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There exists a wide set of techniques to perform keyword-based search over relational databases but all of them match the keywords in the users' queries to elements of the databases to be queried as first step. The matching process is a time-consuming and complex task. So, improving the performance of this task is a key issue to improve the keyword based search on relational data sources.

In this work, we show how to model the matching process on keyword-based search on relational databases by means of the symmetric group. Besides, how this approach reduces the search space is explained in detail.

Introduction

In the last decade, the amount of large digital structured data available on the Web is increasing due to the success of initiatives such as DBpedia, Linked Open Data and Semantic Web [START_REF] Amaro | Collecting and generating new ideas[END_REF]. Moreover, keyword-based search has become the de-facto standard for searching information on the Web since its adoption by the main web search engines, such as Google, at the end of the 90's. The reasons of its success are mainly its simplicity and intuitiveness, as it does not require users searching information to know either any formal language, such as SQL [START_REF] Leon | SQL: A Complete Reference[END_REF] or SPARQL [START_REF] Prud | SPARQL query language for RDF[END_REF], or how the data and documents are stored.

This context has made to increase the interest in supporting keyword search over structured databases, and, in particular, over relational databases [START_REF] Yu | Keyword Search in Databases[END_REF]. There exists a wide set of techniques and methods to perform keywordbased search over relational databases, classified under two main groups: graph-based approaches and schema-based approaches [START_REF] Yu | Keyword search in relational databases: A survey[END_REF]. Nevertheless, all of them require matching the keywords in the users' queries to elements of the databases to be queried as first step, i.e., they require to explore what in Keymantic [START_REF] Bergamaschi | Keyword search over relational databases: A metadata approach[END_REF] is defined as to find configurations of the users' queries. Thus, exploring possible configurations by using specific algorithms, such as Hungarian algorithm, is required to optimize the search.

In this paper, we propose a formal definition for configurations to improve the performance of current techniques such as Keymantic. In particular, we define configurations as given types of elements of the symmetric group, S n , in order to establish equivalence relations among different configurations, and, therefore, in order to reduce the number of configurations to evaluate.

Moreover, since there is a natural one to one correspondence between the conjugacy classes of S n and the partitions of n and there exists an order in partitions of n, then, it is possible to order configurations.

Fundamental concepts

In the following, the bases to formalize the keyword based search over relational databases are described.

Keyword Search over Relational Databases

Definition 2.1 A database, D, [2] is a collection of relational tables , R(A 1 , A 2 , • • • , A n ), where R is the name of the table and A 1 , A 2 , • • •, A n its attributes.

Definition 2.2

The vocabulary of D, denoted by V D , is the set of all its relation names, their attributes and their respective domains. A database term is a member of this vocabulary V D .

A keyword query q is an ordered list of keywords {k 1 , k 2 , • • • , k N }. Each keyword is a specification about the element of interest. Definition 2.3 A configuration C of a keyword query q on a database D [START_REF] Bergamaschi | Keyword search over relational databases: A metadata approach[END_REF] is an injective map from the keywords in q to database terms in the vocabulary of D.

It is made the natural assumption that each keyword can be mapped to only one database term, not two keywords can be mapped into the same database term and there are no unjustified keywords.

We must map the N keywords in a query to the |V D | database terms in the vocabulary of D, so there are

|V D |! (|V D | -N )! possible configurations. V D = {X|∃R(A 1 , • • • , A n )∈D s.t. X=R ∨ X=A k ∨ X=Dom(A k ), 1≤k≤n}, so |V D | = 2 * |D| i=1 |R i | + |D|,
with |R i | denoting the arity of the relation R i and |D| the number of tables in the database.

To give a formal definition for a configuration we start by considering the keyword query and the vocabulary of the database as sets of numbers

{1, 2, • • • , N }, {1, 2, • • • , |V D |} respectively, where N ≤ |V D |.
The definition of a configuration can be interpreted as an injective correspondence

{1, 2, • • • , N } -→ {1, 2, • • • , |V D |},
that can be extended to a one to one correspondence

{1, 2, • • • , N, N + 1, • • • , |V D |} -→ {1, 2, • • • , |V D |},
that is, we define it as an element of the symmetric group S |V D | .

The Symmetric Group

Definition 2.4 The symmetric group, S n , [START_REF] Sagan | The Symmetric Group. Representations, Combinatorial Algorithms, and Symmetric Funtions[END_REF] is the set of all bijections

{1, 2, • • • , n} -→ {1, 2, • • • , n},
also called permutations, using composition as the multiplication. We multiply permutations from right to left, thus πσ is the bijection obtained by first applying σ, followed by π.

