
HAL Id: hal-01394830
https://hal.science/hal-01394830

Submitted on 14 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Diagonal Problem for Higher-Order Recursion
Schemes is Decidable

Lorenzo Clemente, Pawel Parys, Sylvain Salvati, Igor Walukiewicz

To cite this version:
Lorenzo Clemente, Pawel Parys, Sylvain Salvati, Igor Walukiewicz. The Diagonal Problem for Higher-
Order Recursion Schemes is Decidable. LICS, Jun 2016, New York, United States. pp.96 - 105,
�10.1145/2933575.2934527�. �hal-01394830�

https://hal.science/hal-01394830
https://hal.archives-ouvertes.fr

The Diagonal Problem for Higher-Order
Recursion Schemes is Decidable

Lorenzo Clemente ∗ Paweł Parys †

University of Warsaw
Warsaw, Poland

{l.clemente,parys}@mimuw.edu.pl

Sylvain Salvati Igor Walukiewicz
University of Bordeaux, CNRS, INRIA

Bordeaux, France
{sylvain.salvati,igw}@labri.fr

Keywords downward closure, separability problem, diagonal prob-
lem, higher-order recursion schemes, higher-order OI grammars.

Abstract
A non-deterministic recursion scheme recognizes a language of fi-
nite trees. This very expressive model can simulate, among others,
higher-order pushdown automata with collapse. We show decidabil-
ity of the diagonal problem for schemes. This result has several
interesting consequences. In particular, it gives an algorithm that
computes the downward closure of languages of words recognized
by schemes. In turn, this has immediate application to separability
problems and reachability analysis of concurrent systems.

1. Introduction
The diagonal problem is a decision problem with a number of
interesting algorithmic consequences. It is a central subproblem
for computing the downward closure of languages of words [27],
as well as for the problem of separability by piecewise-testable
languages [11]. It is used in deciding reachability of a certain type
of parameterized concurrent systems [25]. In its original formulation
over finite words, the problem asks, for a given set of letters Σ and
a given language of words L, whether for every number n there is
a word in L where every letter from Σ occurs at least n times. In
this paper, we study a generalization of the diagonal problem for
languages of finite trees recognized by non-deterministic higher-
order recursion schemes.

Higher-order recursion schemes are algorithmically manageable
abstractions of higher-order programs. Higher-order features are
now present in most mainstream languages like Java, JavaScript,
Python, or C++. Higher-order schemes, or, equivalently, simply
typed lambda-calculus with a fixpoint combinator, are a formalism
that can faithfully model the control flow in higher-order programs.
In this paper, we consider non-deterministic higher-order recur-
sion schemes as recognizers of languages of finite trees. In other

∗ This work was partially supported by the Polish National Science Centre
grant 2013/09/B/ST6/01575.
† This work was partially supported by the National Science Center (decision
DEC-2012/07/D/ST6/02443).

[Copyright notice will appear here once ’preprint’ option is removed.]

words we consider higher-order OI grammars [12, 21]. This is an
expressive formalism covering many other models such as indexed
grammars [2], ordered multi-pushdown automata [5], or the more
general higher-order pushdown automata with collapse [17] (cf. also
the equivalent model of ordered tree-pushdown automata [7]).

Our main result is a procedure for solving the diagonal problem
for higher-order schemes. This is a missing ingredient to obtain
several new decidability results for this model. It is well-known
that schemes have a decidable emptiness problem [23], and it can
be shown that they are closed under rational linear transductions,
and in particular they form a full trio when restricted to finite
word languages. In this context, a result by Zetzsche [27] entails
computability of the downward closure of languages of words
recognized by higher-order schemes. Moreover, a recent result by
Czerwiński, Martens, van Rooijen, and Zeitoun [10] entails that
the separability by piecewise testable languages is decidable for
languages recognized by higher-order schemes. Finally, a third
example comes from La Torre, Muscholl, and Walukiewicz [25]
showing how to use downward closures to decide reachability in
parameterized asynchronous shared-memory concurrent systems
where every process is a higher-order scheme.

While the examples above show that the diagonal problem is
intimately connected to downward closures1, the computation of
the downward closure is an important problem in its own right.
The downward closure of a language offers an effective abstraction
thereof. Since the subword relation is a well quasi-order [18], the
downward closure of a language is always a regular language de-
termined by a finite set of forbidden patterns. This abstraction is
thus particularly interesting for complex languages, like those not
having a semilinear Parikh image. While the downward closure is
always regular, it is not always possible to effectively construct a
finite automaton for it. This is obviously the case for classes with
undecidable emptiness (since the downward closure preserves empti-
ness), but it is also the case for relatively better behaved classes for
which the emptiness problem is decidable, such as Church-Rosser
languages [13], and lossy channel systems [22].

The problem of computing the downward closure of a language
has attracted a considerable attention recently. Early results show
how to compute it for context-free languages [9, 26] (cf. also
[4]), for Petri-net languages [14], for stacked counter automata
[28], and context-free FIFO rewriting systems and 0L-systems [1].
More recently, Zetzsche [27] has given an algorithm for indexed
grammars, or equivalently for second-order pushdown automata.
Hague, Kochems, and Ong [16] have made an important further
advance by showing how to compute the downward closure of
the language of pushdown automata of arbitrary order. In this

1 In fact, the diagonal problem, separability by piecewise testable languages,
and computing the downward closure are inter-reducible for full trios [11].

1 2016/5/4

paper, we complete the picture by giving an algorithm for the more
general model of higher-order pushdown automata with collapse
[17]. We use the fact that these automata recognize the same class
of languages as higher-order recursion schemes, and we work with
the latter model instead.

Let us briefly outline our approach. While are mainly interested
in higher-order recursion schemes (HORSes) generating finite
words, for technical reasons we also need to consider narrow trees,
i.e., trees with a bounded number of paths. In this we follow an idea
of Hague et al. [16] who have used this technique for higher-order
pushdown automata (without collapse). For a HORS S and a set
of letters Σ, the diagonal problem asks whether for every n ∈ N
there is a tree generated by S in which every letter from Σ appears
at least n times. Our goal is an algorithm solving this problem.
When S is of order 0, we have a regular grammar, for which the
diagonal problem can be solved by direct inspection. For higher
orders, apply a transformation that decreases the order by one. The
order is decreased in two steps. First, we ensure that the HORS
generates only narrow trees: we construct a HORS S ′, of the same
order as S, generating only narrow trees and such that the diagonal
problems for S and S ′ are equivalent. Then, in the narrow HORS
S ′ we lower the order by one: we create a HORS S ′′ that is of order
smaller by one than S ′ (but no longer narrow), and such that the
diagonal problems for S ′ and S ′′ are equivalent.

While narrowing the HORS is relatively easy to achieve, the
main technical difficulty is order reduction. This point is probably
better explained in terms of higher-order pushdown automata. If a
higher-order pushdown automaton of order n accepts with an empty
stack then an accepting computation has no choice but to pop out
level-n stacks one by one. In other words, for every configuration
the level-n return points are easily predictable. Using this we can
eliminate them obtaining an automaton of order n − 1. When we
allow the collapse operation the situation changes completely: a
configuration may have arbitrary many level-n return points, and
different computations may use different return points.

