approximation of the process α (p) n : n ∈ N * based on a sequence of Brownian bridges.

Corollary 2.5 The following bound holds, with probability 1, as n → ∞: 

sup t∈R α (p) n (t) -B (p) n (F (t)) = O log n √ n . ( 2 
k (t) -K (p) (k, F (t)) = O (log n) 2
where K (p) is the process defined by

K (p) (s, u) := 1 p! u p K(s, u) for s ≥ 0, u ∈ [0, 1].
Let us mention that the "extracted" Kiefer process {K(n, u) : n ∈ N * , u ∈ [0, 1]} may be viewed as the partial sums process of a sequence of independent Brownian bridges {B i : i ∈ N * }:

K(n, u) = n i=1 B i (u) for n ∈ N * , u ∈ [0, 1].
From Theorem 2.6, we deduce the following law of iterated logarithm ("a.s." stands for "almost surely").

Corollary 2.7 We have the following law of iterated logarithm for the p-fold integrated empirical process:

lim sup n→∞ sup t∈R α (p) n (t) √ log log n = (p + 1/2) p+1/2 p! (p + 1) p+1 a.s. (2.7)
As a direct application of (2.6) and (2.7) to the problem of goodness-of-fit, for testing the null hypothesis

H 0 : F = F 0 ,
we can use the following statistics: the p-fold integrated Kolmogorov-Smirnov statistic

S (p) n := sup t∈R √ n F (p) n (t) -F (p) 0 (t)
as well as the p-fold integrated Cramér-von Mises statistic

T (p) n := n R F (p) n (t) -F (p) 0 (t) 2 dF 0 (t).
Corollary 2.8 Under H 0 , with probability 1, as n → ∞, we have

S (p) n -sup t∈R B (p) n (F 0 (t)) = O log n √ n , (2.8) T (p) n - R B (p) n (F 0 (t)) 2 dF 0 (t) = O log log n n log n .
(2.9)

We finish this part by pointing out the possibility of considering the statistics, for r > 1,

√ n R F (p) n (t) -F (p) 0 (t) r dF 0 (t) 1/r
.

It is clear, however, that we have the following convergence in distribution as n → ∞, under H 0 :

√ n R F (p) n (t) -F (p) 0 (t) r dF 0 (t) 1/r -→ R B (p) (F 0 (t)) r dF 0 (t) 1/r
.

In a future research, it would be of interest to deeply investigate such statistics.

The two-sample problem

For each m, n ∈ N * , let X 1 , . . . , X m and Y 1 , . . . , Y n be independent random samples from continuous d.f.'s F and G, respectively, and let

F (p) m and G (p)
n denote their p-fold integrated empirical d.f.'s. Tests for the null hypothesis H ′ 0 : F = G, can be based on the p-fold integrated two-sample empirical process defined, for each m, n ∈ N * , by

ξ (p) m,n (t) := mn m + n F (p) m (t) -G (p) n (t) for t ∈ R.
Actually, as in [START_REF] Bouzebda | New two-sample tests based on the integrated empirical copula processes[END_REF], we will more generally consider the following modified p-fold integrated two-sample empirical process (which includes the process ξ (p) m,n ). Fix a positive integer q which will serve as a power. We define, for each m, n ∈ N * ,

ξ (p,q) m,n (t) := mn m + n F (p) m (t) q -G (p) n (t) q for t ∈ R. Set also, for any m, n ∈ N * , ϕ(m, n) := max log m √ m , log n √ n and φ(m, n) := max log log m m log m, log log n n log n .
Reasonable statistics for testing H ′ 0 would be the modified p-fold integrated Kolmogorov-Smirnov statistic

S (p,q) m,n := sup t∈R ξ (p,q) m,n (t)
and the modified p-fold integrated Cramér-von Mises statistic

T (p,q) m,n := R ξ (p,q) m,n (t) 2 dF (t).
The following results are consequences of Corollary 2.5.

Corollary 3.1 On a suitable probability space, it is possible to define ξ

(p,q) m,n : m, n ∈ N * , jointly with two sequences of Brownian bridges B 1 m : m ∈ N * and B 2 n : n ∈ N * , such that, under H ′ 0 , with probability 1, as min(m, n) → ∞, sup t∈R ξ (p,q) m,n (t) -B (p,q) m,n (t) = O(ϕ(m, n)),
where, for each m, n ∈ N * , B

(p,q) m,n is the Gaussian process defined by

B (p,q) m,n (t) := (p + 1)q (p + 1)! q F (t) pq+q-1 n m + n B 1 m (F (t)) - m m + n B 2 n (F (t)) for t ∈ R.
Corollary 3.2 Under H ′ 0 , with probability 1, as min(m, n) → ∞, we have

S (p,q) m,n -sup t∈R B (p,q) m,n (t) = O(ϕ(m, n)), T (p,q) m,n - R B (p,q) m,n (t) 2 dF (t) = O(φ(m, n)).
Remark 3.3 The family of statistics indexed by q may be used to maximize the power of the statistical test for a specific alternative hypothesis as argued in [START_REF] Ahmad | A note on goodness-of-fit statistics with asymptotically normal distributions[END_REF] in the case p = 1.

Now, we fix a positive integer K and we describe the more general K-sample problem. For each k ∈ {1, . . . , K}, we consider a setting made of independent observations

X k i : i ∈ {1, . . . , n k } of a real-valued r.v. X k . The d.f.'s of X k i , i ∈ {1, .
. . , n k }, are denoted by F k and they are assumed to be continuous. We would like to test, F 0 being a fixed continuous d.f., the null hypothesis

H K 0 : F 1 = F 2 = • • • = F K = F 0 .
For any K-tuple of positive integers n = (n 1 , . . . , n K ), set |n| = K k=1 n k and let

(Z 1 , . . . , Z |n| ) := X 1 1 , . . . , X 1 n 1 , X 2 1 , . . . , X 2 n 2 , . . . , X K 1 , . . . , X K n K
be the pooled sample of total size |n|, D

K,n be the p-fold integrated empirical d.f. based upon Z 1 , . . . , Z |n| , and, for each k ∈ {1, . . . , K},

F (p),k n k be the p-fold integrated empirical d.f. based upon X k 1 , . . . , X k n k .
Of course, we have the following identity:

D (p) K,n = 1 |n| K k=1 n k F (p),k n k . (3.1)
Next, we define the p-fold integrated K-sample empirical process in the following way: for any

K-tuple n = (n 1 , . . . , n K ) ∈ (N * ) K , ξ (p) K,n (t) := K k=1 n k F (p),k n k (t) -D (p) K,n (t) 2 for t ∈ R.
Obvious candidates for testing Hypothesis

H K 0 are the p-fold integrated K-sample Kolmogorov-Smirnov statistic S (p) K,n := sup t∈R ξ (p) K,n (t)
and the p-fold integrated K-sample Cramér-von Mises functional (the usual square being included in the definition of ξ

(p) K,n ) T (p) K,n := R ξ (p) K,n (t) dF 0 (t). Set φ K (n) := max 1≤k≤K log log n k n k log n k .
As a consequence of Corollary 2.5 and by using similar arguments to those used in [START_REF] Bouzebda | K-sample problem using strong approximations of empirical copula processes[END_REF], we obtain the following results.

Theorem 3.4 On a suitable probability space, it is possible to define ξ

(p) K,n : n ∈ (N * ) K , jointly with K sequences of Brownian bridges B k m : m ∈ N * , k ∈ {1, . . . , K}, such that, under H K 0 , with probability 1, for n = (n 1 , . . . , n K ) such that min 1≤k≤K n k → ∞, sup t∈R ξ (p) K,n (t) -B (p) K,n (t) = O φ K (n) , where, for each n = (n 1 , . . . , n K ) ∈ (N * ) K , B (p) K,n is the process defined by B (p) K,n (t) := F 0 (t) 2p p! 2   K k=1 B k n k F 0 (t) 2 - K k=1 n k |n| B k n k F 0 (t) 2   for t ∈ R.
In the particular case K = 2 (i.e. the two-sample problem), the corresponding settings are related to the previous ones according as

ξ (p) 2,(n 1 ,n 2 ) (t) = ξ (p) n 1 ,n 2 (t) 2 , φ 2 ((n 1 , n 2 )) = φ(n 1 , n 2 ), S (p) 
2,(n 1 ,n 2 ) = S (p,1)

n 1 ,n 2 2 , T (p) 2,(n 1 ,n 2 ) = T (p,1) n 1 ,n 2 .
Notice that B (p) K,n (t) ≥ 0 for any t ∈ R and n ∈ (N * ) K as it is easily seen with the aid of the Cauchy-Schwarz inequality. For K = 2, this process writes

B (p) 2,(n 1 ,n 2 ) = B (p,1) n 1 ,n 2 2
, this is the square of a Gaussian process.