Definition 2.5 Given π ∈ S n and i ∈ {1, 2, • • • , n}, the elements i, π(i), π 2 (i), • • • cannot all be distinct. Taking the first power r that π r (i) = i, we have the r-cycle, or cycle of length r, i, π(i), π 2 (i), • • • , π r-1 (i) . A 1-cycle of π is called a fixedpoint.
Definition 2.6 Given π ∈ S n and m k the number of its k-cycles, the cycle type of π, or simply the type, is the expression of the form

(1 m 1 , 2 m 2 , • • • , n mn ) . Definition 2.7 A partition of n is a sequence λ = (λ 1 , λ 2 , • • • , λ l )
where the λ i are weakly decreasing and

|λ| def = l i=1 λ i = n.
We use the notation λ ⊢ n.

To obtain the partition of a permutation, for each m k = 0 in cycle type we put m k times the value of k, starting with the biggest k and decreasing. That is another way to give the cycle type.

We are interested in permutations in S |V D | that have only cycles of length ≤ N + 1 and with no more than a number bigger than N in each cycle, therefore permutations in

S |V D | with m N +2 = • • • = m |V D | = 0. Definition 2.8 Elements g, h ∈ S n are conjugates if g = khk -1
for some k ∈ S n . The conjugacy class of g ∈ S n is

K g = h ∈ G|∃k ∈ G s.t. khk -1 = g ,
the set of all elements conjugate to g.

Conjugacy is an equivalence relation in S n . Two permutations are in the same conjugacy class if and only if they have the same cycle type and, using K λ for K g when g has type λ (see [START_REF] Sagan | The Symmetric Group. Representations, Combinatorial Algorithms, and Symmetric Funtions[END_REF] for more details):

k λ def = |K λ | = n! 1 m 1 m 1 ! 2 m 2 m 2 ! • • • n mn m n ! .
Thus there is a natural one to one correspondence between partitions of n and conjugacy classes of S n .

Configurations as permutations

Let C be a configuration of a keyword query q = {k 1 , k 2 , • • • , k N } on a database D with a vocabulary V D given by

k 1 → b j 1 , k 2 → b j 2 , • • • , k N → b j N ,
we identify it with π ∈ S |V D | given by:

• π(i) = j i for all i ≤ N , • for each z ≤ N with N < π(z) ≤ |V D |, we call i = π(z)
and define π(i) in order to obtain the smallest cycle containing z. For each N < i ≤ |V D | not obtainned previously, we define π(i) = i. Equivalently:

-For each j ≤ N such that there is no i

≤ N with π(i) = j, if π(j), π 2 (j), • • •, π m-1 (j) are all ≤ N but N < π m (j) ≤ |V D |, we call i = π m (j)
and define π(i) = π m+1 (j) = j obtainning a cycle of length ≤ N + 1 in which only one value is bigger than N .

-For each N < i ≤ |V D | such that there is no j ≤ N with π(j) = i, we define π(i) = i obtaining a fixedpoint. All this points will be fixedpoints so, if 

|V D | is bigger enough (|V D | ≥ 2 * N ),
• π(1) = 4, π(2) = 7, π(3) = 6, π(4) = 1, π(5) = 3 • Since 2 ≤ 5 such that there is no i ≤ 5 with π(i) = 2, π(2) = 7 and 7 > 5, then π(7) = π 2 (2) = 2.
• Since 5 ≤ 5 such that there is no i ≤ 5 with π(i) = 5, π(5) = 3 with 3 ≤ 5 and π 2 (5) = π(3) = 6 with 6 > 5, then π(6) = π 3 (5) = 5.

• Since 8 > 5 such that there is no i ≤ 5 with π(i) = 8, then π(8) = 8.

We have a 3-cycle [START_REF] Bourgeois | An extension of the munkres algorithm for the assignment problem to rectangular matrices[END_REF][START_REF] Leon | SQL: A Complete Reference[END_REF][START_REF] Fulton | Young tableaux: with applications to representation theory and geometry[END_REF], two 2-cycles (1, 4), (2, 7) and a fixedpoint [START_REF] Sagan | The Symmetric Group. Representations, Combinatorial Algorithms, and Symmetric Funtions[END_REF], so the cycle notation is π = (3, 6, 5)(1, 4)(2, 7)(8).

The type is (1 1 , 2 2 , 3 1 , 4 0 , 5 0 , 6 0 , 7 0 , 8 0 ), corresponding to the partition of 8: λ = (3, 2, 2, 1).

k λ = 8! 2 2 •2!•3 = 1680, so the conjugacy class of π, K π = K λ , contains 1680 elements. Note 3.3 If π ∈ S |V D |
is a configuration of a keyword query q with N keywords on a database D with vocabulary V D , the type cycle of π is We have an equivalence relation between configurations through the conjugacy in S |V D | . In addition, this definition of configuration permits to order configurations through some orders that we can consider on partitions. These are two important reasons why explaining configurations as elements of the symmetric group opens up a way to explain top-k algorithms as combinatorial algorithms.