In this paper we prefer to use HORSes rather than higher-order
pushdown automata with collapse. Our solution resembles the one
from [3], where a word-generating HORS is turned into a tree-
generating HORS of order lower by one, whose frontier language
(the language of words written from left to right in the leaves) is
exactly the language of the original word-generating HORS. If our
narrow trees were of width one (i.e., word-generating), we could
just invoke [3], since their transformation preserves in particular
the cardinality of the produced letters. While in general we need to
handle narrow trees instead of words (a more general input than in
[3]), we only prove that our construction preserves the number of
their occurrences (and not their order, thus having a result weaker
than in [3]). While the two results are thus formally incomparable, it
is worth remarking that our construction does actually preserve the
order of symbols belonging to the same branch of the narrow tree.

After some preliminaries in Section 2, we state formally our
main result and some of its consequences in Section 3. The rest
of the paper is devoted to the proof. In Section 4, we present a
transformation of a scheme to a narrow one that preserves the order,
and in Section 5 we present the reduction of a narrow scheme to
a scheme of a smaller order (but not necessarily narrow). Both
reductions preserve the diagonal problem. Finally, in Section 6, we
conclude with some further considerations.

2. Preliminaries
Higher-order recursion schemes. We use the name “sort” instead
of “simple type” or “type” to avoid confusion with the types
introduced later. The set of sorts is constructed from a unique
basic sort o using a binary operation →. Thus o is a sort, and if
α, β are sorts, so is α → β. The order of a sort is defined by:

ord(o) = 0, and ord(α → β) = max(1 + ord(α), ord(β)).
By convention, → associates to the right, i.e., α → β → γ is
understood as α→ (β → γ). Every sort α can be uniquely written
as α1 → α2 → . . .→ αn → o. The sort o→ · · · → o→ α with
r occurrences of o is denoted or → α, where o0 → α is simply α.

The set of terms is defined inductively as follows. For each sort
α there is a countable set of variables xα, yα, . . . and a countable
set of nonterminals Aα, Bα, . . . ; all of them are terms of sort α.
There is also a countable set of letters a, b, . . . ; out of a letter a and
a sort α of order at most 1 one can create a symbol aα that is a term
of sort α. Moreover, if K and L are terms of sort α → β and α,
respectively, then (K L)β is a term of sort β. For α = (or → o)
we often shorten aα to ar , and we call r the rank of ar . Moreover,
we omit the sort annotation of variables, nonterminals, or terms,
but note that each of them is implicitly assigned a particular sort.
We also omit some parentheses when writing terms and denote
(. . . (K L1) . . . Ln) simply by KL1 . . . Ln. A term is called closed
if it uses no variables.

We deviate here from usual definitions in the detail that letters
itself are unranked, and thus out of a single letter a one may create a
symbol ar for every rank r. This is convenient for us, as during the
transformations of HORSes described in Sections 4 and 5 we need to
change the rank of tree nodes, without changing their labels. Notice,
however, that in terms a letter is used always with a particular rank.

A higher-order recursion scheme (HORS for short) is a pair
S = (Ainit ,R), whereAinit is the initial nonterminal that is of sort
o, andR is a finite set of rules of the form Aα xα1

1 . . . x
αk
k → Ko

where α = α1 → · · · → αk → o and K is a term that uses only
variables from the set {xα1

1 , . . . , x
αk
k }. The order of S is defined as

the highest order of a nonterminal for which there is a rule in S . We
write R(S) to denote the set of rules of a HORS S. Observe that
our schemes are non-deterministic in the sense thatR(S) can have
many rules with the same nonterminal on the left side. A scheme
with at most one rule for each nonterminal is called deterministic.

Let us now describe the dynamics of HORSes. Substitution is
defined as expected:

A[M/x] = A, ar[M/x] = ar, x[M/x] = M,

y[M/x] = y if y 6= x, (K L)[M/x] = K[M/x]L[M/x].

We shall use the substitution only when M is closed, so there is no
need to perform α-conversion. We also allow simultaneous substitu-
tions: we write K[M1/x1, . . . ,Mk/xk] to denote the simultaneous
substitution of M1, . . . , Mk respectively for x1, . . . , xk. We no-
tice that when the terms Mi are closed, this amounts to apply the
substitutions [Mi/xi] (with i ∈ {1, . . . , k}) in any order.

A HORS S defines a reduction relation→S on closed terms:

(Ax1 . . . xk → K) ∈ R(S)

AM1 . . . Mk →S K[M1/x1, . . . ,Mk/xk]

Kl →S K′l for some l ∈ {1, . . . , r} Ki = K′i for all i 6= l

arK1 . . . Kr →S arK′1 . . . K′r
We thus apply some of the rules of S to one of the outermost
nonterminals in the term.

We are interested in finite trees generated by HORSes. A closed
term L of sort o is a tree if it does not contain any nonterminal. A
HORS S generates a tree L from a term K if K →∗S L; when we
do not mention the term K we mean generating from the initial
nonterminal of S. Since a scheme may have more than one rule
for some nonterminals, it may generate more than one tree. We can
view a HORS of order 0 essentially as a finite tree automaton, thus
a HORS of order 0 generates a regular language of finite trees.

Let ∆ be a finite set of symbols of rank 0 (called also nullary
symbols). A tree K is ∆-narrow if it has exactly |∆| leaves, each

2 2016/5/4

of them labeled by a different symbol from ∆. A HORS is called
∆-narrow if it generates only ∆-narrow trees, and it is called narrow
if it is ∆-narrow for some ∆. We are particularly interested in ∆-
narrow HORSes for |∆| = 1; trees generated by them consist of a
single branch and thus can be seen as words.

Transductions. A (bottom-up, nondeterministic) finite tree trans-
ducer (FTT) is a tuple A = (Q,QF , δ), where Q is a finite set of
control states, QF ⊆ Q is the set of final states, and δ is a finite set
of transitions of the form

ar (p1, x1) . . . (pr, xr) −→ q, t or
p, x1 −→ q, t (ε-transition)

where a is a letter, p, q, p1, . . . , pr are states, x1, . . . , xr are vari-
ables of sort o, and t is a term built of variables from {x1, . . . , xk}
({x1}, respectively) and symbols, but no nonterminals. An FTT A
defines in a natural way a binary relation T (A) on trees [8]. We say
that an FTT is linear if no term t on the right of transitions contains
more than one occurrence of the same variable.

We show that HORSes are closed under linear transductions. The
construction relies on the reflection operation [6], in order to detect
unproductive subtrees.

Theorem 2.1. HORSes are effectively closed under linear tree
transductions.

A family of word languages is a full trio if it is effectively closed
under rational (word) transductions. Since rational transductions on
words are a special case of linear tree transductions, we obtain the
following corollary of Theorem 2.1.

Corollary 2.2. Languages of finite words recognized by HORSes
form a full trio.