The next result, which is an immediate consequence of the previous theorem (observe that S K,n ), gives the limit null distributions of the statistics under consideration.

Corollary 3.5 Under H K 0 , with probability 1, for n = (n 1 , . . . , n K ) such that min 1≤k≤K n k → ∞, we have S (p) K,n -sup t∈R B (p) K,n (t) = O φ K (n) , T (p) K,n - R B (p) K,n (t) dF 0 (t) = O φ K (n) .

The change-point problem

Here and elsewhere, ⌊t⌋ denotes the largest integer not exceeding t. In many practical applications, we assume the structural stability of statistical models and this fundamental assumption needs to be tested before it can be applied. This is called the analysis of structural breaks, or change-points, which has led to the development of a variety of theoretical and practical results. For good sources of references to research literature in this area along with statistical applications, the reader may consult [START_REF] Brodsky | Nonparametric methods in change-point problems[END_REF], Csörgő and Horváth (1997) and [START_REF] Chen | Parametric statistical change point analysis[END_REF]. For recent references on the subject we may refer, among many others, to [START_REF] Bouzebda | On the strong approximation of bootstrapped empirical copula processes with applications[END_REF], [START_REF] Aue | Structural breaks in time series[END_REF], [START_REF] Chan | Darling-Erdős limit results for change-point detection in panel data[END_REF], [START_REF] Horváth | Extensions of some classical methods in change point analysis[END_REF], Alvarez-Andrade and [START_REF] Bouzebda | Asymptotic properties of pseudo maximum likelihood estimators and test in semi-parametric copula models with multiple change points[END_REF] and [START_REF] Bouzebda | Asymptotic properties of pseudo maximum likelihood estimators and test in semi-parametric copula models with multiple change points[END_REF].

In this section, we deal with testing changes in d.f.'s for a sequence of independent real-valued r.v.'s X 1 , . . . , X n . The corresponding null hypothesis that we want to test is

H ′′ 0 : X 1 , . . . , X n have d.f. F.
As frequently done, the behavior of the derived tests will be investigated under the alternative hypothesis of a single change-point

H ′′ 1 : ∃ k * ∈ {1, . . . , n -1} such that X 1 , . . . , X k * have d.f. F and X k * +1 , . . . , X n have d.f. G.
The d.f.'s F and G are assumed to be continuous. The critical integer k * can be written as ⌊ns⌋ for a certain s ∈ (0, 1). Then, testing the null hypothesis H ′′ 0 can be based on functionals of the following process: set, for each n ∈ N * ,

α (p) n (s, t) := ⌊ns⌋(n -⌊ns⌋) n 3/2 F (p)- ⌊ns⌋ (t) -F (p)+ n-⌊ns⌋ (t) for s ∈ (0, 1), t ∈ R, (4.1)
where

F (p)- k
is the p-fold integrated empirical d.f. based upon the k first observations while F 

F (p)- 0 = F (p)+ 0 = 0, so that α (p) n (s, t) = 0 if s ∈ (0, 1/n).
We can define the r.v.'s X 1 , . . . , X ⌊ns⌋ and X ⌊ns⌋+1 , . . . , X n on a probability space on which we can simultaneously construct two Kiefer processes {K 1 (s, u)

: s ∈ R, u ∈ [0, 1]} and {K 2 (s, u) : s ∈ R, u ∈ [0, 1]} such that the "restricted" processes {K 1 (s, u) : s ∈ [1, n/2], u ∈ [0, 1]} and {K 2 (s, u) : s ∈ [n/2, n], u ∈ [0, 1]} are independent. It turns out that a natural approximation of α (p) n : n ∈ N * is given by the sequence of Gaussian processes o K (p) n (s, F (t)) : s ∈ [0, 1], t ∈ R, n ∈ N * defined by o K (p) n (s, u) := 1 p! u p o K n (s, u) for s, u ∈ [0, 1], n ∈ N * , (4.2)
where, for each

n ∈ N * , o K n := o K n (s, u) : s, u ∈ [0, 1] is the Gaussian process defined by o K n (s, u) :=    1 √ n K 2 (⌊ns⌋, u) -s(K 1 (⌊n/2⌋, u) + K 2 (⌊n/2⌋, u)) for s ∈ 0, 1 2 , u ∈ [0, 1], 1 √ n -K 1 (⌊n(1 -s)⌋, u) + (1 -s)(K 1 (⌊n/2⌋, u) + K 2 (⌊n/2⌋, u)) for s ∈ 1 2 , 1 , u ∈ [0, 1].
More precisely, we have the following result. 

sup t∈R α (p) n (s, t) - o K (p) n (s, F (t)) = O (log n) 2 √ n .
According to Csörgő et al. (1997), a way to test change-point is to use the following statistics:

σ (p) n := sup s∈(0,1) sup t∈R α (p) n (s, t) . (4.3)
The corollary below is a consequence of Theorem 4.1 which can be proved by following exactly the same lines of Alvarez-Andrade et al. (2017).

Corollary 4.2 If H ′′ 0 holds true, then we have the convergence in distribution, as n → ∞,

σ (p) n L -→ sup s,u∈[0,1] o K (p) (s, u) , where o K (p) = o K (p) (s, u) : s, u ∈ [0, 1
] is a Gaussian process with mean zero and covariance

E o K (p) (s, u) o K (p) (s ′ , u ′ ) = 1 p! 2 u p u ′p (u ∧ u ′ -uu ′ )(s ∧ s ′ -ss ′ ). One has o K (p) (s, u) = 1 p! u p o K(s, u)
where o K is a tied-down Kiefer process. We refer to Csörgő and Horváth (1997) for more details on the process K (p) in the case where p = 1.

Actually, according to Csörgő et al. (1997), the most appropriate way to test change-point is to use the following weighted statistic:

σ (p)
n,w := sup s∈(0,1)

sup t∈R α (p) n (s, t) w (⌊ns⌋/n) (4.4)
where w is a positive function defined on (0, 1), increasing in a neighborhood of zero and decreasing in a neighborhood of one satisfying the condition

I(w, ε) := 1 0 exp - εw 2 (s) s(1 -s) ds s(1 -s) < ∞
for some constant ε > 0. For a history and further applications of I(w, ε), we refer to [START_REF] Csörgő | Weighted approximations in probability and statistics[END_REF], Chapter 4. From [START_REF] Szyszkowicz | Asymptotic distribution of weighted pontograms under contiguous alternatives[END_REF], an example of such function w is given by

w(t) := t(1 -t) log log 1 t(1 -t) 1/2
for t ∈ (0, 1).

By using similar techniques to those which are developed in Csörgő and Horváth (1997), one may show that

σ (p) n,w L -→ sup s,u∈[0,1] o K (p) (s, u) w(s) .
For more details, we refer to Alvarez-Andrade and Bouzebda (2014).

Remark 4.3 As in [START_REF] Szyszkowicz | Weak convergence of weighted empirical type processes under contiguous and changepoint alternatives[END_REF], we mention that the statistic given by (4.3) should be more powerful for detecting changes that occur in the middle, i.e., near n/2, where k/n(1 -k/n) reaches its maximum, than for the ones occurring near the end points. The advantage of using the weighted statistic defined in (4.4) is the detection of changes that occur near the end points, while retaining the sensitivity to possible changes in the middle as well.

We hope that the results presented in Sections 3 and 4 will be the prototypes of other various applications.