λ = (λ 1 , • • • , λ m , 1, • • • , 1) ⊢ |V D |, with λ i > 1 (1 ≤ i ≤ m) and m i=1 λ i ≤ m + N. Proof 3.4 Indeed, if π = c 1 c 2 • • • c r in cycle notation and it has k fixed- points, the type cycle of π is λ = (λ 1 , • • • , λ m , 1, • • • , 1), where λ i > 1 (1 ≤ i ≤ m) and r = m + k.

Matrix Representations of a Group

To stablish the orders needed to explain top-k algorithms as combinatorial algorithms, we need some previous results about group representations that are explained in this Section.

Matrix Representations and G-Modules

A matrix representation can be thought of as a way to model an abstract group with a concrete group of matrices.

Definition 4.1 A matrix representation of a group G [8] is a group homo- morphism X : G -→ GL d ,
where d is the degree, or dimension, of the representation, denoted by degX, GL d denotes the complex general linear group of degree d of all matrices X = (x i,j ) d×d ∈ M at d that are invertible with respect to multiplication and M at d denotes the set of all d×d matrices with entries in the complex numbers C.

Let G be a group and V be a vector space over the complex numbers of finite dimension. Let GL(V ) stand for the set of all invertible linear transformations of V to itself, called the general linear group of V . If dimV = d, then GL(V ) and GL d are isomorphic as groups. Definition 4.2 Let V be a vector space and G be a group, then V is a G-module if there is a group homomorphism

ρ : G -→ GL(V ).
Let G be a group of finite order n. We denote by C[G] the algebra of G over C; this algebra has a basis indexed by elements of G and most of the time we identify this bases with G. Each element in C[G] can be uniquely written in the form

c 1 g 1 + • • • + c n g n , c i ∈ C and multiplication in C[G] extends that in G.
Let V be a C-vectorial space and let ρ :

G -→ GL(V ) be a linear representation of G in V . For g ∈ G and v ∈ V set g • v ≡ ρ g (v).
By linearity this defines f • v for f ∈ C[G] and v ∈ V . Thus, V is endowed with the structure of a left G-module. Conversely such structure defines a linear representation of G in V .

An idea pervading all of science is that large structures can be understood by breaking them up into their smallest pieces. The same thing is true in representation theory. Some representations are built out of smaller ones, whereas others are indivisible. This is the distinction between reducible and irreducible representations. 

V = W (1) ⊕ W (2) ⊕ • • • ⊕ W (k) ,
where each W (i) is an irreducible G-submodule of V .

Tableaux and Tabloids

We need something about irreducible representations of the symmetric group. We know that the number of such representatios is equal to the number of conjugacy classes, that is the number of partitions of n.

It may not be obvious how to associate an irreducible with each partition λ = (λ 1 , λ 2 , ..., λ l ) but it is easy to find a corresponding soubgroup S λ that is an isomorphic copy of

S λ 1 × S λ 2 × • • • × S λ l
inside S n . So, we can produce the right number of representations by including the trivial representation on each S λ up to S n .

If M λ is a module for the last representation, it is not irreducible. However, we will be able to find an ordering λ (1) , λ (2) 

{t} = {t 1 |t 1 ∼ t},
where sh t = λ.

If λ = (λ 1 , λ 2 , • • • , λ l ) ⊢ n, then the number of tableaux in any given equivalence class is λ! def = λ 1 !λ 2 ! • • • λ l !. Thus the number of λ-tabloids is just n! λ! .
. Let t i,j stand for the entry of a λ-tableau t in position (i, j). Now π ∈ S n acts on a tableau t = (t i,j ) of shape λ ⊢ n as follows: In this case we say that M is generated by v.

Conclusions

We have provided a formal characterization for the configurations in terms of some elements in the symmetric group S n . We have shown that such a characterization allows us to reduce the number of configurations to check.

In addition, using the symmetric group it is possible to give an order between configurations. That is an important fact because in keyword based search we can obtain more than one configuration for the same keyword query.

Many results about representations of the symmetric group can be used in a purely combinatorial manner. Some top-k works [START_REF] Domnori | Top-k results using the hungarian algorithm[END_REF] uses a combinatorial algorithms, such as the Hungarian algorithm (also called Munkres assignment algorithm [START_REF] Bourgeois | An extension of the munkres algorithm for the assignment problem to rectangular matrices[END_REF]), to give the best answer for a for a keyword query in the context of information search. So, since the representations of the symmetric group can be used to obtain combinatorial algorithms, explaining configurations as a kind of elements of the symmetric group is a first step to formalize Keymantic as a combinatorial algorithm.

