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MCMC design-based non-parametric regression for
rare-event. Application to nested risk computations

Gersende Fort∗ Emmanuel Gobet† Eric Moulines‡

Abstract

We design and analyze an algorithm for estimating the mean of a function of a con-
ditional expectation, when the outer expectation is related to a rare-event. The outer
expectation is evaluated through the average along the path of an ergodic Markov chain
generated by a Markov chain Monte Carlo sampler. The inner conditional expectation
is computed as a non-parametric regression, using a least-squares method with a general
function basis and a design given by the sampled Markov chain. We establish non asymp-
totic bounds for the L2-empirical risks associated to this least-squares regression; this
generalizes the error bounds usually obtained in the case of i.i.d. observations. Global
error bounds are also derived for the nested expectation problem. Numerical results in
the context of financial risk computations illustrate the performance of the algorithms.

Keywords: empirical regression scheme, MCMC sampler, rare event

AMS Classification: 65C40, 62G08, 37M25

1 Introduction
Statement of the problem. We consider the problem of estimating the mean of a
function of a conditional expectation in a rare-event regime, using Monte Carlo simula-
tions. More precisely, the quantity of interest writes

I := E [f(Y,E [R|Y ])|Y ∈ A] (1.1)

where R and Y are vector-valued random variables, and A is a so-called rare subset, i.e.
P(Y ∈ A) is small. This is a problem of nested Monte Carlo computations with a special
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emphasis on the distribution tails. In the evaluation of (1.1), which is equivalent to

E [f(X,E [R|X])]

where the distribution of X is the conditional distribution of Y given {Y ∈ A}, there are
two intertwined issues, which we now explain to emphasize our contributions.

The outer Monte Carlo stage samples distributions restricted to {Y ∈ A}. A naive
acceptance-rejection on Y fails to be efficient because most of simulations of Y are wasted.
Therefore, specific rare-event techniques have to be used. Importance sampling is one of
these methods (see e.g. [RK08, BL12]), which can be efficient in small dimension (10 to
100) but fails to deal with larger dimensions. In addition, this approach relies heavily on
particular types of models for Y and on suitable information about the problem at hand.

Another option consists in using Markov Chain Monte Carlo (MCMC) methods. Such
methods amount to construct a Markov chain (X(m))m≥0, such that the chain possesses
an unique stationary distribution π equal to the conditional distribution of Y given the
event {Y ∈ A}. In such case, for π-almost every initial condition X0 = x, the Birkhoff
ergodic theorem shows that

lim
M→+∞

1

M

M∑
m=1

ϕ(X(m)) = E [ϕ(Y )|Y ∈ A] a.s.

for any (say) bounded function ϕ. This approach has been developed, analyzed and ex-
perimented in [GL15] in quite general and complex situations, demonstrating its efficiency
over alternative methods. Therefore, a natural idea for the estimation of (1.1) would be
the computation of

1

M

M∑
m=1

f
(
X(m),E

[
R |X(m)

])
,

emphasizing the need for approximating the quantity E
[
R |X(m)

]
.

The inner Monte Carlo stage is used to approximate these conditional expectations at
any X(m) previously sampled. A first idea is to replace E

[
R |X(m)

]
by a Crude Monte

Carlo sum computed with N draws:

E
[
R |X(m)

]
≈ 1

N

N∑
k=1

R(m,k). (1.2)

This approach is refereed to as nested simulation method in [BDM15] (with the difference
that their X(m) are i.i.d. and not given by a Markov chain). This algorithm based
on (1.2) is briefly presented and studied in Appendix A. Having a large N reduces the
variance of this approximation (and thus ensures convergence as proved in Theorem 5)
but it yields a prohibitive computational cost. Furthermore, this naive idea does not
take into account cross-informations between the different approximations at the points
{X(m),m = 1, · · · ,M}. Instead, we follow a non-parametric regression approach for
the approximation of the function φ? satisfying φ?(X) = E [R|X] (almost-surely): given
L basis functions φ1, · · · , φL, we regress {R(m),m = 1, · · · ,M} against the variables
{φ1(X(m)), · · · , φL(X(m));m = 1, · · · ,M} where R(m) is sampled from the conditional
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distribution of R given {X = X(m)}. Note that this inner Monte Carlo stage only requires
a single draw R(m) for each sample X(m) of the outer stage. Our discussion in Subsection
2.4 shows that the regression Monte Carlo method for the inner stage outperforms the
crude Monte Carlo method as soon as the regression function can be well approximated
by the basis functions (which is especially true when φ? is smooth, with a degree of
smoothness qualitatively higher than the dimension d, see details in Subsection 2.4).

The major difference with the standard setting for non-parametric regression [GKKW02]
comes from the design {X(m),m = 1, · · · ,M} which is not a i.i.d. sample: the indepen-
dence fails because {X(m),m = 1, · · · ,M} is a Markov chain path, which is ergodic but
not stationary in general.

A precise description of the algorithm is given in Section 2, with a discussion on im-
plementation issues. We also provide some error estimates, in terms of the size M of the
sample, and of the function space used for approximating the inner conditional expecta-
tion. Proofs are postponed to Section 4. Section 3 gathers some numerical experiments,
in the field of financial and actuarial risks. Appendix A presents the analysis of a Monte
Carlo scheme for computing (1.1), by using a MCMC scheme for the outer stage and a
crude Monte Carlo scheme for the inner stage.

Applications. Numerical evaluation of nested conditional expectations arises in sev-
eral fields. This pops up naturally in solving dynamic programming equations for stochas-
tic control and optimal stopping problems, see [TR01, LS01, Egl05, LGW06, BKS10];
however, coupling these latter problems with rare-event is usually not required from the
problem at hand.

In financial and actuarial management [MFE05], we often retrieve nested conditional
expectations, with an additional account for such estimations in the tails (like (1.1)). A
major application is the risk management of portfolios written with derivative options
[GJ10]: regarding (1.1), R stands for the aggregated cashflows of derivatives at time T ′,
and Y for the underlying asset or financial variables at time T < T ′. Then E [R|Y ]

represents the portfolio value at T given a scenario Y , and the aim is to compute the
extreme exposure (Value at Risk, Conditional VaR) of the portfolio. These computations
are an essential concern for Solvency Capital Requirement in insurance [DL09].

Literature background and our contributions. In view of the aforementioned
applications, it is natural to find most of background results in relation to risk management
in finance and insurance. Alternatively to the crude nested Monte Carlo methods (i.e.
with an inner and an outer stage, both including sample Monte Carlo averages), several
works have tried to speed-up the algorithms, notably by using spatial approximation of
the inner conditional expectation: we refer to [HJ09] for kernel estimators, to [LS10]
for kriging techniques, to [BDM15] for least-squares regression methods. However, these
works do not account for the outside conditional expectation given Y ∈ A, i.e. the learning
design is sampled from the distribution of Y and not from the conditional distribution
of Y given {Y ∈ A}. While the latter distribution distorsion is presumably unessential
in the computation of (1.1) in the case that A is not rare, it certainly becomes a major
flaw when P (Y ∈ A)� 1 because the estimator of E [R|Y ] is built using quite irrelevant
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data. We mention that the weighted regression method of [BDM15] better accounts for
extreme values of Y in the resolution of the least-squares regression, but still, the design
remains sampled from the distribution of Y instead of the conditional distribution of Y
given {Y ∈ A} and therefore most of the samples are wasted.