5 Strong approximation of the integrated empirical process when parameters are estimated

In this section, we are interested in the strong approximation of the integrated empirical process when parameters are estimated. Our approach is in the same spirit of [START_REF] Burke | Approximations of the empirical process when parameters are estimated[END_REF]. Let us introduce, for each n ∈ N * , the p-fold integrated estimated empirical process α (p) n :

α (p) n (t) := √ n F (p) n (t) -F (p) t, θ n for t ∈ R, (5.1) 
where θ n : n ∈ N * is a sequence of estimators of a parameter θ from a family of d.f.'s {F (t, θ) : t ∈ R, θ ∈ Θ} (Θ being a subset of R d and d a fixed positive integer) related to a sequence of i.i.d. r.v.'s {X i : i ∈ N * }. Let us mention that a general study of the weak convergence of the estimated empirical process was carried out by [START_REF] Durbin | Weak convergence of the sample distribution function when parameters are estimated[END_REF]. For a more recent reference, we may refer to [START_REF] Genz | Empirical processes with estimated parameters under auxiliary information[END_REF] where the authors investigated the empirical processes with estimated parameters under auxiliary information and provided some results regarding the bootstrap in order to evaluate the limiting laws.

Let us introduce some notations.

(5.1) The transpose of a vector V of R d will be denoted by V ⊤ .

(5.

2) The norm • on R d is defined by

(y 1 , . . . , y d ) := max 1≤i≤d |y i |.
(5.3) For a function (t, θ) → g(t, θ) where θ = (θ 1 , . . . , θ d ) ∈ R d , ∇ θ g(t, θ 0 ) denotes the vector in R d of partial derivatives (∂g/∂θ 1 )(t, θ), . . . , (∂g/∂θ d )(t, θ)) evaluated at θ = θ 0 , and ∇ 2 θ g(t, θ) denotes the d × d matrix of second order partial derivatives (∂ 2 g/∂θ i ∂θ j )(t, θ)) 1≤i,j≤d .

(5.4) For a vector V = (v 1 , . . . , v d ) ∈ R d , V denotes the vector v 1 , . . . , v d .

Next, we write out the set of all conditions (those of [START_REF] Burke | Approximations of the empirical process when parameters are estimated[END_REF]) which we will use in the sequel.

(i) The estimator θ n admits the following form: for each n ∈ N * ,

√ n θ n -θ 0 = 1 √ n n i=1 l(X i , θ 0 ) + ε n ,
where θ 0 is the theoretical true value of θ, l(•, θ 0 ) is a measurable d-dimensional vector-valued function, and ε n converges to zero as n → ∞ in a manner to be specified later on. Notice that

1 √ n n i=1 l(X i , θ 0 ) = √ n t -∞ l(s, θ 0 ) dF n (s).
(ii) The mean value of l(X i , θ 0 ) vanishes: E(l(X i , θ 0 )) = 0.

(iii) The matrix M (θ 0 ) := E l(X i , θ 0 ) ⊤ l(X i , θ 0 ) is a finite nonnegative definite d × d matrix.
(iv) The vector-valued function (t, θ) → ∇ θ F (t, θ) is uniformly continuous in t ∈ R and θ ∈ V, where V is the closure of a given neighborhood of θ 0 .

(v) Each component of the vector-valued function t → l(t, θ 0 ) is of bounded variation in t on each finite interval of R.

(vi) The vector-valued function t → ∇ θ F (t, θ 0 ) is uniformly bounded in t ∈ R, and the vector-valued function (t, θ) → ∇ 2 θ F (t, θ) is uniformly bounded in t ∈ R and θ ∈ V.

(vii) Set ℓ(s, θ 0 ) := l F -1 (s, θ 0 ), θ 0 for s ∈ (0, 1)

where

F -1 (s, θ 0 ) = inf{t ∈ R : F (t, θ 0 ) ≥ s}.
The limiting relations below hold:

lim sց0 s log log(1/s) ℓ(s, θ 0 ) = 0 and lim sր1 (1 -s) log log[1/(1 -s)] ℓ(s, θ 0 ) = 0, (viii) Set ℓ ′ s (s, θ 0 ) := ∂ℓ ∂s (s, θ 0 ) for s ∈ (0, 1).
The partial derivative ℓ ′ s (s, θ 0 ) exist for every s ∈ (0, 1) and the bounds below hold: there is a positive constant C such that

s ℓ ′ s (s, θ 0 ) ≤ C for all s ∈ 0, 1 2 and (1 -s) ℓ ′ s (s, θ 0 ) ≤ C for all s ∈ 1 2 , 1 .
Now, we state an analogous result to Theorem 3.1 of [START_REF] Burke | Approximations of the empirical process when parameters are estimated[END_REF]. For each n ∈ N * , let {G n (t) : t ∈ R} be the process defined by

G n (t) := 1 √ n K(n, F (t, θ 0 )) - R l(s, θ 0 ) d s K(n, F (s, θ 0 )) ∇ θ F (t, θ 0 ) ⊤ = 1 √ n K(n, F (t, θ 0 )) -W(n)∇ θ F (t, θ 0 ) ⊤ for t ∈ R,
where we set

W(τ ) := R l(s, θ 0 ) d s K(τ, F (s, θ 0 )) for τ ≥ 0.
The process {W(τ ) : τ ≥ 0} is a d-dimensional Brownian motion with a covariance matrix of rank that of M (θ 0 ). The estimated empirical process given by α 

G (p) n (t) := 1 p! F (t, θ 0 ) p G n (t) for t ∈ R, (5.2)
as described in the next theorem. Set

ε (p) n := sup t∈R α (p) n (t) -G (p) n (t) .
(5.3) Theorem 5.1 Suppose that the sequence of estimators θ n : n ∈ N * satisfies Conditions (i), (ii) and (iii). Then, as n → ∞, -→ 0 if Conditions (vi)-(viii) hold and ε n a.s.

-→ 0;

(c) ε

(p) n = O(max(h(n), n -ǫ )) for some ǫ > 0 if Conditions (vi)-(viii) hold and ε n = O(h(n)) for some function h satisfying h(n) > 0 and h(n) → 0.
The limiting Gaussian process G (p) n of Theorem 5.1 depends crucially on F and also on the true theoretical value θ 0 . In general, Theorem 5.1 cannot be used to test the composite hypothesis :

F ∈ {F (t, θ) : t ∈ R, θ ∈ Θ}.
In order to circumvent this problem, [START_REF] Burke | Approximations of the empirical process when parameters are estimated[END_REF] proposed an approximate solution, they introduce another process:

G n (t) := 1 √ n K n, F t, θ n -W(n)∇ θ F t, θ n ⊤ .
Under some regularity conditions, [START_REF] Burke | Approximations of the empirical process when parameters are estimated[END_REF] show that (see Theorem 3.2 therein), as n → ∞,

sup t∈R G n (t) -G n (t) P -→ 0. Setting G (p) n (t) := 1 p! F t, θ n p G n (t), one can show that, as n → ∞, sup t∈R G (p) n (t) -G (p) n (t) P -→ 0.
(5.4)

Consequently, we have, as n → ∞,

sup t∈R α (p) n (t) -G (p) n (t) P -→ 0.

Local time of the integrated empirical process

In this section, we are mainly concerned with the behavior of the local time of the p-fold integrated empirical process. This behavior can be characterized by using a representation that expresses the integrated empirical process in terms of a partial sums process, see (6.1) below. Let us recall the definition of the process β n given in (1.2) and let us introduce the modified p-fold integrated uniform empirical process β(p) n defined, for each n ∈ N * , by

β(p) n (u) := u 0 dv 1 v 1 0 dv p-1 . . . v p-1 0 β n (v p ) dv p = 1 (p -1)! u 0 (u -v) p-1 β n (v) dv for u ∈ [0, 1].
In this part, we focus on the particular r.v.