3. The Main Result
We formulate the main result and state some of its consequences.

Definition 3.1 (Diagonal problem). For a higher-order recursion
scheme S, and a set of letters Σ, the predicate DiagΣ(S) holds
if for every n ∈ N there is a tree t generated by S with at least
n occurrences of every letter from Σ. The diagonal problem for
schemes is to decide whether DiagΣ(S) holds for a given scheme
S and a set Σ.

Theorem 3.1. The diagonal problem for higher-order recursion
schemes is decidable.

Proof. The proof is by induction on the order of a HORS S . It relies
on results from the next two sections. If S has order 0, then S can
be converted to an equivalent finite automaton on trees, for which
the diagonal problem can be solved by direct inspection. For S of
order greater than 0, we first convert S to a narrow HORS S ′such
that DiagΣ(S) holds iff DiagΣ(S ′) holds (Theorem 4.1). Then,
we employ the construction from Section 5 and obtain a HORS
S ′′ of order smaller by 1 than the order of S ′. By Lemmata 5.1
and 5.2: DiagΣ(S ′) holds iff DiagΣ(S ′′) holds.

The main theorem allows to solve some other problems for
higher-order schemes. The downward closure of a language of words
is the set of its (scattered) subwords. Since the subword relation
is a well quasi-order [18], the downward closure of any language
of words is regular. The main theorem implies that the downward
closure can be computed for HORSes generating languages of finite
words, or, in our terminology, {e0}-narrow HORSes, where e0 is a
nullary symbol acting as an end-marker.

Corollary 3.2. There is an algorithm that given an {e0}-narrow
HORS S computes a regular expression for the downward closure
of the language generated by S.

Proof. By Corollary 2.2, word languages generated by schemes
are closed under rational transductions. In this case, Theorem 3.1
together with a result of Zetzsche [27] can be used to compute the
downward closure of a language generated by a HORS.

Piecewise testable languages of words are boolean combina-
tions of languages of the form Σ∗a1Σ∗a2 . . .Σ

∗akΣ∗ for some
a1, . . . , ak ∈ Σ. Such languages talk about possible orders of occur-
rences of letters. The problem of separability by piecewise testable
languages asks, for two given languages of words, whether there
is a piecewise testable language of words containing one language
and disjoint from the other. A separating language provides a simple
explanation of the disjointness of the two languages [19].

Corollary 3.3. There is an algorithm that given two {e0}-narrow
HORSes decides whether there is a piecewise testable language
separating the languages of the two HORSes.

Proof. This is an immediate consequence of a result of Czerwiński
et al. [11] who show that for any class of languages effectively
closed under rational transductions, the problem reduces to solving
the diagonal problem.

The final example concerns deciding reachability in parameter-
ized asynchronous shared-memory systems [15]. In this model one
instance of a process, called leader, communicates with an undeter-
mined number of instances of another process, called contributor.
The communication is implemented by common registers on which
the processes can perform read and write operations; however, oper-
ations of the kind of test-and-set are not possible. The reachability
problem asks if for some number of instances of the contributor the
system has a run writing a designated value to a register.

Corollary 3.4. The reachability problem for parameterized asyn-
chronous shared-memory systems is decidable for systems where
leaders and contributors are given by {e0}-narrow HORSes.

Proof. La Torre et al. [25] show how to use the downward closure
of the language of the leader to reduce the reachability problem for a
parameterized system to the reachability problem for the contributor.
Being a full trio is sufficient for this reduction to work.

4. Narrowing the HORS
The first step in our proof of Theorem 3.1 is to convert a scheme
to a narrow scheme. The property of being narrow is essential for
the second step, as lowering the order of a scheme works only for
narrow schemes. This approach through narrowing has been used
by Hague et al. [16] for higher-order pushdown automata. Here we
deal with recursion schemes, which are equivalent to higher-order
pushdown automata with collapse.

The idea behind narrowing is quite intuitive. Consider a binary
tree, and suppose that we are interested in the number of occurrences
of a certain letter a, that may appear only in leaves. Consider a path
that, at each node, selects the subtree containing the larger number of
a’s, and let’s label the node by a if the successor of the node that is
not on the path has an a-labeled descendant. Then, if the original tree
had n occurrences of a, then on the selected path we put between
logn and n labels a. The lower bound holds since, whenever a
subtree is selected, at most half of the a’s is discarded (on the other
subtree), and this happens a number of times equal to the number
of a’s on the resulting path. This observation implies it suffices
to convert a scheme S generating trees to a scheme S ′ generating
all paths (words) in the trees generated by S with the additional
labeling. Then Diag{a}(S) will be equivalent to Diag{a}(S ′).

The general situation is a bit more complicated since we are
interested in the diagonal problem not just for a single letter, but for

3 2016/5/4

a set of letters Σ. In this case, different letters may have different
witnessing paths, so S ′ should generate not a single path but a
narrow tree whose number of paths is bounded by |Σ|.
Theorem 4.1. For a HORS S and a set of letters Σ, one can
construct a set of nullary symbols ∆ of size |Σ| and a ∆-narrow
HORS S ′ of the same order as S , such that DiagΣ(S) holds if, and
only if, DiagΣ(S ′) holds.

Proof. We start by assuming that S uses only symbols of rank 2
and 0, where additionally letters from Σ appear only in leaves. The
general situation can be easily reduced to this one, by applying a
tree transduction that replaces every node by a small fragment of a
tree built of binary symbols, with the original label in a leaf.

Then, we consider a linear bottom-up transducer A from trees
produced by S to narrow trees. As labels in the resulting trees we
use: (i) new leaf symbols ∆ = {e0

1, . . . , e
0
|Σ|}, (ii) unary symbols

a1 for all a ∈ Σ, and (iii) new auxiliary symbols •k (of rank k ≥ 1).
For each set of letters Γ ⊆ Σ,A contains a state p?

Γ making sure that
each letter from Γ occurs at least once in the input tree. Moreover,
for each nonempty set of leaf labels ∆′ ⊆ ∆, A contains a state
p∆′ that outputs only ∆′-narrow trees. The final state of A is p∆.
Transitions are as follows:

(Branch) a2 (p∆1 , x1) (p∆2 , x2) −→ p∆1∪∆2 , •
2 x1 x2 ,

(Leaf) a0 −→ p{ei1 ,...,eik}, •
k ei1 . . . eik ,

(Choose1) a2 (p∆1 , x1) (p?
Γ, x2) −→ p∆1 , a

1
1(· · · (a1

k x1)) ,

(Choose2) a2 (p?
Γ, x1) (p∆2 , x2) −→ p∆2 , a

1
1(· · · (a1

k x2)) .

where ∆1 and ∆2 are disjoint subsets of ∆, where i1 < · · · < ik,
and where Γ = {a1, . . . , ak} ⊆ Σ. Intuitively, rules of types
(Branch) and (Leaf) make sure that we output narrow trees, and
rules of types (Choosei) select a branch and output (only) letters
that appear at least once in the discarded subtree. States p?

Γ check
that each letter in Γ occurs at least once, as follows:

(Check2) a2 (p?
Γ1
, x1) (p?

Γ2
, x2) −→ p?