In this work, we use least-squares regression methods to compute the function φ?.
Our results are derived under weaker conditions than what is usually assumed: contrary
to [BDM15], the basis functions φ1, · · · , φL are not necessarily orthonormalized and the
design matrix is not necessarily invertible. Therefore we allow general basis functions and
we avoid conditions on the underlying distribution. Furthermore, we do not restrict our
convergence analysis toM →∞ (large sample) but we also account for the approximation
error (due to the function space). This allows a fine tuning of all parameters to achieve
a tolerance on the global error. Finally, as a difference with the usual literature on non-
parametric regression [GKKW02, Egl05], the learning sample (X(m))1≤m≤M is not an
i.i.d. sample of the conditional distribution of Y given {Y ∈ A}: the error analysis
is significantly modified. Among the most relevant references in the case of non i.i.d.
learning sample, we refer to [BCV01, RM10, DG11]. Namely, in [BCV01], (X(m))1≤m≤M is
autoregressive or β-mixing: as a difference with our setting, they assume that the learning
sample (X(1), . . . , X(M)) is stationary and that the noise sequence (i.e. X(m)−φ?(X(m)),
m ≥ 1) is essentially i.i.d. (and independent of the learning sample). In [RM10], the
authors relax the condition on the noise but they impose R to be bounded; the learning
sample is still assumed to be stationary and β-mixing. In [DG11] the authors study kernel
estimators for φ? (instead of least-squares like we do), under the assumption that the noise
is a martingale with uniform exponential moments (we only impose finite variance).

2 Algorithm and convergence results
Let (X,R) be a Rd×R-random vector; the distribution of X is the conditional distribution
of Y given {Y ∈ A}, with density µ w.r.t. a positive σ-finite measure λ on Rd. For any
Borel set A, we denote by Q(x,A) := E [1A(R) |X = x]; Q is a Markov kernel, it is the
conditional distribution of R given X. Let φ? be the function from Rd to R, defined by

φ?(x) :=

∫
R
rQ(x,dr). (2.1)

It satisfies, µdλ-almost surely, φ?(X) = E [R|X] when X ∼ µdλ.
For the regression step, choose L measurable functions φ` : Rd → R, ` ∈ {1, . . . , L},

such that ∫
φ2` (x) µ(x) dλ(x) <∞.

Denote by F the vector space spanned by the functions φ`, ` ∈ {1, · · · , L}, and by φ the
function from Rd to RL collecting the basis functions φ`:

φ(x) :=

φ1(x)
...

φL(x)

 .
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By convention, vectors are column vectors. For a matrix A, A′ denotes its transpose. 〈·; ·〉
denotes the scalar product in Rp, and we will use |·| to denote both the Euclidean norm
in Rp and the absolute value. The identity matrix of size N is denoted by IN .

We adopt the short notation X(1:M) for the sequence (X(1), . . . , X(M)).

2.1 Algorithm
In Algorithm 1, we provide a description of a Monte Carlo approximation of the unknown
quantity (1.1). Note that as a byproduct, this algorithm also provides an approximation
φ̂M of the function φ? given by (2.1).

Let P be a Markov transition kernel on A with unique invariant distribution µdλ.

1 /* Simulation of the design and the observations */
2 X(0) ∼ ξ, where ξ is a distribution on A ;
3 for m = 1 to M do
4 X(m) ∼ P(X(m−1),dx) ;
5 R(m) ∼ Q(X(m), dr);

6 /* Least-Squares regression */

7 Choose α̂M ∈ RL solving arg min
α∈RL

1

M

M∑
m=1

∣∣∣R(m) −
〈
α;φ(X(m))

〉∣∣∣2 and set

φ̂M (x) :=
〈
α̂M ;φ(x)

〉
;

8 /* Final estimator using ergodic average */

9 Return ÎM :=
1

M

M∑
m=1

f(X(m), φ̂M (X(m))).

Algorithm 1: Full algorithm with M data, M ≥ L.
The optimization problem Line 7 Algorithm 1 is equivalent to find a vector α ∈ RL solving

A′Aα = A′R (2.2)

where

R :=

R(1)

· · ·
R(M)

 , A :=

 φ1(X(1)) · · · φL(X(1))

· · · · · · · · ·
φ1(X

(M)) · · · φL(X(M))

 . (2.3)

There exists at least one solution, and the solution with minimal (Euclidean) norm is
given by

α̂M :=
(
A′A

)#
A′R, (2.4)

where (A′A)# denotes the Moore-Penrose pseudo inverse matrix; (A′A)# = (A′A)−1

when the rank of A is L, and in that case, the equation (2.2) possesses an unique solution.
An example of efficient transition kernel P is proposed in [GL15]: this kernel, hereafter

denoted by PGL, can be read as a Hastings Metropolis transition kernel targeting µdλ

and with a proposal kernel with transition density q which is reversible w.r.t. µ, i.e. for
all x, z ∈ A,

µ(x)q(x, z) = q(z, x)µ(z) . (2.5)

An algorithmic description for sampling a path of length M of a Markov chain with
transition kernel PGL and with initial distribution ξ is given in Algorithm 2.
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1 X(0) ∼ ξ where ξ is a distribution on A ; /* pick one point in A */
2 /* Simulation of data using reversible Metropolis-Hastings with

rejection */
3 for m = 1 to M do

4 X̃(m) ← simulation according to distribution q(X(m−1), z)λ(dz);

5 if X̃(m) ∈ A then

6 X(m) ← X̃(m); /* acceptance */

7 else
8 X(m) ← X(m−1); /* rejection */

9 Return X(1), · · · , X(M).
Algorithm 2: MCMC for rare event: a Markov chain with kernel PGL

When µdλ is a Gaussian distribution Nd(0,Σ) on Rd restricted to A, X̃ ∼ Nd(ρx, (1 −
ρ2)Σ) is a candidate with distribution z 7→ q(x, z) satisfying (2.5); here, ρ ∈ [0, 1) is a
design parameter chosen by the user (see [GL15, Section 4] for a discussion on the choice
of ρ). Other proposal kernels q satisfying (2.5) are given in [GL15, Section 3] in the
non-Gaussian case.

More generally, building a transition kernel P with invariant distribution µdλ is well-
known using Hastings Metropolis schemes. Actually, there is no need to impose the
condition (2.5) about reversibility of q w.r.t. µ. Indeed, given an arbitrary transition
density q(·, ·), it is sufficient to replace Lines 5-6 of Algorithm 2 by the following acceptance
rule: if X̃(m) ∈ A, accept X̃(m) with probability

αaccept(X
(m−1), X̃(m)) := 1 ∧

[
µ(X̃(m))q(X̃(m), X(m−1))

µ(X(m−1))q(X(m−1), X̃(m))

]
.

In the subsequent numerical tests with Gaussian distribution restricted to A: µdλ ∝
Nd(0,Σ)1A, we will make use of X̃ ∼ Nd(ρx + (1 − ρ)xA, (1 − ρ2)Σ) as a candidate for
the transition density z 7→ q(x, z), where xA is a well-chosen point in A. In that case, we
easily check that the acceptance probability is given by

αaccept(x, z) = 1 ∧ exp(x′AΣ−1(x− z)). (2.6)

2.2 Convergence results for the estimation of φ?
Let L2(µ) be the set of measurable functions ϕ : Rd → R such that

∫
ϕ2 µdλ < ∞; and

define the norm

|ϕ|L2(µ) :=

(∫
ϕ2µdλ

)1/2

. (2.7)

Let ψ? be the projection of φ? on the linear span of the functions φ1, · · · , φL, w.r.t. the
norm given by (2.7): ψ? =

〈
α?;φ

〉
where α? ∈ RL solves(∫

φφ′µ dλ

)
α? =

∫
ψ φµdλ.