A (p) n := β(p) n (1).
It is easily seen that the representation below holds:

A (p) n = √ n 1 n n i=1 1 p! (1 -U i ) p - 1 (p + 1)! = S (p) n √ n
where S (p) n : n ∈ N * is the following partial sums process where the summands are i.i.d. r.v.'s with mean zero:

S (p) n := 1 p! n i=1 (1 -U i ) p - 1 p + 1 . (6.1)
This is a random walk with continuously distributed jumps. In the particular case where p = 1, we retrieve the representation provided by [START_REF] Henze | Watson-type goodness-of-fit tests based on the integrated empirical process[END_REF] p. 185, namely

A (1) n = S (1) n √ n with S (1) n := n i=1 1 2 -U i .
Notice that we are dealing with a sum of strongly non-lattice r.v.'s as, i.e., in p. 210 of Bass and Khoshnevisan (1993a). Indeed, we easily check that the characteristic function χ (p) of the (1 -U i ) p -1/(p+1)'s, namely

χ (p) (z) := 1 0 e iz(u p -1/(p+1)) du = e -iz/(p+1) pz 1/p z 0 e iv dv v 1-1/p satisfies the conditions ∀z ∈ R * , χ (p) (z) < 1 and lim sup |z|→∞ χ (p) (z) < 1.
Next, we fix a neighborhood I of 0, e.g., I = [-1/2, 1/2], and we define the local time

λ (p) (x, n) := n i=1 ½ I S (p) i -x for x ∈ R, n ∈ N * . (6.2)
The local time λ (p) (x, n) represents the number of visits of the random walk S (p) n : n ∈ N * in the neighborhood x + I of x up to discrete time n. Our aim is to obtain the rate of the approximation of the self-intersection local time

L (p) n (t) := 1≤i<j≤⌊nt⌋ R ½ I S (p) i -x ½ I S (p) j -x dx
by the integrated local time of some standard Wiener process. The quantity L (p) n (t) enumerates in a certain manner the couples (i, j) of distinct and ordered indices up to time ⌊nt⌋ such that S i -S j is less than the diameter of I.

To this aim, we recall that, if {W(t) : t ≥ 0} is the standard Wiener process with W(0) = 0, then its local time process {l(x, t) : t ≥ 0, x ∈ R} is defined as l(x, t) := lim 

L (p) n (t) - 1 2 n 3/2 R l n (x, t) 2 dx = O n 5/4 (log n) 1/2 (log log n) 1/4 ,
where l n is the normalized local time

l n (x, t) := 1 √ n l √ n x, ⌊nt⌋ .
Corollary 6.2 We have, with probability 1, for any t ∈ (0, 1], there exist two positive constants κ 1 and κ 2 such that, almost surely, for large enough n,

κ 1 ⌊nt⌋ 3/2 √ log log n ≤ L (p) n (t) ≤ κ 2 ⌊nt⌋ 3/2 log log n.
In particular, for any t ∈ (0, 1], almost surely, as n → ∞, 1) .

L (p) n (t) = 1 2 ⌊nt⌋ 3/2+o(

Mathematical developments

This section is devoted to the proofs of our results. The previously displayed notations continue to be used in the sequel.

7.1 Some bounds for the empirical process, Brownian bridge and the Kiefer process

Let us immediately point out an obvious fact which will be used several times thereafter:

0 ≤ F (t) ≤ 1 and 0 ≤ F n (t) ≤ 1 for t ∈ R, n ∈ N *
which obviously entails that, for any p ∈ N,

0 ≤ F (p) (t) ≤ 1 and 0 ≤ F (p) n (t) ≤ 1 for t ∈ R, n ∈ N * . (7.1)
Similarly, we have, for any p ∈ N,

0 ≤ U (p) n (u) ≤ 1 for u ∈ [0, 1], n ∈ N * . (7.2)
We also mention some bounds that we will use further. By appealing to Chung's law of the iterated logarithm for the empirical process, see [START_REF] Chung | An estimate concerning the Kolmogoroff limit distribution[END_REF], which stipulates that

lim sup n→∞ sup t∈R |α n (t)| √ log log n = 1 √ 2 a.s.,
we see that, with probability 1, as n → ∞, 

|β n (u) -B n (u)| = O log n √ n (7.4) and max 1≤k≤n sup u∈[0,1] √ k β k (u) -K(k, u) = O (log n) 2
from which we extract,with probability 1, as n → ∞,

sup u∈[0,1] β n (u) - 1 √ n K(n, u) = O (log n) 2 √ n . (7.5)
As a result, by putting (7.3) into (7.4) and (7.5), one derives the following bounds: with probability 1, as n → ∞,

sup u∈[0,1] |B n (u)| = O log log n and sup u∈[0,1] |K(n, u)| = O n log log n . (7.6)
Notice that the second bound in (7.6) comes also from the law of the iterated logarithm for the Kiefer process; see [START_REF] Csörgő | Strong approximations in probability and statistics[END_REF], p. 81.

Proof of Proposition 1.2

We begin by making an observation: because of the hypothesis that the df F is continuous, the sampled variables X 1 , X 2 , . . . , X n are almost surely all different. Then, we can define with probability 1 the order statistics X

1,n < X 2,n < • • • < X n,n
associated with X 1 , X 2 , . . . , X n . Notice that the event X i,n ≤ t is equal to {nF n (t) ≤ i}. Hence, we can write that, for any function f , with probability 1,

t -∞ f (s) dF n (s) = 1 n n i=1 f (X i )½ {X i ≤t} = 1 n nFn(t) i=1 f (X i,n ) . (7.7)
Before proving (1.6), we first show by induction that

F (p) n (t) = 1 n p+1 # (i 1 , . . . , i p+1 ) ∈ N p+1 : 1 ≤ i 1 ≤ • • • ≤ i p+1 ≤ nF n (t) . (7.8)
Of course, (7.8) holds for p = 0. Pick now a positive integer p and suppose that

F (p-1) n (t) = 1 n p # {(i 1 , . . . , i p ) ∈ N p : 1 ≤ i 1 ≤ • • • ≤ i p ≤ nF n (t)}.
By Definition 1.1, we see that the family of functions

F (p)
n can be recursively defined by F (0) n = F n and, for any p ∈ N * and any t ∈ R, by

F (p) n (t) = t -∞ F (p-1) n (s) dF n (s).
Therefore, by (7.7) and remarking that F n (X i,n ) = i/n, a.s.,

F (p) n (t) = 1 n n i=1 F (p-1) n (X i )½ {X i ≤t} = 1 n nFn(t) i=1 F (p-1) n (X i,n ) = 1 n p+1 nFn(t) i=1 # {(i 1 , . . . , i p ) ∈ N p : 1 ≤ i 1 ≤ • • • ≤ i p ≤ nF n (X i,n )} = 1 n p+1 nFn(t) i=1 # {(i 1 , . . . , i p ) ∈ N p : 1 ≤ i 1 ≤ • • • ≤ i p ≤ i} = 1 n p+1 # (i 1 , . . . , i p , i p+1 ) ∈ N p+1 : 1 ≤ i 1 ≤ • • • ≤ i p ≤ i p+1 ≤ nF n (t) .
Hence, (7.8) is valid for any p ∈ N. Now, we observe that the cardinality in (7.8) is nothing but the number of combinations with repetitions of p+1 integers lying between 1 and nF n (t), which coincides with the number of combinations without repetition of p + 1 integers lying between 1 and nF n (t) + p. This is the result concerning F (p) n announced in (1.6). Finally, the formula concerning F (p) can be easily obtained by induction too. The proof of Proposition 1.2 is finished.

In the proposition below, we provide a representation of F n can be expressed by means of F n as follows: with probability 1,

F (p) n (t) = F n (t) p+1 (p + 1)! + p k=1 a (p) k F n (t) k n p-k+1 for t ∈ R, n ∈ N * , (7.9)
where the coefficients a

(p)
k , 1 ≤ k ≤ p, are positive integers.