Γ1∪Γ2
, e0

1

(Check0) a0 −→ p?
{a}, e

0
1

The set T (p?
Γ)({t}) is either a single leaf or ∅, depending on whether

t satisfies the condition or not. The choice of e0
1 on the right side of

the transitions is not important, since, in the way states p?
Γ are used,

it only matters whether the input can be successfully parsed, and not
what the output actually is.

It is clear that the image of state p∆′ is always a language of
∆′-narrow trees. Correctness follows from the following claim.

Claim. Let t be an input tree. Then, (i) if t has at least n occurrences
of every letter a ∈ Σ, then T (A)(t) contains a tree with at least
logn occurrences of every letter a ∈ Σ, and (ii) if T (A)(t) contains
a tree with at least n occurrences of every letter a ∈ Σ, then t has
at least n occurrences of every letter a ∈ Σ.

To conclude the proof, let T be the transduction T (A) realized
byA. By Theorem 2.1, there exists a HORS S ′ of the same order as
S with L(S ′) = T (L(S)). First, it is clear that L(S ′) is a language
of ∆-narrow trees. Second, thanks to the claim above, DiagΣ(S)
holds if, and only if, DiagΣ(S ′) holds.

5. Lowering the Order
Let S be a ∆-narrow HORS of order k ≥ 1, and let Σ be a finite
set of letters. The goal of this section is to construct a HORS S ′ of
order k − 1 s.t. DiagΣ(S) holds if and only if DiagΣ(S ′) holds.

Let • be a fresh letter, not used in S , and not in Σ. We will use it
to label auxiliary nodes of trees generated by S ′. We say that two

trees K1, K2 are equivalent if, for each letter a 6= •, they have
the same number of occurrences of a. The resulting HORS S ′ will
have the property that for every tree generated by S there exists
an equivalent tree generated by S ′, and for every tree generated
by S ′ there exists an equivalent tree generated by S. Then surely
DiagΣ(S) holds if and only if DiagΣ(S ′) holds.

Let us explain the idea of lowering the order of a scheme on two
simple examples. Consider the following transformation on sorts
that removes arguments of sort o:

o↓= o, and (β → γ)↓=

{
γ ↓ if β = o,
(β ↓)→ (γ ↓) otherwise.

We have that the order of α↓ is max(0, ord(α)− 1).
Very roughly our construction will take a scheme and produce a

scheme of a lower order by changing every nonterminal of sort α to a
nonterminal of sort α↓. This is achieved by outputting immediately
arguments of sort o instead of passing them to nonterminals.

Example 1. Consider the scheme

S → F e0, F x→ x, F x→ F (b1 x) .

This scheme generates words of the form (b1)ne0. It can be trans-
formed to an equivalent scheme:

S′ → •2

F ′ e0

F ′ → •0 F ′ → •2

F ′ b0

where we have used a graphical notation for terms; in standard
notation the first rule would be S′ → •2 F ′ e0. Now both b and e
are used with rank 0; we have also used auxiliary symbols •2 and
•0. Observe that the new scheme has smaller order as the sorts of S′

and F ′ are o. The new scheme is equivalent to the initial one since
a derivation of (b1)ne0 can be matched by the derivation of a tree
with one e0 and b0 appearing n times:

•2

•2

•2

•2

•0 b0
b0

b0
e0

n

Example 2. Let us now look at a more complicated example. This
time we take the following scheme of order 2:

S → F b1 e0, F g x→ g x, F g x→ a1 (F (B g) (c1 x)),

B g x→ b1 (g x) .

Here g has sort o → o, and x has sort o. This scheme generates
words of the form (a1)n(b1)n+1(c1)ne0. We transform it into a
scheme of order 1:

S′ → •2

F ′ b0 e0

F ′ g′ → g′

F ′ g′ → •3

a0 F ′ (B′ g′) c0
B′ g′ → •2

b0 g′

The latter scheme generates trees of the form:
•2

•3

a0

•3

a0 tnb c0

c0

e0

n

tnb = •2

b0 •2

b0 •2

b0 b0

n

4 2016/5/4

The intuition behind the above two examples is as follows.
Consider some closed term K of sort o, and its subterm L of sort o.
In a tree generated by K, the term L will be used to generate some
subtrees. Take a tree where L generates exactly k subtrees. Then
we can create a new term starting with a symbol •k+1: in the first
subtree we put K with L replaced by •0, and in the k remaining
subtrees we put L. From this new term we can generate a tree similar
to the initial one: the subtrees generated byL are moved closer to the
root, but the multisets of letters appearing in the tree do not change.
We do this with every subterm of sort o on the right hand side of
every rule of S. In the obtained system, whenever an argument has
sort o then it is •0. Because of this, we can just drop arguments of
sort o. This is what our translation α ↓ on sorts does, and this is
what happens in the two examples above. Since the original schemes
from the two examples generated words, and all arguments were
eventually used to generate a subword, for every subterm of sort o
the multiplication factor k was always 1.

The crucial part of this argument was the information on the
number of times L will be used in K. This is the main technical
problem we need to address. We propose a special type system for
tracking the use of closures of sort o. It will non-deterministically
guess the number of usages, and then enforce derivations that
conform to this guess. The reason why such a finite type system can
exist is that S is Σ0-narrow, which, in turn, implies that L can be
used to generate at most |Σ0| subtrees of a tree.

In the sequel we assume w.l.o.g. that in S the only rule from
the initial nonterminal is Ainit → Ae0

1 . . . e
0
|∆| (for some non-

terminal A) where ∆ = {e0
1, . . . , e

0
|∆|}, and no other rule uses

a nullary symbol nor the initial nonterminal Ainit . To ensure this
condition, we perform the following simple transformation of the
HORS. Every rule B x1 . . . xk → K in R(S) is replaced by
B y1 . . . y|∆| x1 . . . xk → K′, where K′ is obtained by replac-
ing in K every use of a symbol e0

i ∈ ∆ by yi, and every use of
a nullary symbol not being in ∆ by an arbitrary yi (this symbol
anyway does not appear in any tree generated by S), and every
use of a nonterminal C by C y1 . . . y|∆| (the sort of every nonter-
minal is changed from α to o|∆| → α). Additionally a new rule
Ainit → Ae0

1 . . . e
0
|∆| is added, where Ainit is a fresh nonterminal

that becomes initial, and A is the nonterminal that was initial pre-
viously. It is easy to see that this transformation does not change the
set of generated trees. It also does not increase the order, since in
this section we assume that S has order at least 1.

5.1 Type System
We now present a type system whose main purpose is to track nullary
symbols that eventually will end as leaves of a generated tree. The
type of a term will say which nullary symbols are already present in
the term and which will come from each of its arguments.

For every sort α = (α1 → · · · → αk → o) we define the
set T α of types of sort α and the set LT α of labeled types of
sort α by induction on α. Labeled types in LT α are just pairs
(S, τ) ∈ P(∆)× T α, where if α = o we require that S 6= ∅. The
support of a set Λ of labeled types is the subset Λ6=∅ of its elements
(S, τ) ∈ Λ with S 6= ∅. A set of labeled types Λ is separated if
there are no two distinct (S, τ) and (S′, τ ′) in Λ s.t. S ∩ S′ 6= ∅.
Types in T α are of the form Λ1 → · · · → Λk → r, where r is a
distinguished type corresponding to sort o, Λi is a subset of LT αi

for each i ∈ {1, . . . , k} s.t. {Λ 6=∅1 , . . . ,Λ 6=∅k } are pairwise disjoint
and Λ1∪· · ·∪Λk is separated. Let us emphasize that Λi for αi = o
can only contain pairs (S, τ) with S 6= ∅. We fix some (arbitrary)
order < on elements of LT α for every sort α.