Theorem 1. Assume that
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(i) the transition kernel P and the initial distribution ξ satisfy: there exists a constant
CP and a rate sequence {ρ(m),m ≥ 1} such that for any m ≥ 1,∣∣∣∣ξPm[(ψ? − φ?)2]−

∫
(ψ? − φ?)2 µ dλ

∣∣∣∣ ≤ CP ρ(m). (2.8)

(ii) the conditional distribution Q satisfies

σ2 := sup
x∈A

{∫
r2 Q(x,dr)−

(∫
rQ(x, dr)

)2
}
<∞. (2.9)

Let X(1:M) and φ̂M be given by Algorithm 1. Then,

∆M := E

[
1

M

M∑
m=1

(
φ̂M (X(m))− φ?(X(m))

)2]
≤ σ2L

M
+ |ψ? − φ?|2L2(µ)

+
CP

M

M∑
m=1

ρ(m).

(2.10)

Proof. See Section 4.1.

∆M measures the mean squared error φ̂M −φ? along the design sequence X(1:M). The
proof consists in decomposing this error into a variance term and a squared bias term:
a) σ2L/M in the RHS is the statistical error, decreasing as the size of the design M

gets larger and increasing as the size of the approximation space L gets larger.
b) The quantity |ψ?− φ?|2L2(µ)

is the residual error under the best approximation of φ?
by the basis functions φ1, · · · , φL w.r.t. the L2(µ)-norm: it is naturally expected as
the limit of ∆M when M →∞.

c) The term with {ρ(m),m ≥ 1} describes how rapidly the Markov chain {X(m),m ≥
1} converges to its stationary distribution µdλ.

This theorem extends known results in the case of i.i.d. design X(1:M), which is the major
novelty of our contribution. The i.i.d. case is a special case of this general setting: it is
retrieved by setting P(x,dz) = µ(z)dλ(z). Note that in that case, the assumption (i) is
satisfied with CP = 0, and the upper bound in (2.10) coincides with classic results (see
e.g. [GKKW02, Theorem 11.1]). The theorem covers the situation when the outer Monte
Carlo stage relies on a Markov chain Monte Carlo sampler; we will discuss below how to
check the assumption (i) in practice.

The assumptions on the basis functions φ1, · · · , φL are weaker than what is usually
assumed in the literature on nested simulation. Namely, as a difference with [BDM15,
Assumption A2] in the i.i.d. case, Theorem 1 holds even when the functions φ1, · · · , φL
are not orthonormal in L2(µ), and it holds without assuming that almost-surely, the rank
of the matrix A is L.

The assumption (ii) says that the conditional variance of R given X is uniformly
bounded. This condition could be weakened and replaced by an ergodic condition on the
Markov kernel P implying that

σ̃2L := sup
M≥L

E
[∣∣∣A(A′A)#A′

(
R− E

[
R|X(1:M)

])∣∣∣2] <∞;

A and R are given by (2.3) and depend on X(1:M). In that case, the upper bound (2.10)
holds with σ2L replaced by σ̃2L (see the inequality (4.2) in the proof of Theorem 1).
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We conclude this section by conditions on P and A implying the ergodicity assumption
(2.8) with a geometric rate sequence ρ(m) = κm for some κ ∈ (0, 1). Sufficient conditions
for sub-geometric rate sequences can be found e.g. in [FM03a, DFMS04].

Proposition 2 ([MT93, Theorem 15.0.1] and [FM03b, Proposition 2]). Assume that P is
phi-irreducible and there exists a measurable function V : A → [1,+∞) such that
(i) there exist δ ∈ (0, 1) and b <∞ such that for any x ∈ A, PV (x) ≤ δV (x) + b,
(ii) there exists υ? ∈ (b/(1− δ),+∞), such that the level set C? := {V ≤ υ?} is 1-small:

there exist ε > 0 and a probability distribution ν on A (with ν(C?) = 1) such that for
any x ∈ C?, P(x,dz) ≥ εν(dz).

Then there exist κ ∈ (0, 1) and a finite constant C1 such that for any measurable function
g : A → R, any m ≥ 1 and any x ∈ A,∣∣∣∣Pmg(x)−

∫
g µ dλ

∣∣∣∣ ≤ C1

(
sup
A

|g|
V

)
κmV (x).

In addition, there exists a finite constant C2 such that for any measurable function g :

A → R and any M ≥ 1,

E

∣∣∣∣∣
M∑
m=1

{g(X(m))−
∫
g µdλ}

∣∣∣∣∣
2
 ≤ C2

(
sup
A

|g|√
V

)2

E
[
V (X(0))

]
M.

An explicit expression of the constant C2 is given in [FM03b, Proposition 2]. When
P = PGL as described in Algorithm 2, we have the following corollary.

Corollary 3. Assume the following conditions:
(i) For all x ∈ A: µ(z) > 0 =⇒ q(x, z) > 0.
(ii) There exists δ1 ∈ (0, 1) such that supx∈A

∫
Ac q(x, z)dλ(z) ≤ δ1.

(iii) There exist δ2 ∈ (δ1, 1), a measurable function V : A → [1,+∞) and a set B ⊂ A
such that

b := sup
x∈B

∫
A
V (z) q(x, z)dλ(z) <∞, sup

x∈Bc
V −1(x)

∫
A
V (z) q(x, z)dλ(z) ≤ δ2 − δ1.

(iv) For some υ? > b/(1− δ2), the level set C? := {V ≤ υ?} is such that

inf
(x,z)∈C2?

(
q(x, z)1µ(z)6=0

µ(z)

)
> 0,

∫
C?
µdλ > 0.

Then the assumptions of Proposition 2 are satisfied for the kernel P = PGL.

Proof. See Section 4.2.

When µ is a Gaussian density Nd(0, Id) on Rd restricted to A and the proposal density
q(x, y) is a Gaussian random variable with mean ρx and covariance

√
1− ρ2Id (with

ρ ∈ (0, 1)), it is easily seen that the conditions (i), (iii) and (iv) of Corollary 3 are satisfied
(choose e.g. V (x) = exp(s |x|), with s > 0). The condition (ii) is problem specific since it
depends on the geometry of A.
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2.3 Convergence results for the estimation of I
When the problem (1.1) is of the form

E [f (Y,E [R|Y ]) |Y ∈ A]

for a globally Lipschitz function f (in the second variable), we have the following control
on the Monte Carlo error ÎM − I from Algorithm 1.

Theorem 4. Assume
(i) f : Rd × R → R is globally Lipschitz in the second variable: there exists a finite

constant Cf such that for any (r1, r2, y) ∈ R× R× Rd,

|f(y, r1)− f(y, r2)| ≤ Cf |r1 − r2| .

(ii) There exists a finite constant C such that for any M

E

(M−1 M∑
m=1

f
(
X(m), φ?(X

(m))
)
−
∫
f(x, φ?(x))µ(x) dλ(x)

)2
 ≤ C

M
.