Proof. By expanding the combination in (1.6), we get that, a.s.,

F (p) n (t) = 1 (p + 1)! n p+1 p i=0 (nF n (t) + i) = F n (t) (p + 1)! n p p i=1 (nF n (t) + i) for t ∈ R, n ∈ N * .
Appealing to the classical expansion

p i=1 (x + i) = p k=0 p + 1 k + 1 x k ,
where n is related to the empirical process α n according to, with probability 1,

α (p) n (t) = 1 p! F (t) p α n (t) + p+1 k=2 b (p) k F (t) p+1-k n (k-1)/2 α n (t) k + p k=1 a (p) k F n (t) k n p-k+1/2 for t ∈ R, n ∈ N * , (7.10)
where the coefficients a 

k , 2 ≤ k ≤ p + 1, are positive real numbers less than 1. Similarly,

β (p) n (u) = 1 p! u p β n (u) + p+1 k=2 b (p) k u p+1-k n (k-1)/2 β n (u) k + p k=1 a (p) k U n (u) k n p-k+1/2 for u ∈ [0, 1], n ∈ N * . (7.11)
Proof. By Definition 1.1 and Formulae (1.6) and (7.9), we write that, a.s., for t ∈ R, n ∈ N * ,

α (p) n (t) = 1 (p + 1)! √ n F n (t) p+1 -F (t) p+1 + p k=1 a (p) k F n (t) k n p-k+1/2 .
Applying the elementary identity below obtained by writing a = (a -b) + b and using the binomial theorem 

a p+1 -b p+1 = (p + 1)b p (a -b) + p+1 k=2 p + 1 k b p+1-k (a -b) k to a = F n (t) and b = F (t) yields, a.s., for t ∈ R, n ∈ N * , α (p) n (t) = 1 p! √ n F (t) p (F n (t) -F (t)) + 1 (p + 1)! √ n p+1 k=2 p + 1 k F (t) p+1-k (F n (t) -F (t)) k + p k=1 a (p) k F n (t) k n p-k+1/2 . (7.12) Substituting F n (t) -F (t) = α
(p) k ≤ 1, it is clear that, a.s., for any d, n ∈ N * such that d ≤ n, sup u∈I β (p) n (u) -B (p) n (u) ≤ sup u∈I β n (u) -B n (u) + 1 √ n p+1 k=2 1 n k/2-1 sup u∈[0,1] |β n (u)| k + A p √ n .
Therefore,

P sup u∈I β (p) n (u) -B (p) n (u) ≥ 1 √ n (c 1 log d + x) ≤ P sup u∈I |β n (u) -B n (u)| + 1 √ n p+1 k=2 1 n k/2-1 sup u∈[0,1] |β n (u)| k ≥ 1 √ n (c 1 log d + x -A p ) .
Now, using the elementary inequality

P r k=1 ξ k ≥ r k=1 a k ≤ r k=1 P{ξ k ≥ a k },
which is valid for any positive integer r, any r.v.'s ξ 1 , . . . , ξ r and any real numbers a 1 , . . . , a r , we obtain

P sup u∈I β (p) n (u) -B (p) n (u) ≥ 1 √ n (c 1 log d + x) ≤ P sup u∈I |β n (u) -B n (u)| ≥ 1 √ n (c 1 log d + x p + 1 -A p ) + p+1 k=2 P sup u∈[0,1] |β n (u)| k ≥ xn k/2-1 p + 1 . (7.13)
On the other hand, the inequality of [START_REF] Dvoretzky | Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator[END_REF] stipulates that there exists a positive constant c 4 such that, for any x > 0 and any n ∈ N * ,

P sup t∈R |F n (t) -F (t)| ≥ x √ n ≤ c 4 e -2x 2 . (7.14)
Actually (7.14) simply reads, by means of β n , for any x > 0 and any n ∈ N * , as

P sup u∈[0,1] |β n (u)| ≥ x ≤ c 4 e -2x 2 .
Then,

p+1 k=2 P sup u∈[0,1] |β n (u)| k ≥ x p + 1 ≤ c 4 p+1 k=2 exp   -2 x n k/2-1 p + 1 2/k   ≤ c 4 e -[2/(p+1)] x + p+1 k=3 exp - 2 p + 1 x 2/k n 1-2/k . (7.15)
Now, by putting (2.1) and (7.15) into (7.13), we immediately complete the proof of Theorem 2.2 with B p := c 2 e c 3 Ap + c 4 and C p := min(c 3 , 2)/(p + 1).

Proof of Corollary 2.4

The functional Φ being Lipschitz, there exists a positive constant L such that, for any functions v, w,

|Φ(v) -Φ(w)| ≤ L sup t∈R |v(t) -w(t)|,
inequality that we will use in the form

Φ(w) -L sup t∈R |v(t) -w(t)| ≤ Φ(v) ≤ Φ(w) + L sup t∈R |v(t) -w(t)|. (7.16)
Let us choose for v, w the processes V n := α 

P{Φ(V n ) ≤ x} -P{Φ(W n ) ≤ x} ≤ P{Φ(V n ) ≤ x ≤ Φ(W n )} + P{Φ(W n ) ≤ x ≤ Φ(V n )}.
By (7.16), we see that

P{Φ(V n ) ≤ x ≤ Φ(W n )} ≤ P Φ(W n ) -L sup t∈R |V n (t) -W n (t)| ≤ x ≤ Φ(W n ) , P{Φ(W n ) ≤ x ≤ Φ(V n )} ≤ P Φ(W n ) ≤ x ≤ Φ(W n ) + L sup t∈R |V n (t) -W n (t)| ,
from which we deduce, by addition, that

P{Φ(V n ) ≤ x} -P{Φ(W n ) ≤ x} ≤ P |Φ(W n ) -x| ≤ L sup t∈R |V n (t) -W n (t)| .
(7.17)

On the other hand, by choosing x = c log n for a large enough constant c in (2.4) and putting ǫ n := (c+c 1 ) log n/ √ n, we obtain the estimate below valid for large enough n:

P sup t∈R |V n (t) -W n (t)| ≥ ǫ n ≤ B p n = o log n √ n . (7.18)
Now, by (7.17), we write

P{Φ(V n ) ≤ x} -P{Φ(W n ) ≤ x} = P sup t∈R |V n (t) -W n (t)| < ǫ n , |Φ(W n ) -x| ≤ L sup t∈R |V n (t) -W n (t)| + P sup t∈R |V n (t) -W n (t)| ≥ ǫ n , |Φ(W n ) -x| ≤ L sup t∈R |V n (t) -W n (t)| ≤ P{|Φ(W n ) -x| ≤ Lǫ n } + P sup t∈R |V n (t) -W n (t)| ≥ ǫ n . (7.19)
Noticing that the distribution of B n does not depend on n, which entails the equality

P{|Φ(W n ) -x| ≤ Lǫ n } = P{|Φ(W ) -x| ≤ Lǫ n }
where W := F (•) p B(F (•))/p!, and recalling the assumption that the r.v. Φ(W ) admits a density function bounded by M say, we get that, for any x ∈ R and any n ∈ N * ,

P{|Φ(W n ) -x| ≤ Lǫ n } ≤ 2LM ǫ n . (7.20)
Finally, putting (7.18) and (7.20) into (7.19) leads to (2.5), which completes the proof of Corollary 2.4.

7.5 Proof of Corollary 2.5

Applying (2.4) to x = c ′ log n for a sufficiently large constant c ′ yields, for large enough n,

π n : = P sup t∈R α (p) n (t) -B (p) n (F (t)) ≥ c 6 log n √ n ≤ B p p+1 k=2 exp -C p c ′2/k (log n) 2/k n 1-3/k = O 1 n 2
where c 6 is a positive constant. Hence the series ( π n ) is convergent and by appealing to Borel-Cantelli lemma, we get that

P lim sup n∈N * sup t∈R α (p) n (t) -B (p) n (F (t)) ≥ c 6 log n √ n = 0,
which clearly implies Corollary 2.5.

Proof of Theorem 2.6

In view of (7.10), we write that, a.s., for any s ∈ (0, 1), any t ∈ R and any

k ∈ N * , √ k α (p) k (t) -K (p) (k, F (t)) = 1 p! F (t) p √ k α k (t) -K(k, F (t)) + p+1 i=2 b (p) i F (t) p+1-i k (i-1)/2 α k (t) i + p i=1 a (p) i F k (t) i k p-i+1/2 . (7.21)
Then, by using (7.1) together with the fact that 0 ≤ b (p)

i ≤ 1, we deduce that, a.s., for any n ∈ N * ,

max 1≤k≤n sup t∈R √ k α (p) k (t) -K (p) (k, F (t)) ≤ 1 p! max 1≤k≤n sup t∈R √ k α k (t) -K(k, F (t)) + p+1 i=2 max 1≤k≤n 1 k (i-1)/2 sup t∈R |α k (t)| i + p i=1 max 1≤k≤n a (p) i k p-i+1/2 ≤ max 1≤k≤n sup t∈R √ k α k (t) -K(k, F (t)) + p+1 i=2 max 1≤k≤n sup t∈R |α k (t)| i + A p . (7.22)
Finally, by putting (7.5) and ( 7.3) into (7.22), we completes the proof of Theorem 2.6.