Types do not describe all the possible trees generated by a term,
but rather restrict the generating power of a term. Intuitively, a
labeled type (S0, r) assigned to a closed term of sort o says that we

are interested in generating trees that are S0-narrow. A functional
type (S0,Λ→ τ) says that the term becomes of type (S, τ) when
taking an argument that will be used only with labeled types from
Λ. Here, S equals S0 plus the symbols S1 ∪ · · · ∪ Sk generated by
an argument of type Λ = {(S1, τ1), . . . , (Sk, τk)}.

A type environment Γ is a set of bindings of variables of the
form xα : λ, where λ ∈ LT α; we may have multiple bindings
xα : λ1, . . . , x

α : λn for the same variable (which we also
abbreviate as xα : {λ1, . . . , λn}), however {λ1, . . . , λn} must
be separated in the sense above. A type judgment is of the form
Γ `Mα : λ, where again λ ∈ LT α.

The rules of the type system are given in Figure 1. A derivation
is a tree whose nodes are labeled by type judgments constructed
according to the rules of the type system (we draw a parent below
its children, unlikely the usual convention for trees). For the proof it
will be convenient to assume that a derivation is an ordered tree: in
the application rule the premise with L is the first sibling followed
by the premises withM ordered using our fixed ordering on (Si, τi),
without repetitions. We say that D is a derivation for Γ `M : λ, or
that D derives Γ `M : λ, if this type judgment labels the root of
D. All the nodes of derivations are required to be labeled by valid
type judgments, thus all the restrictions on types from the definition
of T α stay in force; in particular, in the application rule for LM ,
the sets S1, . . . , Sk are disjoint.

5.2 Transformation
Once we have the type system, we can show how the HORS S is
transformed into the HORS S ′.

A term of type τ will be transformed into a term of sort tr(τ).
This sort is defined by induction on the structure of τ , as follows:

• tr(r) = o, and

• if τ = (Λ → τ ′) ∈ T α→β with Λ = {(S1, τ1) < . . . <
(Sk, τk)}, then we have

tr(τ) =

{
tr(τ1)→ · · · → tr(τk)→ tr(τ ′) if α 6= o,
tr(τ ′) if α = o.

We see that if τ ∈ T α, then ord(tr(τ)) = max(0, ord(α) − 1).
This translation is a refined version of the translation α↓ on sorts
that we have seen earlier in the examples.

The nonterminals of S ′ will be the nonterminals of S labeled
with types. For every nonterminal A from S , of some sort α, and for
every τ such that (∅, τ) ∈ LT α, in S ′ we consider a nonterminal
A�τ of sort tr(τ). Moreover, for every variable x used in S, being
of some sort α 6= o, and for every λ = (S, τ) ∈ LT α, in S ′ we
consider a variable x�λ of sort tr(τ).

Before defining the rules of S ′, we need to explain how to trans-
form terms to match the transformation on types. This transforma-
tion is guided by derivations. We define a term tr(D), where D is a
derivation for Γ ` K : λ, as follows:

• If K = ar is a symbol, then tr(D) = a0.
• If K = xα is a variable, then tr(D) = •0 if α = o, and
tr(D) = x�λ otherwise.
• If K = A is a nonterminal, then tr(D) = A�τ provided that
λ = (∅, τ).
• Suppose that K = LM is an application. Then in D we have a

subtree D0 deriving Γ ` L : (S0,Λ→ τ), where Λ = {λ1 <
· · · < λk}, and for each i ∈ {1, . . . , k} a subtree Di deriving
Γ ` M : λi. If the sort of M is o, then we take tr(D) =
tr(D0); otherwise, tr(D) = tr(D0) tr(D1) . . . tr(Dk).

We notice that for λ = (S, τ) the sort of tr(D) is indeed tr(τ).
We see that arguments of sort o are ignored while transforming

an application. Because of that, we need to collect the result of the

5 2016/5/4

Γ, x : λ ` x : λ Γ ` A : (∅, τ) Γ ` a0 : ({a0}, r)

r ≥ 1

Γ ` ar : (∅, {(S1, r)} → · · · → {(Sr, r)} → r)

Γ ` L : (S0, {(S1, τ1), . . . , (Sk, τk)} → τ) Γ `M : (Si, τi) for each i ∈ {1, . . . , k}
Γ ` LM : (S0 ∪ S1 ∪ · · · ∪ Sk, τ)

provided that S0 ∩ (S1 ∪ · · · ∪ Sk) = ∅

Figure 1. Type system for tracing nullary symbols in a term

Γ ` b1 : (∅, {(e, r)} → r)
Γ ` g : (∅, {(e, r)} → r) Γ ` x : (e, r)

Γ ` g x : (e, r)

Γ ` b1 (g x) : (e, r)

Figure 2. An example derivation

transformation for all those subtrees of the derivation that describe
terms of sort o. This is realized by the trcum operation that returns
a list of terms of sort o. When D is a derivation for a term of
sort α, and subtrees of D starting in the children of the root are
D1, . . . , Dm, then

trcum(D) =

{
tr(D); trcum(D1); . . . ; trcum(Dm) if α = o,
trcum(D1); . . . ; trcum(Dm) otherwise.

For a list R1; . . . ;Rk of terms of sort o, let us define the term
merge(R1; . . . ;Rk) as •k R1 . . . Rk. Finally, for a substitution
η, and a list of terms list we write list [η] for the list where the
substitution is performed on every term of the list .

Example 3. To see an example of such a translation take the term
b1 (g x) that is on the right side of the rule for B in Example 2. For
readability of types, we write (e, r) instead of ({e0}, r). We take
an environment Γ ≡ x : (e, r), g : (∅, {(e, r)} → r) and consider
the derivation presented in Figure 2. Calling this derivation D, we
have tr(D) = b0 and trcum(D) = b0; g�(∅,{(e,r)}→r); •0. Finally,
merge(trcum(D)) = •3 b0 g�(∅,{(e,r)}→r) •0 is the (slightly per-
turbed) result of the transformation of the rule for B in Example 2.