Then (
E
[∣∣∣ÎM − I∣∣∣2])1/2

≤ Cf
√

∆M +

√
C

M
,

where I, ÎM and ∆M are resp. given by (1.1), Algorithm 1 and (2.10).

Proof. See Section 4.3.

Sufficient conditions for the assumption (ii) to hold are given in Proposition 2 when
{X(m),m ≥ 1} is a Markov chain. When the draws {X(m),m ≥ 1} are i.i.d. with
distribution µdλ, the condition (ii) is verified with C = Var (f(X,φ?(X))) with X ∼ µdλ.

2.4 Asymptotic optimal tuning of parameters
In this paragraph, we discuss how to tune the parameters of the algorithm (i.e. M ,
φ1, · · · , φL and L), given a Markov kernel P. To simplify the discussion, we assume from
now on that

(Hyp(2.8)) the constant CP of (2.8) can be chosen independently of ψ?; furthermore the
series (ρ(m))m≥1 defined in (2.8) is convergent.

The above condition on ρ is quite little demanding: see Proposition 2 where the conver-
gence is geometric. Regarding the condition on CP, although not trivial, this assumption
seems reasonable since ψ? is the best approximation of φ? on the function basis w.r.t. the
target measure µdλ: it means that first, |ψ? − φ?|L2(µ) ≤ |φ?|L2(µ); and second, ψ? − φ?
is expected to converge to 0 in L2(µ) as the number L of basis functions increases. Be-
sides, in the context of Proposition 2, the control of CP would follow from the control of
supA

|ψ?−φ?|
V , which is a delicate task because of the lack of knowledge on ψ?.

A direct consequence of (Hyp(2.8)) is that the last term in (2.10) is such that

CP

M

M∑
m=1

ρ(m) = O

(
1

M

)
,
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uniformly in the function basis. In other words, the mean empirical squared error ∆M is
bounded by Cst ×

(
L
M + |ψ? − φ?|2L2(µ)

)
, as in the case of i.i.d. design (see [GKKW02,

Theorem 11.1]).
There are many choices of function basis [GKKW02], but due to the lack of knowledge

on the target measure and in the perspective of discussing convergence rates, it is relevant
to adopt local approximation techniques, like piecewise polynomial partitioning estimates
(i.e. local polynomials defined on a tensored grid); for a detailed presentation, see [GT16,
Section 4.4.]. Assume that the conditional expectation φ? is smooth on A, namely φ?
is p0 continuously differentiable, with bounded derivatives, and the p0-th derivatives is
p1-Hölder continuous. Set p := p0 + p1. If A is bounded, it is well-known [GKKW02,
Corollary 11.1 for d = 1] that taking local polynomials of order p0 on a tensored grid with
edge length equal to Cst ×M−

1
2p+d ensures that both the statistical error L/M and the

approximation error |ψ? − φ?|2L2(µ)
have the same magnitude and we get

∆M = O
(
M
− 2p

2p+d

)
. (2.11)

If A is not anymore bounded, under the additional assumption that µdλ has tails with
exponential decay, it is enough to consider similar local polynomials but on a tensored
grid truncated at distance Cst× log(M); this choice maintains the validity of the estimate
(2.11), up to logarithmic factors [GT16, Section 4.4.], which we omit to write for the sake
of simplicity.
Regarding the complexity Cost (computational cost), the simulation cost (forX(1:M), R(1:M))
is proportional toM , the computation of φ̂M needs Cst×M operations (taking advantage
of the tensored grid), as well as the final evaluation of ÎM . Thus we have Cost ∼ Cst×M ,
with another constant. Finally, in view of Theorem 4, we derive

ErrorRegression Alg. 1 = O
(

Cost−
p

2p+d

)
.

This is similar to the rate we would obtain in a i.i.d. setting. For very smooth φ?
(p→ +∞), we retrieve asymptotically the order 1

2 of convergence.
This global error may be compared to the situation where the inner conditional ex-

pectation is computed using a crude Monte Carlo method (using N samples of R(m,k) for
each of the M X(m)’s); this scheme is described and analyzed in Appendix A. Its compu-
tational cost is Cst×MN and its global error is O(1/

√
N+1/

√
M) if f is Lipschitz (resp.

O(1/N + 1/
√
M) if f is smoother); thus we have (by taking M = N resp. N =

√
M)

ErrorCrude MC Alg. 3 = O
(

Cost−
1
4

)
if f Lipschitz

(
resp. O

(
Cost−

1
3

)
if f smoother

)
.

In the standard case of Lipschitz f , the regression-based Algorithm 1 converges faster
than Algorithm 3 under the condition p ≥ d/2. In low dimension, this condition is easy
to satisfy but it becomes problematic as the dimension increases, this is the usual curse
of dimensionality.
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3 Application: Put options in a rare event regime
The goal is to approximate the quantity

I := E
[(
E
[
(K − h(ST ′))+ |ST

]
− p?

)
+
|ST ∈ S

]
(3.1)

for various choices of h, where {St, t ≥ 0} is a d-dimensional geometric Brownian motion,
T < T ′ and {ST ∈ S} is a rare event.

3.1 A toy example in dimension 1
We start with a toy example: in dimension d = 1, when h(y) = y and S = {s ∈ R+ : s ≤
s?} so that

I = E
[(
E
[
(K − ST ′)+ |ST

]
− p?

)
+
|ST ≤ s?

]
.

(K − ST ′)+ is the Put payoff written on one stock with price (St)t≥0, with strike K and
maturity T ′: this is a standard financial product used by asset managers to insure their
portfolio against the decrease of stock price. We take the point of view of the seller of the
contract, who is mostly concerned by large values of the Put price, i.e. he aims at valuing
the excess of the Put price at time T ∈ (0, T ′) beyond the threshold p? > 0, for stock value
ST smaller than s? > 0. We assume that {St, t ≥ 0} evolves like a geometric Brownian
motion, with volatility σ > 0 and zero drift. For the sake of simplicity, we assume that
the interest rate is 0; extension to non-zero interest rate is obvious.

Upon noting that ST = ξ(Y ) and ST ′ = ξ(Y ) exp(−1
2σ

2τ + σ
√
τZ) where Y,Z are

independent standard gaussian variables and

ξ(y) := S0 exp

(
−1

2
σ2T + σ

√
Ty

)
, τ := T ′ − T

we have

I = E

[(
E
[(
K − ξ(Y ) exp(−1

2
σ2τ + σ

√
τZ)

)
+

∣∣∣Y ]− p?)
+

∣∣∣Y ≤ y?] ,
where

y? :=
1

σ
√
T

ln

(
s?
S0

)
+

1

2
σ
√
T .