Proof of Corollary 2.7

From Theorem 2.6, we deduce that, with probability 1, as n → ∞,

sup t∈R α (p) n (t) = 1 √ n sup t∈R K (p) (n, F (t)) + O (log n) 2 √ n .
Therefore, a.s.,

lim sup n→∞ sup t∈R α (p) n (t) √ log log n = lim sup n→∞ sup t∈R K (p) (n, F (t)) √ n log log n = lim sup n→∞ sup u∈[0,1] |u p K(n, u)| p! √ n log log n = √ 2 p! sup u∈[0,1]
Var(u p K(1, u)).

(7.23)

In the last equality, we have used Strassen's law of iterated logarithm for Gaussian processes. Observing that Var(u p K(1, u)) = u 2p+1 (1 -u) and that (7.23) readily implies (2.7) which proves Corollary 2.7.

sup u∈[0,1] u 2p+1 (1 -u) = (2p + 1) 2p+1 (2p + 2) 2p+2 ,
7.8 Proof of Corollary 2.8

We work under Hypothesis H 0 . Let us introduce the p-fold integrated empirical process related to the d.f. F 0 : α

(p) 0,n (t) := √ n F (p) n (t) -F (p) 0 (t) for t ∈ R, n ∈ N * .
By the triangular inequality, we plainly have

S (p) n -sup t∈R B (p) n (F 0 (t)) ≤ sup t∈R α (p) 0,n (t) -B (p) n (F 0 (t))
from which together with (2.6) we deduce (2.8). Similarly, p) n (F 0 (t)) .

T (p) n - R B (p) n (F 0 (t)) 2 dF 0 (t) ≤ R α (p) 0,n (t) 2 -B (p) n (F 0 (t)) 2 dF 0 (t) ≤ sup t∈R α (p) 0,n (t) -B (p) n (F 0 (t)) × sup t∈R α (p) 0,n (t) + sup t∈R B ( 
(7.24)

In the last inequality above appears the supremum

sup t∈R B (p) n (F 0 (t)) ≤ sup u∈[0,1] B n (u) .
Then, by putting (2.6), (2.7) and (7.6) into (7.24), we immediately deduce (2.9). The proof of Corollary 2.8 is finished.

7.9 Proof of Corollary 3.1

For each m, n ∈ N * , let α √ n + G (p) (t), using the binomial theorem and recalling that, under H ′ 0 , F = G, we write

ξ (p,q) m,n (t) = mn m + n α (p),1 m (t) √ m + F (p) (t) q - α (p),2 n (t) √ n + F (p) (t) q = mn m + n q k=1 q k F (p) (t) q-k   α (p),1 m (t) √ m k - α (p),2 n (t) √ n k   = q F (p) (t) q-1 n m + n α (p),1 m (t) - m m + n α (p),2 n (t) + ∆ m,n (t)
where

∆ m,n (t) = mn m + n q k=2 q k F (p) (t) q-k   α (p),1 m (t) √ m k - α (p),2 n (t) √ n k   .
By (2.7) and (7.1), it is easily seen that, with probability 1, as m, n → ∞,

sup t∈R |∆ m,n (t)| = O (log log m) q/2 √ m + O (log log n) q/2 √ n . (7.25)
On the other hand, by Corollary 2.5, we can construct two sequences of Brownian bridges B 1 m : m ∈ N * and B 2 n : n ∈ N * such that, with probability 1, as m, n → ∞,

sup t∈R α (p),1 m (t) - 1 p! F (t) p B 1 m (F (t)) = O log m √ m , (7.26) sup t∈R α (p),2 n (t) - 1 p! F (t) p B 2 n (F (t)) = O log n √ n . Setting B (p,q)
m,n as in Corollary 3.1, we have

ξ (p,q) m,n (t) -B (p,q) m,n (t) = q (p + 1)! q-1 F (t) (p+1)(q-1) n m + n α (p),1 m (t) - 1 p! F (t) p B 1 m (F (t)) - m m + n α (p),2 n (t) - 1 p! F (t) p B 2 n (F (t)) + ∆ m,n (t). (7.27) 
By putting (7.25) and (7.26) into (7.27), we deduce the result announced in Corollary 3.1.

Proof of Theorem 3.4

Let us introduce, for each k ∈ {1, . . . , K}, the p-fold integrated empirical process associated with the d.f.

F k α (p),k n (t) := √ n F (p),k n (t) -F (p),k (t) for t ∈ R, n ∈ N * .
By recalling (3.1) and making use of the most well-known variance formula

K k=1 n k (x k -x) 2 = K k=1 n k (x k -x 0 ) 2 -|n| (x -x 0 ) 2 where we have denoted |n| = K k=1 n k and x = 1 |n| K k=1 n k x k for n = (n 1 , . . . , n K ), we rewrite ξ (p) K,n (t) under Hypothesis H K 0 as ξ (p) K,n (t) = K k=1 n k F (p),k n k (t) -F (p) 0 (t) 2 - 1 |n| K k=1 n k F (p),k n k (t) -F (p) 0 (t) 2 = K k=1 α (p),k n k (t) 2 - K k=1 n k |n| α (p),k n k (t) 2 .
Next, setting B

K,n as in Theorem 3.4, we have

ξ (p) K,n (t) -B (p) K,n (t) = ∆ 1 n (t) -∆ 2 n (t) (7.28)
where we put, for any t ∈ R and any n = (n 1 , . .

. , n K ) ∈ N * , ∆ 1 n (t) = K k=1 α (p),k n k (t) 2 - F 0 (t) 2p p! 2 B k n k F 0 (t) 2 , ∆ 2 n (t) = K k=1 n k |n| α (p),k n k (t) 2 - F 0 (t) p p! K k=1 n k |n| B k n k F 0 (t) 2 .
By setting, for any k ∈ {1, . . . , K}, any t ∈ R and any n = (n 1 , . .

. , n K ) ∈ N * , δ k,n (t) = α (p),k n k (t) - F 0 (t) p p! B k n k F 0 (t) and ǫ k,n (t) = α (p),k n k (t) + F 0 (t) p p! B k n k F 0 (t)
and writing ∆ 1 n (t) and ∆ 2 n (t) as

∆ 1 n (t) = K k=1 δ k,n (t) ǫ k,n (t) and ∆ 2 n (t) = K k=1 n k |n| δ k,n (t) K k=1 n k |n| ǫ k,n (t),
we derive the following inequalities: Finally, by putting (7.30) into (7.29), and next into (7.28), we finish the proof of Theorem 3.4.

sup t∈R |∆ 1 n (t)| ≤ K k=1 sup t∈R |δ k,n (t)| sup t∈R |ǫ k,n (t)| , (7.29) sup t∈R ∆ 2 n (t) ≤ K k=1 sup t∈R |δ k,n (t) 

Proof of Theorem 4.1

In the computations below, the superscript "-" in the quantities F, F (p) , α and β refers to the k first observations while the superscript "+" refers to the (n -k) last ones. By (1.5) and (4.1), we write that, for n ∈ N * , s ∈ (0, 1) and t ∈ R,

α (p) n (s, t) = ⌊ns⌋(n -⌊ns⌋) n 3/2 F (p)- ⌊ns⌋ (t) -F (p) (t) -F (p)+ n-⌊ns⌋ (t) -F (p) (t) = ⌊ns⌋(n -⌊ns⌋) n 3/2   α (p)- ⌊ns⌋ (t) ⌊ns⌋ - α (p)+ n-⌊ns⌋ (t) n -⌊ns⌋   .
Using (7.10), we derive, a.s., for any n ∈ N * , any s ∈ (0, 1) and any t ∈ R, the form

α (p) n (s, t) = I n (s, t) -II n (s, t) + III n (s, t) + IV n (s, t) (7.31)
where