The new HORS S ′ is created as follows. The rule Ainit →
Ae0

1 . . . e
0
|∆| from the initial nonterminal of S is replaced by

Ainit → merge(Aτ0 ; e0
1; . . . ; e0

|∆|) where τ0 = {({e0
1}, r)} →

· · · → {({e0
|∆|}, r)} → r. For every other rule of S of the form

Aα xα1
1 . . . x

αk
k → K we create a rule in S ′ for every derivation

of K. More precisely, for each i ∈ {1, . . . , k} consider the
(separated) set of labeled types Λi = {λi,1 < · · · < λi,ni}, where
λi,j = (Si,j , τi,j) for every i, j. For every derivation D of the form
x1 : Λ1, . . . , xk : Λk ` K : (

⋃
i∈{1,...,k}

⋃
j∈{1,...,ni} Si,j , r) we

create a rule

Aτ x1 . . . xk → merge(trcum(D)) ,

where τ = (Λ1 → · · · → Λk → r) ∈ T α, and xi denotes
xi�λi,1

. . . xi�λi,ni
if αi 6= o, and the empty sequence of variables

if αi = o (for i ∈ {1, . . . , k}).
The correctness of the transformation is described by the fol-

lowing two lemmata, which are proved in the next two subsections.
Their statements refer to the notion of equivalence introduced at the
beginning of this section.

Lemma 5.1 (Soundness). For every tree generated by S ′ there
exists an equivalent tree generated by S.

Lemma 5.2 (Completeness). For every tree generated by S there
exists an equivalent tree generated by S ′.

5.3 Soundness
To prove Lemma 5.1, we follow a sequence of reductions of S ′,
and we construct corresponding reductions of S. We however need
to assume that the sequence of reductions in S ′ is leftmost. We
write P →lf

S′ P
′ to denote that this is the leftmost reduction: in

•k P1 . . . Pk we can reduce inside Pi only when in P1, . . . , Pi−1

there are no more nonterminals. Not surprisingly, the order of
reductions does not influence the final result, as stated in the
following lemma.

Lemma 5.3. Suppose that a tree Q can be reached from a term P
using some sequence of reductions of S ′. Then Q can be reached
from P using a sequence of reductions of S ′ of the same length in
which all reductions are leftmost.

We need to generalize the definition of equivalence from trees to
(lists of) terms of sort o possibly containing nonterminals. We say
that two lists of terms of sort o are merge-equivalent if one can be
obtained from the other by:

• permuting its elements,
• adding or removing the •0 term,
• merging/unmerging some list elements using the symbol •k.

The following property of merge-equivalent lists should be clear.

Lemma 5.4. Let list and list ′ be two merge-equivalent lists of
terms of sort o. Suppose that a tree Q can be generated by S ′ from
merge(list). Then some tree Q′ equivalent to Q can be generated
by S ′ from merge(list ′) using a sequence of reductions of the same
length.

The next lemma contains an important observation, needed later
in the proof of Lemma 5.6.

Lemma 5.5. If D derives ` K : (∅, τ), then trcum(D) is empty.

Proof. By induction on the structure ofD. Recall that LT o does not
contain pairs with ∅ on the first coordinate, so the sort of K is not o,
and thus trcum(D) is defined as the concatenation of trcum(·) for
the subtrees of D starting in the children of the root. When D con-
sists of a single node, we immediately have that trcum(D) is empty.
Otherwise K = LM , and the subtrees of D starting in the children
of the root are D0 deriving ` L : (S0, {(S1, τ1), . . . , (Sk, τk)} →
τ) and Di deriving ` M : (Si, τi) for i ∈ {1, . . . , k}. Since
∅ = S0 ∪ · · · ∪ Sk, we have Si = ∅ for every i ∈ {0, . . . , k}. The
induction assumption implies that trcum(Di) is empty for every
i ∈ {0, . . . , k}, and thus trcum(D) is empty.

Before relating reductions in the HORSes, we analyze what
happens during a substitution.

Lemma 5.6. Consider a derivation DK for Γ ` KαK : (S, τ).
Suppose all bindings for a variable xαx in Γ are (x : λ1), . . . , (x :
λk), where λ1 < · · · < λk, and ({λ1, . . . , λk} → r) is a type in
T αx→o. Suppose also that we have a closed term Nαx with, for
every i = 1, . . . , k, a derivation Di for ` N : λi. Then there is
a derivation D′ for Γ ` K[N/x] : (S, τ) such that trcum(D′) is

6 2016/5/4

merge-equivalent to trcum(DK)[η]; trcum(Di1); . . . ; trcum(Dim)
where η = (tr(D1)/x�λ1

, . . . , tr(Dk)/x�λk
), and i1 < · · · < im

are those among i ∈ {1, . . . , k} for which in DK there is
a node labeled by Γ ` x : λi. Moreover, if αK 6= o then
tr(D′) = tr(DK)[η].

Proof. Induction on the structure of K. We consider three cases.
The trivial case is when K is a nonterminal, or a symbol, or a

variable other than x. Then K[N/x] = K, so as D′ we can take
DK . Notice that we have m = 0 and that the substitution η does
not change neither trcum(DK) nor tr(DK) since variables x�λi

do
not appear in these terms.

Another easy case is when K = x, and thus (S, τ) = λl for
some l ∈ {1, . . . , k}. We have m = 1, and i1 = l, and K[N/x] =
N . The required derivation D′ is obtained from Dl by prepending
the type judgment in every its node by the type environment Γ.
Clearly D′ remains a valid derivation, and tr(D′) = tr(Dl) and
trcum(D′) = trcum(Dl). We see that trcum(DK) is either the
empty list (when αK 6= o) or •0 (when αK = o), so attaching
trcum(DK)[η] does not change the class of merge-equivalence. If
αK 6= o, we have tr(DK)[η] = x�λl

[η] = tr(Dl).
A more involved case is when K = LαL MαM . Then in

DK , below its root, we have a subtree C0 deriving Γ ` L :
(S0, {(S1, τ1), . . . , (Sn, τn)} → τ), and for each j ∈ {1, . . . , n}
a subtree Cj deriving Γ ` M : (Sj , τj), where (S1, τ1) < · · · <
(Sn, τn), and S0 ∩ (S1 ∪ · · · ∪ Sn) = ∅, and S = S0 ∪ · · · ∪ Sn.
We apply the induction assumption to all these subtrees, obtaining a
derivation C′0 for Γ ` L[N/x] : (S0, {(S1, τ1), . . . , (Sn, τn)} →
τ) and for each j ∈ {1, . . . , n} a derivation C′j for Γ `M [N/x] :
(Sj , τj). We compose these derivations into a single derivation D′

for Γ ` K[N/x] : (S, τ) using the application rule. It remains to
prove the required equalities about trcum and tr .

Let us first see that tr(D′) = tr(DK)[η] (not only if αK 6= o,
but also if αK = o). From the induction assumption we know
that tr(C′0) = tr(C0)[η], as surely αL 6= o. If αM = o, we
simply have tr(D′) = tr(C′0) and tr(DK) = tr(C0), so clearly
tr(D′) = tr(DK)[η] holds. If αM 6= o, from the induction
assumption we also know that tr(C′j) = tr(Cj)[η] for every
j ∈ {1, . . . , n}; we have tr(D′) = tr(C′0) tr(C′1) . . . tr(C′n)
and similarly tr(DK) = tr(C0) tr(C1) . . . tr(Cn), so we also
obtain tr(D′) = tr(DK)[η].