Therefore, the problem (3.1) is of the form (1.1) with

R = (K − ξ(Y ) exp(−1

2
σ2τ + σ

√
τZ))+, f(y, r) = (r − p?)+, A = {y ∈ R : y ≤ y?},

and [Y, Z]′ ∼ N2(0, I2). In this example, P(Y ∈ A) and E [R|Y ] are explicit. We have
indeed P(Y ∈ A) = Φ (y?) where Φ denotes the cumulative distribution function (cdf) of
a standard Gaussian distribution. Furthermore, E [R|Y ] = Φ?(ξ(Y )) where

Φ?(s) := K Φ(d+(s))− sΦ(d−(s)), with d±(s) :=
1

σ
√
τ

ln(K/s)± 1

2
σ
√
τ ;

note that φ? = Φ? ◦ ξ. The parameter values for the numerical tests are given in Table 1.
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Table 1: Parameter values for the 1d-example

T T ′ S0 K σ s? p?
1 2 100 100 30% 30 10
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Figure 1: Normalized histograms of the M points from the Markov chains GL (top
left), NR (top right) and from the i.i.d. sampler with rejection (bottom left). (bottom
right) Restricted to [−6, y?], the cdf of Y given {Y ∈ A}, two MCMC approximations
(with PGL and PNR) and an i.i.d. approximation.

We first illustrate the behavior of the kernel PGL described by Algorithm 2. Since Y is
a standard Gaussian random variable, we design PGL as a Hastings-Metropolis sampler,
with invariant distribution µdλ equal to a standard N (0, 1) restricted to A and with
proposal distribution q(x, ·) dλ ≡ N (ρx, 1 − ρ2). Observe that this proposal kernel is
reversible w.r.t. µ, see (2.5). Note that the condition (ii) in Corollary 3 gets into

sup
y≤y?

Φ

(
ρy − y?√

1− ρ2

)
< 1

which holds true since ρ > 0. In the following, the performance of the kernel PGL is
compared to that of the kernel PNR defined as a Hastings-Metropolis kernel with proposal
q(x, ·)dλ ≡ N ((1− ρ)y? + ρx, 1− ρ2) and with invariant distribution a standard Gaussian
random variable restricted to A. As a main difference with PGL, this proposal transition
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density q is not reversible w.r.t. µ (whence the notation PNR for the kernel); therefore,
the acceptance-rejection ratio of the new point z is given by (see Equality (2.6))

(1 ∧ exp (y? (x− z)))1z≤y? .

On Figure 1(bottom right), the true cdf of Y given {Y ∈ A} (which is a density on
(−∞, y?]) is displayed on [−6, y?] together with three empirical cdfs x 7→M−1

∑M
m=1 1{X(m)≤x}:

the first one is computed from i.i.d. samples with distribution N (0, 1) and the second one
(resp. the third one) is computed from a Markov chain path X(1:M) of length M with
kernel PGL (resp. PNR) and started at X(0) = y?. The two kernels provide a similar ap-
proximation of the true cdf. HereM = 1e6, and ρ = 0.85 for both kernels. We also display
the normalized histograms of the points X(m) sampled respectively from PGL (top left),
PNR (top right) and the crude rejection algorithm with Gaussian proposal (bottom left).
In the latter plot, the histogram is built with only around 50-60 points which correspond
to the accepted points among M = 1e6 proposal points.

0 10 20 30 40 50

-0.2

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.99

0 10 20 30 40 50

-0.2

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.99

Figure 2: For different values of ρ, estimation of the autocorrelation function (over
100 independent runs) of the chain PGL (left) and PNR (right). Each curve is com-
puted using 1e6 sampled points.

To assess the speed of convergence of the samplers PGL and PNR to their stationary
distributions, we additionally plot in Figure 2 the autocorrelation function for both chains.
For PGL the choice of ρ is quite significant, as observed in [GL15]; values of ρ around 0.9
give usually good results. For PNR, in this example the choice of ρ is less significant
because we are able to define a proposal which takes advantage of the knowledge on the
rare set. A comparison of acceptance rates is provided below (see Figure 3(left)).

We also illustrate the behavior of these two MCMC samplers for the estimation of
the rare event probability P(Y ∈ A). Following the approach of [GL15], we use the
decomposition

P(Y ∈ A) =
J∏
j=1

P (Y ≤ wj |Y ≤ wj−1) ≈ π̂ :=
J∏
j=1

(
1

M

M∑
m=1

1X(m,j)≤wj

)

where w0 = +∞ > w1 > · · · > wJ = y?, and {X(m,j),m ≥ 0} is a Markov chain with
kernel P

(j)
GL or P

(j)
NR having a standard Gaussian restricted to (−∞, wj−1] as invariant dis-

tribution. The J intermediate levels are chosen such that P(Y ≤ wj |Y ≤ wj−1) ≈ 0.1.
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Figure 3: Comparison of the MCMC sampler PGL (top) and PNR (bottom), for dif-
ferent values of ρ ∈ {0.1, · · · , 0.9, 0.99}. (left) Mean acceptance rate when computing
P(Y ≤ y?|Y ≤ wJ−1) afterM iterations of the chain; (right) Estimation of P(Y ∈ A)

by combining splitting and MCMC.

Figure 3(right) displays the boxplot of 100 independent realizations of the estimator π̂ for
different values of ρ ∈ {0.1, · · · , 0.9}; the horizontal dotted line indicates the true value
P(Y ∈ A) = 5.6e−5. Here J = 5, (w1, · · · , w4) = (0,−1.6,−2.5,−3.2) andM = 1e4. Fig-
ure 3(left) displays the boxplot of 100 mean acceptance ratesM−1

∑M
m=1 1{X(m,J)=X̃(m,J)}

computed along 100 independent chains {X(m,J),m ≤ M}, for different values of ρ; the
horizontal dotted line is set to 0.234 which is usually chosen as the target rate when fixing
some design parameters in a Hastings-Metropolis algorithm (see e.g. [Ros08]). We observe
that the use of non-reversible proposal kernel PNR yields more accurate results than PGL;
this is intuitively easy to understand since PGL better accounts for the point y? around
which one should sample.
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Figure 4: (left) 1000 sampled points (X(m), R(m)) (using the sampler PGL), together
with φ?; (right) A realization of the error function x 7→ φ̂M (x) − φ?(x) on [−5, y?],
for different values of L ∈ {2, 3, 4} and two different kernels when sampling X(1:M).

We now run Algorithm 1 for the estimation of the conditional expectation x 7→ φ?(x) on
(−∞, y?]. The algorithm is run with M = 1e6, successively with P = PGL and P = PNR
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both with ρ = 0.85; the L basis functions are {x 7→ φ`(x) = (ξ(x))`−1, l = 1, . . . , L}
and we consider successively L ∈ {2, 3, 4}. On Figure 4(right), the error function x 7→
φ̂M (x)− φ?(x) is displayed for different values of L when computing φ̂M . It is displayed
on the interval [−5, y?], which is an interval with probability larger than 1− 5e−3 under
the distribution of Y given {Y ∈ A} (see Figure 1). Note that the errors may be quite
large for x close to -5; however these values are very unlikely (see Figure 1), and therefore
these large errors are not representative of the global quadratic error. On Figure 4(left),
we display 1000 sampled points of (X(m), R(m)). These points are taken from the sampler
PGL, every 20 iterations, in order to obtain quite uncorrelated design points. Observe that
the regression function φ? looks like affine, which explains why the results with L = 2

only are quite accurate.
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Figure 5: (left) Monte Carlo approximations of M 7→ ∆M , and fitted curves of the
formM 7→ α+β/M . (right) For different values of ρ, and for three different values of
M , boxplot of 100 independent estimates ÎM when X(1:M) is sampled from a chain
with kernel PGL (top) and PNR (bottom).