I n (s, t) = ⌊ns⌋(n -⌊ns⌋) p! n 3/2 α - ⌊ns⌋ (t) ⌊ns⌋ F (t) p , II n (s, t) = ⌊ns⌋(n -⌊ns⌋) p! n 3/2 α + n-⌊ns⌋ (t) n -⌊ns⌋ F (t) p , III n (s, t) = ⌊ns⌋(n -⌊ns⌋) n 3/2 p+1 k=2 b (p) k F (t) p+1-k α - ⌊ns⌋ (t) k ⌊ns⌋ k/2 - α + n-⌊ns⌋ (t) k (n -⌊ns⌋) k/2 , IV n (s, t) = ⌊ns⌋(n -⌊ns⌋) n 3/2 p k=1 a (p) k F - ⌊ns⌋ (t) k ⌊ns⌋ p-k+1 - F + n-⌊ns⌋ (t) k (n -⌊ns⌋) p-k+1 .
Concerning III n , we have the estimate below:

|III n (s, t)| ≤ ⌊ns⌋(n -⌊ns⌋) n 3/2 p+1 k=2   α - ⌊ns⌋ (t) ⌊ns⌋ k + α + n-⌊ns⌋ (t) n -⌊ns⌋ k   ≤ 1 √ n α - ⌊ns⌋ (t) 2 p-1 k=0 α - ⌊ns⌋ (t) ⌊ns⌋ k + 1 √ n α + n-⌊ns⌋ (t) 2 p-1 k=0 α + n-⌊ns⌋ (t) n -⌊ns⌋ k (7.32)
We learn from (7.1) that |α n (t)/ √ n| = |F n (t) -F (t)| ≤ 1 for any t ∈ R and any n ∈ N * and, of course, similar inequalities hold for α - ⌊ns⌋ and α + n-⌊ns⌋ . We deduce that both sums displayed in (7.32) are not greater than p and by (7.3), with probability 1, as n → ∞, uniformly in s and t,

|III n (s, t)| ≤ p √ n α - ⌊ns⌋ (t) 2 + α + n-⌊ns⌋ (t) 2 = O log log n √ n . (7.33)
Concerning IV n , we have the estimate below:

|IV n (s, t)| ≤ A ′ p n -⌊ns⌋ n 3/2 p k=1 F - ⌊ns⌋ (t) k ⌊ns⌋ p-k + ⌊ns⌋ n 3/2 p k=1 F + n-⌊ns⌋ (t) k (n -⌊ns⌋) p-k (7.34)
where we set A ′ p := max 1≤i≤p a (p) i > 0. Because of (7.1) and the convention that F - ⌊ns⌋ = 0 if s ∈ (0, 1/n), we see that both sums displayed in (7.34) are not greater than p and, as n → ∞, uniformly in s and t, Next, it is convenient to introduce, for n ∈ N * and s, u ∈ (0, 1),

IV n (s, t) = O 1 √ n . ( 7 
γ n (u) = √ n β n (u) = n i=1 ½ {U i ≤u} -u , γ - ⌊ns⌋ (u) = ⌊ns⌋ β - ⌊ns⌋ (u) = ⌊ns⌋ i=1 ½ {U i ≤u} -u , γ + n-⌊ns⌋ (u) = n -⌊ns⌋ β + n-⌊ns⌋ (u) = n i=⌊ns⌋+1 ½ {U i ≤u} -u , I ′ n (s, u) = ⌊ns⌋(n -⌊ns⌋) p! n 3/2 β - ⌊ns⌋ (u) ⌊ns⌋ u p = n -⌊ns⌋ p! n 3/2 u p γ - ⌊ns⌋ (u), II ′ n (s, u) = ⌊ns⌋(n -⌊ns⌋) p! n 3/2 β + n-⌊ns⌋ (u) n -⌊ns⌋ u p = ⌊ns⌋ p! n 3/2 u p γ + n-⌊ns⌋ (u),
and δ n (s, u) = I ′ n (s, u) -II ′ n (s, u). Then, by (1.3), we plainly have the following equalities:

I ′ n (s, F (t)) = I n (s, t), II ′ n (s, F (t)) = II n (s, t), γ n (u) = γ - ⌊ns⌋ (u) + γ + n-⌊ns⌋ (u)
and we rewrite (7.36), with probability 1, as n → ∞, uniformly in s and t, as 

α (p) n (s, t) = δ n (s, F (t)) + O log log n √ n . ( 7 
γ + n-⌊ns⌋ (u) -K 1 (⌊ns⌋, u) = O (log n) 2 .
In particular, we have, with probability 1, as n → ∞, Below, we state the last result of the paper which is a representation of α P n by means of α n analogous to (7.10). This is the key point for deriving bounds similar to those obtained throughout the paper.

Proposition A.6 The empirical process α P n can be express as follows: with probability 1, α n (t) k n (k-1)/2 for t ∈ R, n ∈ N * , A, B, d being three constants depending on P.

α P n (t) = Q(t)
Proof. Set P(x, y) = p i=0 q j=0 a ij x i y j for some integers p, q and some coefficients a ij . Then

F (P) (t) = p i=0 q j=0 a ij i + 1 F (t) i+j+1
and, a.s., for any n ∈ N * and any t ∈ R,

F (P) n (t) = p i=0 q j=0 a ij F n (t) j F (i) n (t) = p i=0 q j=0 a ij i + 1 F n (t) i+j+1 + p i=0 q j=0 i k=1 a ij a (i) k F n (t) j+k n i-k+1 .
Consequently, a.s., for any n ∈ N * and any t ∈ R,

α P n (t) = √ n p i=0 q j=0 a ij i + 1 F n (t) i+j+1 -F (t) i+j+1 + p i=0 q j=0 i k=1 a ij a (i) k F n (t) j+k n i-k+1/2
which, by using the same method than (7.10), we rewrite as (A.3) with

Q(t) = p i=0 q j=0 i + j + 1 i + 1 a ij F (t) i+j = p i=0 q j=0 a ij F (t) i+j + p i=0 q j=0 j i + 1 a ij F (t) i+j , R n (t) = p i=0 q j=0 i k=1 a ij a (i) k
F n (t) j+k n i-k+1/2 + p i=0 q j=0 i+j+1 k=2 i + j + 1 k

a ij i + 1 α n (t) k n (k-1)/2 F (t) i+j+1-k .
We easily conclude by using (7.1).

  (p) n : n ∈ N * , in combination with a sequence of Brownian bridges {B n : n ∈ N * }, such that, for any d, n ∈ N * satisfying d ≤ n and large enough x, P sup u∈[0,d/n]

  are bounded linear functionals of the process ξ (p)

  is that based upon the (n -k) last ones. In (4.1) we extend the definition of F (p)k and F (p)+ k to the case where k = 0 by setting

Theorem 4. 1

 1 On a suitable probability space, it is possible to define α (p) n : n ∈ N * , jointly with a sequence of Gaussian processes o K (p) n : n ∈ N * as above, such that, under H ′′ 0 , with probability 1, as n → ∞, sup s∈(0,1)

  defined by (5.1) will be approximated by the sequence of processes G (p) n : n ∈ N * defined by

  if Conditions (iv), (v) hold and ε n P

½

  {x-ε≤W(s)≤x+ε} ds for x ∈ R, t ≥ 0. (6.3) Following exactly the same lines of Alvarez-Andrade et al. (2017), we can prove the two following results. Theorem 6.1 We have, with probability 1, as n → ∞, sup t∈[0,1]

  [START_REF] Komlós | An approximation of partial sums of independent RV's and the sample DF[END_REF], on a suitable probability space, we can define the uniform empirical process {β n : n ∈ N * }, in combination with a sequence of Brownian bridges {B n : n ∈ N * } together with a Kiefer process {K(s, u) : s ≥ 0, u ∈ [0, 1]}, such that, with probability 1, as n → ∞, sup u∈[0,1] 

  The p-fold integrated empirical process α (p)

k

  , 1 ≤ k ≤ p, are those of Proposition 7.1 and the b

n

  (t)/ √ n into (7.12) gives (7.10) by setting b (p) k := p+1 k /(p + 1)!.

  and I = [0, d/n] or [1 -d/n, 1]. Making use of (7.11) together with (7.2) and the fact that 0 ≤ b

  Applying the elementary inequality |P(A) -P(B)| ≤ P(A\B) + P(B\A) to the events A = {Φ(V n ) ≤ x} and B = {Φ(W n ) ≤ x} provides, for any x ∈ R and any n ∈ N * ,

  processes respectively associated with the samples X 1 , . . . , X m and Y 1 , . . . , Y n . By replacing F

  (u) -K 2 (⌊n/2⌋, u) = O (log n)

such that, for large enough x and all n ∈ N * , P sup t∈R

  

	The same inequality holds when replacing the interval [0, d/n] by [1 -d/n, 1].
	In particular, making d = n in (2.3), we obtain the key estimate for the p-fold integrated empirical
	process α (p)
	Theorem 2.3 Fix p ∈ N * . On a suitable probability space, we may define the p-fold integrated empirical process {α (p)

n : n ∈ N * below.

n : n ∈ N * }, in combination with a sequence of Brownian bridges {B n : n ∈ N * },

  • • are the unsigned Stirling numbers of the first kind (see, e.g., http://en.wikipedia.org/wiki/Stirling_number).