Example 3 . 2

 32 we will have at least |V D | -2 * N fixedpoints. Definition 3.1 A configuration C of a keyword query q with N keywords on a database D with vocabulary V D is a permutation π ∈ S |V D | such that each cycle of π contains no more than an element of value bigger than N (1 ≤ i ≤ r). Let be a keyword query q = {k 1 , k 2 , k 3 , k 4 , k 5 } and a database D with vocabulary V D = {b 1 , b 2 , b 3 , b 4 , b 5 , b 6 , b 7 , b 8 }, then N = 5 and |V D | = 8 and there are 8! (8-5)! = 6720 configurations. The configuration k 1 → b 4 , k 2 → b 7 , k 3 → b 6 , k 4 → b 1 , k 5 → b 3 can be extended to the following permutation π ∈ S 8 :

  Since each cycle of π, c i , contains no more than an element of value bigger than N and we have |V D | -N elements bigger than N , π has at least |V D | -N cycles. Thus r ≥ |V D | -N . Consecuently, since |V D | = m i=1 λ i + k, we have m i=1 λ i ≤ m + N .

Definition 4 . 3

 43 Let V be a G-module. A submodule of V , or G-invariant subspace, is a subspace W that is closed under the action of G, i.e., w ∈ W ⇒ gw ∈ W ∀g ∈ G. Definition 4.4 A nonzero G-module V is reducible if it contains a non trivial submodule W ; otherwise, V is said to be irreducible.

Theorem 4 . 5 (

 45 Maschke's Theorem) Let G be a finite group and let V be a nonzero G-module, then

  πt = (π(t i,j )). This induces an action on tabloids by letting π{t} = {πt}. Definition 4.10 Suppose λ ⊢ n. LetM λ = C{{t 1 }, • • • , {t k }}, the permutation module corresponding to λ, where {t 1 }, • • • , {t k } is a complete list of λ-tabloids. Definition 4.11 Any G-module M is cyclic if there is a v ∈ M such that M = CGv,where Gv = {gv | g ∈ G}.

  , • • • of all partitions of n with nice properties. To build the modules M Definition 4.7 A Young tableau of shape λ ⊢ n, or λ-tableau, [5] is an array t obtained by replacing the dots of the Ferrers diagram of λ with the numbers 1, 2, • • •, n bijectively. Alternatively, we write sh t = λ.There are n! Young tableaux for any shape λ ⊢ n. Two λ-tableaux t 1 and t 2 are row equivalent,t 1 ∼ t 2 ,if corresponding rows of the two tableaux contain the same elements.Definition 4.9 A tabloid of shape λ, or λ-tabloid, is

	Definition 4.8

λ first we need: Definition 4.6 The Ferrers diagram, or shape, of λ = (λ 1 , λ 2 , ..., λ l ) ⊢ n is an array of n dots having l left-justified rows with row i containing λ i dots for 1 ≤ i ≤ l. The dot in row i and column j has coordinates (i, j), as in a matrix.

 Proposition 4.12 If λ ⊢ n, then [START_REF] Sagan | The Symmetric Group. Representations, Combinatorial Algorithms, and Symmetric Funtions[END_REF] M λ is cyclic, generated by any given λ-tabloid. In addition,

the number of λ-tabloids.

Example 4.13 Let λ = (3, 2) ⊢ 5. The Ferrers diagram, or shape, of λ is

Some Young tableaux of shape λ, or a λ-tableaux, are

A tabloid of shape λ, or λ-tabloid, is There are 5! 3! • 2! = 10 λ-tabloids.

The permutation module corresponding to

The action of (1, 3, 5)(2)(4) ∈ S 5 on t 1 is:

and the action of (1, 3, 5)(2)(4) ∈ S 5 on {t 1 }:

Dominance and Lexicographic ordering

We consider two important orderings [START_REF] Sagan | The Symmetric Group. Representations, Combinatorial Algorithms, and Symmetric Funtions[END_REF] on partitions of n.

are partitions of n:

• λ dominates µ, written λ µ, if

), then we take λ i (respectively, µ i ) to be zero.

• λ < µ in lexicographic order if, for some index i, λ j = µ j for j < i and

The dominance order is partial and the lexicographic is total. The lexicographic order is a refinement of the dominance order in this sense:

Intuitively, λ is greater than µ in the dominance order if the Ferrers diagram of λ is short and fat but the one for µ is long and skinny. 

. In dominance order:

• (2, 2, 2, 1, 1) (2, 2, 1, 1, 1, 1) (2, 1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 1, 1, 1, 1).

• (3, 1, 1, 1, 1, 1) and (2, 2, 2, 1, 1) are incomparables but (3, 2, 1, 1, 1) (2, 2, 2, 1, 1) and (3, 1, 1, 1, 1, 1) (2, 2, 1, 1, 1, 1).