We finally illustrate Algorithm 1 for the estimation of I (see (3.1)). On Figure 5(right),
the boxplot of 100 independent outputs ÎM of Algorithm 1 is displayed when run with
P = PGL (top) and P = PNR (bottom); different values of ρ andM are considered, namely
ρ ∈ {0, 0.1, 0.5, 0.85} andM ∈ {5e2, 5e3, 1e4}; the regression step is performed with L = 2

basis functions. Figure 5(right) illustrates well the benefit of using MCMC sampler for
the current regression problems: when P = PGL, compare the distribution for ρ = 0 (i.i.d.
samples) and ρ = 0.85: observe the bias when ρ = 0 which does not disappear even when
M = 1e4 and note that the variance is very significantly reduced (whenM = 5e2, 5e3, 1e4

respectively, the standard deviation is reduced by a factor 1.11, 6.58 and 11.96).
Figure 5(left) is an empirical verification of the statement of Theorem 1. 100 inde-

pendent runs of Algorithm 1 are performed, and for different values of M , the quantities

M−1
∑M

m=1

(
φ̂M (X(m))− φ?(X(m))

)2
are collected; here φ̂M is computed with L = 2

basis functions. The mean value over these 100 points is displayed as a function of M ; it
is a Monte Carlo approximation of ∆M (see (2.10)). We compare two implementations of
Algorithm 1: first, P = PGL with ρ = 0.85 and then P = PNR with ρ = 0.85. Theorem 1
establishes that ∆M is upper bounded by a quantity of the form α + β/M ; such a curve
is fitted by a mean square technique (we obtain α = 0.001 for both kernels, which is in
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adequation with the theorem since this term does not depend on the Monte Carlo stages).
The fitted curves are shown on Figure 5(left) and they demonstrate a good match between
the theory and the numerical studies.

3.2 Correlated geometric Brownian motions in dimension 2
We adapt the one-dimensional example, taking a Put on the geometric average of two
correlated assets {St = (St,1, St,2), t ≥ 0}. In this example, d = 2, h(s1, s2) =

√
s1s2 and

S = {(s1, s2) ∈ R+×R+ : s1 ≤ s?, s2 ≤ s?}. We denote by σ1, σ2 and %, respectively each
volatility and the correlation; the drift of {St, t ≥ 0} is zero. Set

Γ :=

[
1 %

% 1

]
, ξ(y1, y2) :=

S0,1 exp
(
−1

2σ
2
1T +

√
Tσ1y1

)
S0,2 exp

(
−1

2σ
2
2T +

√
Tσ2y2

) .
We have ST = ξ(Y ) where Y ∼ N2(0,Γ). Furthermore, it is easy to verify that {

√
St,1St,t, t ≥

0} is still a geometric Brownian motion, with volatility σ′ and drift µ′ given by

σ′ :=
1

2

√
σ21 + σ22 + 2%σ1σ2, µ′ := −1

8
(σ21 + σ22 − 2%σ1σ2).

Hence, the problem (3.1) is of the form (1.1) with

f(y, r) := (r − p?)+,
A := {y ∈ R2 : ξ(y) ∈ (−∞, s?]× (−∞, s?]}

= {y ∈ R2, yi ≤ y?,i}, where y? :=

[
1

σi
√
T

ln(s?/S0,i) +
1

2
σi
√
T

]
i=1,2

,

R :=

(
K −Ψ(Y ) exp

{
(µ′ − 1

2
(σ′)2)(T ′ − T ) +

√
T ′ − Tσ′Z

})
+

,

where Z ∼ N (0, 1) is independent of Y , and Ψ(y) :=
√

(ξ(y))1 (ξ(y))2.
For the outer Monte Carlo stage, PGL is defined as the Hastings-Metropolis kernel with

proposal distribution q(x, ·)dλ ≡ N2(ρx, (1 − ρ2)Γ) (with ρ ∈ (0, 1)) and with invariant
distribution, a bi-dimensional Gaussian distribution N2(0,Γ) restricted to the set A. We
compare this Markov kernel to the kernel PNR with non reversible proposal, defined as
a Hastings-Metropolis with proposal distribution N2(ρx+ (1− ρ)y?, (1− ρ2)Γ) and with
invariant distribution, a bi-dimensional Gaussian distribution N2(0,Γ) restricted to the
set A. The acceptance-rejection ratio for this algorithm is given by (2.6) with xA ← y?
and Σ← Γ.

In this example, the inner conditional expectation is explicit: φ?(x) = Φ?(Ψ(x)) with

Φ?(u) := K Φ(d+(u))− u eµ′(T ′−T ) Φ(d−(u)), u > 0,

d±(u) :=
1

σ′
√
T ′ − T

ln(K/(u eµ
′(T ′−T )))± 1

2
σ′
√
T ′ − T .

For the basis functions, we take

ϕ1(x) = 1, ϕ2(x) =
√

(ξ(x))1, ϕ3(x) =
√

(ξ(x))2,

ϕ4(x) = (ξ(x))1 , ϕ5(x) = (ξ(x))2 , ϕ6(x) =
√

(ξ(x))1 (ξ(x))2.
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Table 2: Parameter values for the 2d-example

T T ′ S0,1 S0,2 K σ1 σ2 % s? p?
1 2 100 100 100 25% 35% 50% 50 5
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Figure 6: (left) Level curves of N2(0,Γ) and the rare set in the lower left area
delimited by the two hyperplanes. (right) Level curves of the density function of
(ST,1, ST,2) and the rare set in the lower left area delimited by the two hyperplanes.

The parameter values for the numerical tests are given in Table 2.
Figure 6 depicts the rare event A: on the left (resp. on the right), some level curves

of the distribution of N2(0,Γ) (resp. distribution of (ST,1, ST,2)) are displayed, together
with the rare event in the bottom left corner.
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Figure 7: Boxplot over 100 independent runs, of the mean acceptance rate after
M = 1e4 iterations for the kernel P = PGL (top) and the kernel P = PNR (bottom).
Different values of ρ are considered.

We run two Markov chains resp. with kernel PGL and PNR and compute the mean
acceptance-rejection rate after M = 1e4 iterations. For different values of ρ, this exper-
iment is repeated 100 times, independently; Figure 7 reports the boxplot of these mean
acceptance rates. It shows that a rate close to 0.234 is reached with ρ = 0.8 for P = PGL

and ρ = 0.7 for P = PNR. In all the experiments below involving these kernels, we will
use these values of the design parameter ρ.
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Figure 8: (left) Normalized histograms of the error {φ̂M (X(m)) − φ?(X(m)),m =

1, · · · ,M}, when L = 3, with design points sampled with PGL (left) and PNR (right).
(right): the same case with L = 6.

On Figure 8(left), the normalized histogram of the errors {φ̂M (X(m))−φ?(X(m)),m =

1, · · · ,M} is displayed when L = 3 and the samples X(1:M) are sampled from P = PGL

(left) or P = PNR (right). Figure 8(right) shows the case L = 6. Here, M = 1e6. This
clearly shows an improvement by choosing more basis functions. Especially, the 6th basis
function brings much accuracy, as expected, since the regression function φ? depends
directly on it.
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Figure 9: (left) Error function s 7→ φ̂M (ξ−1(s)) − φ?(ξ−1(s)), with L = 3, with
design points sampled with PGL (left) and PNR (right). (right): the same case with
L = 6.