Next, we prove that trcum(D′) is merge-equivalent to the
list trcum(DK)[η]; trcum(Di1); . . . ; trcum(Dim). For each j ∈
{0, . . . , n}, let ij,1 < · · · < ij,mj be those among i ∈ {1, . . . , k}
for which in Cj there is a node labeled by Γ ` x : λi. By
definition trcum(D′) consists of trcum(C′j) for j ∈ {0, . . . , n},
and if αK = o then also of tr(D′). Similarly, trcum(DK)[η]
consists of trcum(C0)[η]; . . . ; trcum(Cn)[η], and of tr(DK)[η] if
αK = o. We have already shown that tr(D′) = tr(DK)[η]. The
induction assumption implies that trcum(C′j) is merge-equivalent
to trcum(Cj)[η]; trcum(Dij,1); . . . ; trcum(Dij,mj

) for each j ∈
{0, . . . , n}. It remains to observe that the concatenation of the lists
trcum(Dij,1); . . . ; trcum(Dij,mj

) for j ∈ {0, . . . , n} is merge-
equivalent to trcum(Di1); . . . ; trcum(Dim). By definition every
ij,l equals to some il′ and every il equals to some ij,l′ ; the only
question is about duplicates on these lists. Let us write λi = (Ti, σi)
for every i ∈ {1, . . . , k}. When some il is such that Til = ∅, then
the list trcum(Dil) is empty (Lemma 5.5), so anyway we do not
have to care about duplicates. On the other hand, when Til 6= ∅ and
a node labeled by Γ ` x : λil appears in some Cj , then Til ⊆ Sj .
Since the sets S0, . . . , Sn are disjoint, such node appears in Cj only
for one j, and thus such il equals to only one among the ij,l′ ’s.

We can now formulate and prove the key lemma of this section,
allowing us to simulate a single step of S ′ by a single step of S.

Lemma 5.7. Let D be a derivation for ` L : (S, r), where L does
not contain the initial nonterminal of S . If merge(trcum(D))→lf

S′

P , then there exists a term L′ and a derivation D′ for ` L′ : (S, r)
such that L→S L′ and trcum(D′) is merge-equivalent to P .

Proof. We proceed by induction on the structure of L.
Suppose first that L = arM1 . . . Mr (where surely r ≥ 1).

Then D starts with a sequence of r application rules followed
by a single-node derivation for ` ar : (∅, {(S1, r)} → · · · →
{(Sr, r)} → r), and by derivations Di for `Mi : (Si, r), for each
i ∈ {1, . . . , r}. In particular, S1, . . . , Sr are disjoint and their union
is S. It holds that trcum(D) = (a0; trcum(D1); . . . ; trcum(Dr)).
The reduction merge(trcum(D)) →lf

S′ P concerns one of terms
on one of the lists trcum(Di), and thus we can write P =
merge(a0; list ′1; . . . ; list ′r), where for some l ∈ {1, . . . , r} we
have merge(trcum(Dl)) →lf

S′ merge(list ′l), and trcum(Di) =
list ′i for i 6= l. We apply the induction assumption to Ml, obtain-
ing a term M ′l and a derivation D′l for ` M ′l : (Sl, r) such that
Ml →S M ′l and that trcum(D′l) is merge-equivalent to list ′l. Tak-
ing D′i = Di and M ′i = Mi for i 6= l, and L′ = arM ′1 . . . M

′
r ,

we haveL→S L′. Out of a node labeled by ` ar : (∅, {(S1, r)} →
· · · → {(Sr, r)} → r) and of derivations D′i for i ∈ {1, . . . , r}
we compose a derivation D′, using the application rule r times.
We have trcum(D′) = (a0; trcum(D′1); . . . ; trcum(D′r)), and thus
trcum(D′) is merge-equivalent to P .

The remaining possibility is that L = ANα1
1 . . . N

αk
k . Then D

starts with a sequence of application rules ending in a single-node
derivation for ` A : (∅, τ) with τ = {λ1,1, . . . , λ1,n1} → . . . ,→
{λk,1, . . . , λk,nk} → r, and in derivationsDi,j for ` Ni : λi,j , for
each i ∈ {1, . . . , k}, j ∈ {1, . . . , ni}. Suppose λi,1 < · · · < λi,ni

for every i ∈ {1, . . . , k}, and λi,j = (Si,j , τi,j) for every i, j.
Since we consider the leftmost reduction of merge(trcum(D)),
it necessarily concerns its part tr(D) (which is the first term in
the list trcum(D)), that consists of the nonterminal A�τ to which
some of the terms tr(Di,j) are applied (namely, terms tr(Di,j)
for those i for which αi 6= o). This reduction uses some rule
Aτ x1 . . . xk → merge(trcum(DK)), where in S we have a rule
Ax1 . . . xk → K, and we have a derivation DK for Γ ` K :
(S, τ) with Γ =

⋃
i∈{1,...,k}

⋃
j∈{1,...,ni}{xi : λi,j}, and where

xi denotes xi�λi,1
. . . xi�λi,ni

if αi 6= o and the empty sequence
of variables if αi = o (for i ∈ {1, . . . , k}).

As L′ we take the result of applying the rule Ax1 . . . xk → K
to L, i.e. L′ = K[N1/x1, . . . , Nk/xk]. To construct a derivation
for it, we construct derivations Di,K, for K[N1/x1, . . . , N/xi], for
i = 1, . . . , k. We take D0,K = DK . To obtain Di,K we apply
Lemma 5.6 to Ni, Di−1,K and Di,1, . . . , Di,ni . The derivation
Dk,K derives Γ ` L′ : (S, r). Let D′ be the derivation for ` L′ :
(S, r) obtained from Dk,K by removing the type environment Γ
from type judgments in all its nodes; we obtain a valid derivation
since L′ is closed.

It remains to see that trcum(D′) is merge-equivalent to P . Let
list be the concatenation of lists trcum(Di,j) for all i ∈ {1, . . . , k},
j ∈ {1, . . . , ni} and let Q = merge(trcum(DK))[η1, . . . , ηk]
where ηi = (tr(Di,1)/xi�λi,1

, . . . , tr(Di,ni)/xi�λi,ni
) for i ∈

{1, . . . , k}; we see that Q is the result of applying the considered
rule to tr(D) (substitutions ηi for i such that αi = o can be
skipped, since anyway variables xi�λi,j

for such i do not appear
in tr(DK)). For i ∈ {1, . . . , k}, let ji,1 < · · · < ji,mi be
those among j ∈ {1, . . . , ni} for which in DK there is a node
labeled by Γ ` x : λi,j . By definition trcum(D) = (tr(D); list),
and thus P = merge(Q; list). On the other hand Lemma 5.6
says that trcum(D′) is merge-equivalent to Q; list ′, where list ′

is the concatenation of trcum(Di,j1); . . . ; trcum(Di,jmi
) for i ∈

{1, . . . , k}. We notice, however, that list = list ′. Indeed, if

7 2016/5/4

Si,j = ∅ for some i, j, then trcum(Di,j) is empty by Lemma
5.5. Suppose that Si,j 6= ∅. The rules of the type system ensure
that the subset of ∆ in the root of DK (that is S) is the union of
those subsets in all leaves of DK . We have assumed that symbols
from ∆ do not appear in K (they are allowed to appear only in
the rule from the initial nonterminal). Moreover, Si,j ⊆ S, and all
other sets Si′,j′ are disjoint from Si,j (by the definition of types).
Thus necessarily a node labeled by Γ ` xi : λi,j appears in DK
(this is the only way the elements of Si,j can be introduced in S).
This means that our j is listed among ji,1, . . . , ji,mi , and hence
trcum(Di,j) appears in list ′. This proves that list = list ′, and in
consequence that trcum(D′) is merge-equivalent to P .