	We immediately derive (7.9) by setting a	(p) k := p+1 k+1 .
	In the proposition below, we rely α	

  |

				K
				k=1	sup t∈R	|ǫ k,n (t)| .
	By (2.5), (2.7) and (7.6), we get the bounds, a.s., for each k ∈ {1, . . . , K}, as n k → ∞,
	sup t∈R	|δ k,n (t)| = O	log n k √ n k	and sup

t∈R |ǫ k,n (t)| = O log log n k .

(7.30)

  We know from[START_REF] Komlós | An approximation of partial sums of independent RV's and the sample DF[END_REF] andCsörgő and Horváth (1997) that, with probability 1, as n → ∞,

										.37)
	Now, let us rewrite δ n (s, u) as					
	δ n (s, u) =	u p p! √ n	γ -⌊ns⌋ (u) -	⌊ns⌋ n	γ n (u) =	u p p! √ n	n -⌊ns⌋ n	γ n (u) -γ + n-⌊ns⌋ (u) .	(7.38)
			sup s∈[0,1/2]	sup u∈[0,1]	γ -⌊ns⌋ (u) -K 2 (⌊ns⌋, u) = O (log n) 2 ,
										(7.39)
			sup	sup				
			s∈[1/2,1]	u∈[0,1]			

  given by (4.2). From (7.38), (7.39), and (7.42), we deduce that, with probability 1, as n → ∞, sup s,u∈[0,1] δ n (s, u) -(t) given by (5.1) and write it as follows: by using (7.10) mutatis mutandis, a.s., for any t ∈ R and any n ∈ N * , By (7.1) and by appealing to the elementary identity a p -b p = (a -b) p-1 i=0 a i b p-i-1 , we extract from (7.46) the following inequality: a.s., for any n ∈ N * , We know from Theorem 3.1 of[START_REF] Burke | Approximations of the empirical process when parameters are estimated[END_REF] that η n satisfies the same limiting results than those displayed in Theorem 5.1 for ε We define the family of integrated d.f.'s and integrated empirical d.f.'s, for any polynomials P of two variables, any n ∈ N * and any t ∈ R, asF (P) (t) := P(F n (s), F n (t)) F n (s),together with the corresponding family of integrated empirical processes as

	Recall the definition of the process Definition A.5 t -∞ P(F (s), F (t)) dF (s), F (P) o K (p) o K (p) n (s, u) = O n (t) :=	(log n) 2 √ n t -∞	.	(7.43)
	Finally, we conclude by using the triangle inequality
	sup s∈[0,1]	sup t∈R	α (p) n (s, t) -α P o K (p) n (s, F (t)) ≤ sup s∈[0,1] n (t) := √ n F P n (t) -F sup t∈R	α (p) n (s, t) -δ n (s, F (t))
												+ sup s,u∈[0,1]	δ n (s, u) -	o K (p) n (s, u)	(7.44)
	and next by putting (7.37) and (7.43) into (7.44). The proof of Theorem 4.1 is completed.
	7.12 Proof of Theorem 5.1	
	Recall the definition of α (p)					
	α (p) n (t) =	1 p!	F t, θ n	p α n (t) +	p+1 k=2	b (p) k F t, θ n	p+1-k α n (t) k n (k-1)/2 +	p k=1	a (p) k	F n (t) k n p-k+1/2 .	(7.45)
	Substituting α α (p) n (t) -G (p) n (t) =	1 p!	F t, θ n	p α n (t) -G n (t) +	1 p!	F t, θ n	p k=1	a	(p) k	F n (t) k n p-k+1/2
	+ G sup p+1 k=2 b (p) k F t, θ n p+1-k n (k-1)/2 k i=0 k i t∈R α (p) n (t) -G (p) n (t) = sup	t∈R	|G n (t)| +	A p √ n
									+	A ′′ p √ n	p+1 k=0	sup t∈R	|G n (t)| k	p+1 k=0	sup t∈R	α n (t) -G n (t)	k
	where we set A ′′ p := max 0≤i,k≤p	k i > 0. Recall the notation (5.3) of ε (p) n and set
											η n := sup
	γ + We have thus obtained the inequality n-⌊n/2⌋ (u) -K 1 (⌊n/2⌋, u) = O (log n) 2 . ε (p) p k=0 η k n p k=0 sup t∈R	|G n (t)| k +	A p √ n	(7.41) . (7.47)
												(7.42)
								(p) n .		

As a byproduct, by adding (7.40) and (7.41), we readily infer that, with probability 1, as n → ∞,

sup u∈[0,1] γ n (u) -K 1 (⌊n/2⌋, u) + K 2 (⌊n/2⌋, u) = O (log n) 2 . n n n (t) = α n (t) -G n (t) + G n (t) into (

7

.45) and using the binomial theorem yield, a.s., for any t ∈ R and any n

∈ N * , p -F (t, θ 0 ) p G n (t) + n (t) k-i α n (t) -G n (t) i . (7.46) t∈R α n (t) -G n (t) + sup t∈R F t, θ n -F (t, θ 0 ) sup t∈R | α n (t) -G n (t)|. n ≤ η n + sup t∈R F t, θ n -F (t,

θ 0 ) sup t∈R |G n (t)| + A ′′ p √ n P (t) .

  α n (t) + R n (t) for t ∈ R, n ∈ N * , (A.3)where Q is the polynomial function of F defined by

Q(t) = P(F (t), F (t)) + F (t) 0 ∂P ∂y (x, F (t)) dx for t ∈ R,

and R n satisfies the inequality

|R n (t)| ≤ A √ n + B d k=2

Next, we need to derive some bounds for sup t∈R |G n (t)| and sup t∈R F t, θ n -F (t, θ 0 ) as n → ∞. First, by using (7.6) and noticing that the same bound holds true for W(n), and by Condition (iv) and the definition of G n (t), we see that, with probability 1, as n → ∞, (7.48)

On the other hand, using the one-term Taylor expansion of F (•, θ) with respect to θ 0 , there exists θ * n lying in the segment θ 0 , θ n such that

In case (a) of Theorem 5.1, √ n θ nθ 0 is asymptotically normal and then n 

By putting this into (7.49) and next in (7.47) with the aid of (7.48), we complete the proof of Theorem 5.1 in these two cases.

Finally, concerning G

n (t), we have

from which we deduce

Using the same bounds than previously, we immediately derive (5.4).

A Appendix : other integrated empirical distribution functions

To end up this article, let us point out that a similar analysis may be carried out with other integrated empirical d.f.s and integrated processes. For instance, we present below two other families of integrated empirical d.f.'s. The underlying d.f. F is still assumed to be continuous.

Definition A.1 We define the families of integrated d.f.'s and integrated empirical d.f.'s, for any p ∈ N, any n ∈ N * and any t ∈ R, as

and

together with the corresponding family of integrated empirical processes as

We have, from (7.7), a.s., for any p ∈ N, any n ∈ N * and any t ∈ R,

Since F n (X i,n ) = i/n, we obtain the following closed forms.

Proposition A.2 For each p ∈ N, we explicitly have, with probability 1,

Observe the relation, a.s. valid, for all p ∈ N * , any n ∈ N * and any t ∈ R,

n can be expressed by means of F n as follows: with probability 1,

where the coefficients a

k , 1 ≤ k ≤ p, are rational numbers.

Proof. Appealing to Bernoulli's formula

where the B k 's are the Bernoulli numbers (see, e.g., http://en.wikipedia.org/wiki/Bernoulli_number), (A.1) immediately yields (A.2) with the coefficients a n is related to the empirical process α n according to, with probability 1,

where the coefficients a More generally, we could define a broader family indexed by polynomials of two variables.