On Figure 9(left), the errors s 7→ φ̂M (ξ−1(s))− φ?(ξ−1(s)) are displayed on [15, s?]×
[15, s?] when L = 3 and the outer samples X(1:M) used in the computation of φ̂M are
sampled from P = PGL (left) and P = PNR (right). Figure 9(right) shows the case L = 6.
Here, M = 1e6. This is complementary to Figure 8 since it shows the prediction error
everywhere in the space, and not only along the design points.

On Figure 10(left), a Monte Carlo approximation of ∆M (see (2.10)) computed from
100 independent estimators φ̂M is displayed as a function of M for M in the range
[3e3, 5e4]; where φ̂M is computed with L = 6. We also fit a curve of the formM 7→ α+β/M

to illustrate the sharpness of the upper bound in (2.10). On Figure 10(right), the boxplot
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Figure 10: (left) A Monte Carlo approximation of M 7→ ∆M , and a fitted curve of
the form M 7→ α + β/M . (right) For different values of ρGL and ρNR, and for four
different values of M -namely M ∈ {1e2, 5e3, 1e4, 2e4}-, boxplot of 100 independent
estimates ÎM .

of 100 independent outputs ÎM of Algorithm 1 is displayed, for M ∈ {1e2, 5e3, 1e4, 2e4}
and different values of ρGL (resp ρNR) - the design parameter in PGL (resp. PNR). Here
again, we observe the advantage of using MCMC samplers to reduce the variance in this
regression problem coupled with rare event regime: when M = 5e3, 1e4, 2e4 respectively,
the standard deviation is reduced by a factor 6.89, 7.27 and 7.74.

4 Proofs of the results of Section 2.2

4.1 Proof of Theorem 1
By construction of the random variables R and X(1:M) (see Algorithm 1), for any bounded
and positive measurable functions g1, · · · , gM , it holds

E

[
M∏
m=1

gm(R(m))|X(1:M)

]
=

M∏
m=1

E
[
gm(R(m))|X(m)

]
=

M∏
m=1

∫
gm(r) Q(X(m),dr). (4.1)

Lemma 1. If A′Aα = A′Aα̃ then Aα = Aα̃. In other words, any coefficient solution α
of the least-squares problem (2.2) yields the same values for the approximated regression
function along the design X(1:M).

Proof. Denote by r the rank of A and write A = UDV ′ for the singular value decompo-
sition of A. It holds

A′Aα = A′Aα̃⇐⇒ D′DV ′α = D′DV ′α̃

by using V ′V = IL and U ′U = IM . This implies that the first r components of V ′α and
V ′α̃ are equal and thus DV ′α = DV ′α̃. This concludes the proof.

The next result justifies a possible interchange between least-squares projection and
conditional expectation.
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Lemma 2. Set φ̂M =
〈
α̂M ; φ

〉
where α̂M ∈ RL is any solution to A′Aα = A′R. Then

the function x 7→ E[φ̂M (x)|X(1:M)] is a solution to the least-squares problem

min
ϕ∈F

1

M

M∑
m=1

(
φ?(X

(m))− ϕ(X(m))
)2
,

where F := {ϕ =
〈
α;φ

〉
, α ∈ RL}.

Proof. It is sufficient to prove that

min
ϕ∈F

1

M

M∑
m=1

(
φ?(X

(m))− ϕ(X(m))
)2

=
1

M

∣∣∣φ
?
−AE

[
α̂M |X(1:M)

]∣∣∣2
where φ

?
:=
(
φ?(X

(1)), · · · , φ?(X(M))
)′. The solution of the above least-squares problem

is of the form x 7→
〈
α̂M,?;φ(x)

〉
where α̂M,? ∈ RL satisfies A′A α̂M,? = A′φ

?
. By (4.1)

and the definition of α̂M , this yields

A′φ
?

= A′

 E
[
R(1)|X(1)

]
· · ·

E
[
R(M)|X(M)

]
 = E

[
A′R|X(1:M)

]
= A′AE

[
α̂M |X(1:M)

]
.

We then conclude by Lemma 1 that Aα̂M,? = AE
[
α̂M |X(1:M)

]
. We are done.

Proof. (of Theorem 1) Using Lemma 2 and the Pythagoras theorem, it holds

1

M

M∑
m=1

(
φ̂M (X(m))− φ?(X(m))

)2
= T1 + T2

with

T1 :=
1

M

M∑
m=1

(
φ̂M (X(m))− E

[
φ̂M (X(m))|X(1:M)

])2
=

1

M

∣∣∣A(α̂M − E
[
α̂M |X(1:M)

])∣∣∣2 ,
T2 :=

1

M

M∑
m=1

(
E
[
φ̂M (X(m))|X(1:M)

]
− φ?(X(m))

)2
.

By Lemma 1, we can take α̂M = (A′A)#A′R, which is the coefficient with minimal norm
among the solutions of least-squares problem of Algorithm 1. Let us consider T1. Set
B := A (A′A)#A′, a M ×M matrix. By (2.4) and Lemma 2

MT1 = |BΥ|2 = Trace(BΥΥ′B), with Υ :=

 R(1) − φ?(X(1))

· · ·
R(M) − φ?(X(M))


so M E

[
T1|X(1:M)

]
is equal to Trace

(
B E

[
ΥΥ′

∣∣∣X(1:M)
]
B
)
. Under (4.1) and (2.9), the

matrix E
[
ΥΥ′

∣∣∣X(1:M)
]
is diagonal with diagonal entries upper bounded by σ2. Therefore,

ME
[
T1|X(1:M)

]
≤ σ2Trace

(
B2
)

= σ2rank(A) ≤ σ2L. (4.2)
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This concludes the control of E [T1].
Using again Lemma 2,

T2 = min
ϕ∈F

1

M

M∑
m=1

(
ϕ(X(m))− φ?(X(m))

)2
≤ 1

M

M∑
m=1

(
ψ?(X

(m))− φ?(X(m))
)2
.

Hence,

E [T2] ≤
1

M

M∑
m=1

E
[(
ψ?(X

(m))− φ?(X(m))
)2]

= |ψ? − φ?|2L2(µ)
+

1

M

M∑
m=1

{
E
[(
ψ?(X

(m))− φ?(X(m))
)2]
−
∫

(ψ? − φ?)2 µ dλ

}
.

By (2.8), the RHS is upper bounded by |ψ − φ?|2L2(µ)
+CP

∑M
m=1 ρ(m)/M . This concludes

the proof of (2.10).

4.2 Proof of Corollary 3
PGL is a Hastings-Metropolis kernel; hence, for any x ∈ A and any measurable set A in
A,

PGL(x,A) =

∫
A∩A

q(x, z)dλ(z) + δx(A)

∫
Ac

q(x, z)dλ(z). (4.3)

Irreducibility. Let A be a measurable subset of A such that
∫
A µdλ > 0 (which implies

that
∫
A dλ > 0). Then,

PGL(x,A) ≥
∫
A∩A∩{z:µ(z)>0}

q(x, z)dλ(z)

and the RHS is positive since, owing to assumption (i), q(x, z) > 0 for all x ∈ A, z ∈
A∩A∩{z : µ(z) > 0}. This implies that PGL is phi-irreducible with µdλ as irreducibility
measure.

Drift assumption. By assumption (ii) and from (4.3), we have

PGL(x,A) ≤ δ1 δx(A) +

∫
A∩A

q(x, z)dλ(z),

which implies by (iii) that

PGLV (x) ≤ δ1V (x) +

∫
A
V (z) q(x, z)dλ(z)

≤ δ1V (x) + 1B(x) sup
x∈B

∫
A
V (z) q(x, z)dλ(z) + 1Bc(x)(δ2 − δ1)V (x)

≤ δ2V (x) + sup
x∈B

∫
A
V (z) q(x, z)dλ(z).
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Small set assumption. Let C? be given by the assumption (iv). We have
∫
C? µdλ >

0; thus define the probability measure dν := 1C?µdλ/
∫
C? µdλ. Then for any x ∈ C? and

any measurable subset A of C?, it readily follows from (4.3) that

PGL(x,A) ≥
∫
A∩A

q(x, z)1µ(z)6=0dλ(z)

≥ inf
(x,z)∈C2?

(
q(x, z)1µ(z)6=0

µ(z)

)∫
A∩A

µ(z)dλ(z)

= inf
(x,z)∈C2?

(
q(x, z)1µ(z) 6=0

µ(z)

)(∫
C?
µdλ

)
ν(A ∩ A).

Thanks to the lower bounds of (iv), we complete the proof.

4.3 Proof of Theorem 4
We write ÎM − I = T1 + T2 with

T1 :=
1

M

M∑
m=1

f
(
X(m), φ̂M (X(m))

)
− 1

M

M∑
m=1

f
(
X(m), φ?(X

(m))
)
,

T2 :=
1

M

M∑
m=1

f
(
X(m), φ?(X

(m))
)
−
∫
f(x, φ?(x))µ(x) dλ(x).

For the first term, we have

E
[
|T1|2

]
≤ E

[
1

M

M∑
m=1

∣∣∣f (X(m), φ̂M (X(m))
)
− f

(
X(m), φ?(X

(m))
)∣∣∣2]

≤ C2
f E

[
1

M

M∑
m=1

∣∣∣φ̂M (X(m))− φ?(X(m))
∣∣∣2] = C2

f∆M .

The second term is controlled by Assumption (ii). We then conclude by the Minkowski
inequality.

A Algorithm where the inner stage uses a crude
Monte Carlo method and the outer stage uses MCMC
sampling
Here, the regression function φ? is approximated by an empirical mean using N (con-
ditionally) independent samples R(m,k), as in (1.2). We keep the same notations as in
Section 2.
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A.1 Algorithm

1 /* Simulation of the design and the observations */
2 X(0) ∼ ξ, where ξ is a distribution on A ;
3 for m = 1 to M do
4 X(m) ∼ P(X(m−1),dx) ;
5 for k = 1 to N do
6 R(m,k) ∼ Q(X(m),dr);

7 /* Conditional expectation by crude Monte Carlo */

8 Compute R(m)
N = 1

N

∑N
k=1R

(m,k);
9 /* Final estimator using ergodic average */

10 Return ĨM :=
1

M

M∑
m=1

f(X(m), R
(m)
N ).

Algorithm 3: Full algorithm with M outer samples, and N inner samples for
each outer one.

A.2 Convergence results for the estimation of ĨM
We extend Theorem 1 to this new setting. Actually when the function f in (1.1) is
smoother than Lipschitz continuous, we can prove that the impact of N on the quadratic
error is 1/N instead of the usual 1/

√
N . This kind of improvement has been derived by

[GJ10] in the i.i.d. setting (for both the inner and outer stages).

Theorem 5. Assume that
(i) the (second and) fourth conditional moments of Q are bounded: for p = 2 and p = 4,

we have

σp :=

(
sup
x∈A

∫ ∣∣∣∣r − ∫ rQ(x,dr)

∣∣∣∣p Q(x, dr)

)1/p

<∞.

(ii) There exists a finite constant C such that for any M

E

(M−1 M∑
m=1

f
(
X(m), φ?(X

(m))
)
−
∫
f(x, φ?(x))µ(x) dλ(x)

)2
 ≤ C

M
.

If f : Rd × R→ R is globally Cf -Lipschitz in the second variable, then(
E
[∣∣∣ĨM − I∣∣∣2])1/2

≤
Cfσ2√
N

+

√
C

M
,

where I and ĨM are resp. given by (1.1) and Algorithm 3.
If f is continuously differentiable in the second variable, with a derivative in the second

variable which is bounded and globally C∂rf -Lipschitz, then(
E
[∣∣∣ĨM − I∣∣∣2])1/2

≤
C∂rf

2

1

N

√
3σ42 +

σ44
N

+
σ2√
NM

sup
x
|∂rf(x, φ?(x))|+

√
C

M
.
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A.3 Proof of Theorem 5
� 1st case: f Lipschitz. We write ĨM − I = T1 + T2 with

T1 :=
1

M

M∑
m=1

f
(
X(m), R

(m)
N

)
− 1

M

M∑
m=1

f
(
X(m), φ?(X

(m))
)
,

T2 :=
1

M

M∑
m=1

f
(
X(m), φ?(X

(m))
)
−
∫
f(x, φ?(x))µ(x) dλ(x).

For the first term, since f is globally Lipschitz with constant Cf , we have

E
[
|T1|2

]
≤ C2

f E

[
1

M

M∑
m=1

∣∣∣R(m)
N − φ?(X(m))

∣∣∣2] .
Since (R(m,k) : 1 ≤ k ≤ N) are independent conditionally on X(1:M), E

[
R

(m)
N | X(1:M)

]
=

φ?(X
(m)) and Var

[
R

(m)
N | X(1:M)

]
≤ σ22/N . Thus,

E
[
|T1|2

]
≤
C2
f

N
σ22.

The second term is controlled by Assumption (ii). We are done.
� 2nd case: f smooth. Set T1 = T1,a + T1,b with

T1,a :=
1

M

M∑
m=1

(
f(X(m), R

(m)
N )− f(X(m), φ?(X

(m)))− ∂rf(X(m), φ?(X
(m)))(R

(m)
N − φ?(X(m)))

)
,

T1,b :=
1

M

M∑
m=1

∂rf(X(m), φ?(X
(m)))(R

(m)
N − φ?(X(m))).

A Taylor expansion gives

|T1,a| ≤
1

2
C∂rf

1

M

M∑
m=1

∣∣∣R(m)
N − φ?(X(m))

∣∣∣2 ,
E
[
|T1,a|2

]
≤
(

1

2
C∂rf

)2 1

M

M∑
m=1

E
[∣∣∣R(m)

N − φ?(X(m))
∣∣∣4] .

Invoking that (R(m,k) : 1 ≤ k ≤ N) are independent conditionally on X(1:M) leads to

E
[∣∣∣R(m)

N − φ?(X(m))
∣∣∣4 | X(1:M)

]
≤ 3σ42

N − 1

N3
+ σ44

1

N3
.

Moreover, upon noting that for m 6= m′,

E
[(
∂rf(X(m), φ?(X

(m)))(R
(m)
N − φ?(X(m)))

) (
∂rf(X(m′), φ?(X

(m′)))(R
(m′)
N − φ?(X(m′)))

)]
= 0,

we have

E
[
|T1,b|2

]
= E

[
1

M2

M∑
m=1

∣∣∣∂rf(X(m), φ?(X
(m)))

∣∣∣2 E [∣∣∣R(m)
N − φ?(X(m))

∣∣∣2 | X(1:M)

]]

≤ supx |∂rf(x, φ?(x))|2

M

σ22
N
.

This concludes the proof.
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