Lemma 5.8. Let D be a derivation for ` L : (S, r) such that
merge(trcum(D)) is a tree. Then L is a tree, and is equivalent to
merge(trcum(D)).

Proof. Induction on the structure of L. If L was of the form
AM1 . . . Mk, then in D we would necessarily have a node for
the nonterminal A, which would imply that merge(trcum(D))
is not a tree, i.e., it contains a nonterminal. Thus L is of the
form arM1 . . . Mr . Looking at the type system we notice that
D necessarily starts with a sequence of r application rules followed
by a single-node derivation for ` ar : (S0, τ0), and derivations Di
for ` Mi : (Si, r), for i ∈ {1, . . . , r}. Recall that trcum(D) =
(a0; trcum(D1); . . . ; trcum(Dr)). For i ∈ {1, . . . , r} we know
that merge(trcum(Di)) is a tree; the induction assumption implies
thatMi is a tree, and is equivalent to merge(trcum(Di)). It follows
that L is a tree, and is equivalent to merge(trcum(D)).

Corollary 5.9. Let D be a derivation for ` L : (S, r), where L
does not contain the initial nonterminal. If a treeQ can be generated
by S ′ from merge(trcum(D)), then a tree equivalent to Q can be
generated by S from L.

Proof. Induction on the smallest length of a sequence of reductions
merge(trcum(D)) →∗S′ Q. If this length is 0, we apply Lemma
5.8. Suppose that the length is positive. Thanks to Lemma 5.3 we
can write merge(trcum(D)) →lf

S′ P →∗S′ Q (without changing
the length of the sequence of reductions). Using Lemma 5.7 we
obtain a term L′ and a derivation D′ for ` L′ : (S, r) such that
L→S L′ and that trcum(D′) is merge-equivalent to P . The initial
nonterminal does not appear in L′ since by assumption it does
not appear on the right side of any rule. Because P →∗S′ Q, by
Lemma 5.4 we also have a sequence of reductions of the same length
merge(trcum(D′)) →∗S′ Q′ to some tree Q′ equivalent to Q; to
this sequence of reductions we apply the induction assumption.

Proof of Lemma 5.1. Let n = |∆|. Consider the rule Ainit →
Ae0

1 . . . e
0
n from the initial nonterminal of S . LetD be a derivation

for ` Ae0
1 . . . e

0
n : (∆, r) that consists of a node labeled by

`A : (∅, τ) with τ = {({e0
1}, r)}→ . . .→{({e0

n}, r)}→r, and of
nodes labeled by `e0

i : ({e0
i }, r) for i ∈ {1, . . . , n}, joined together

by application rules. We see that trcum(D) = (Aτ ; e0
1; . . . ; e0

n).
Take a treeQ generated by S ′. Since the only rule of S ′ from the

initial nonterminal is Ainit → merge(Aτ ; e0
1; . . . ; e0

n), the tree Q
is generated by S ′ also from merge(trcum(D)). By Corollary 5.9
a tree Q′ equivalent to Q can be generated by S from Ae0

1 . . . e
0
n,

and thus also from the initial nonterminal.

5.4 Completeness
The proof of Lemma 5.2 is similar to the one of Lemma 5.1; we
just need to proceed in the opposite direction. Namely, we take
a sequence of reductions of S finishing in a finite tree, and then
working from the end of the sequence we construct backwards a
sequence of reductions of S ′.

There is one additional difficulty that was absent in the pre-
vious subsection: we need some kind of uniqueness of deriva-
tions. Indeed, while proceeding forwards from AN1 . . . Nk to
K[N1/x1, . . . , Nk/xk], we take a derivation for N1 from the sin-
gle place whereN1 appears in the first term, and we put it in multiple
places where N1 appears in the second term. This time we proceed
backwards, so there are multiple places in the second term where
we have a derivation for N1. Our type system can accommodate dif-
ferent derivations for the occurrences of N1 having different types,
but for each type we have to ensure that in different occurrences of
N1 with this type the derivations are the same. Because of that we
only consider maximal derivations.

A derivation D is called maximal if for every internal node of D
the following holds: if the label of this node is Γ ` LM : (S, τ) and
it is possible to derive Γ `M : (∅, σ) for some σ, then necessarily
this node has a child labeled by Γ `M : (∅, σ). The following two
lemmata say that it is enough to consider only maximal derivations,
and that maximal derivations are unique if we restrict ourselves to
labeled types with empty subset of ∆. We will see later that for
other types the multiple occurrence problem mentioned above does
not occur.

Lemma 5.10. If ` K : (S, τ) can be derived, then it can be derived
by a maximal derivation.

Proof. Let τ = Λ1→ . . .→Λn→r and suppose D is a derivation
for ` Kα : (S, τ). We prove a stronger statement: if T1, . . . , Tn are
such that τ ′ = ((Λ1∪({∅}×T1))→ . . .→ (Λn∪({∅}×Tn))→ r)
is a type in T α then there exists a maximal derivation D′ for
` K : (S, τ ′). This is shown by induction on the structure of K.
Surely K is not a variable, as then a type judgment with empty type
environment could not be derived. IfK is a nonterminal, then S = ∅,
and `K : (S, τ ′) (for any τ ′∈T α) can be derived by a single-node
derivation; this is a maximal derivation. If K is a symbol, its sort
is on→ o; by definition of LT o we know that Ti = ∅ for every
i ∈ {1, . . . , n}, which implies τ ′ = τ . ThusD derives `K : (S, τ ′)
and is maximal, since it consists of a single node.

Finally, suppose that K = LM . Then in D we have a subtree
Di deriving `L : (S0,Λ0→τ), and for every λ ∈ Λ0 a subtree Dλ
deriving `M : λ. Let T0 contain those σ for which we can derive
`M : (∅, σ) but (∅, σ) 6∈ Λ0. Then by the induction assumption
there exists a maximal derivation D′0 for `L : (S0, (Λ0 ∪ ({∅} ×
T0)) → τ ′), and for every λ ∈ (Λ0 ∪ ({∅} × T0)) there exists a
maximal derivationD′λ for `M :λ. By composing these derivations
together, we obtain a maximal derivation D′ for `K : (S, τ ′): the
side condition of the application rule still holds since we have added
only derivations for labeled types of the form (∅, σ).

Lemma 5.11. For every type judgment of the form Γ ` K : (∅, τ)
there exists at most one maximal derivation D deriving it.

Proof. By induction on the structure of K. If K is a variable, a
symbol, or a nonterminal, then D necessarily consists of a single
node labeled by the resulting type judgment, so it is unique. Suppose
thatK = LM . Then below the root ofD, labeled by Γ `K : (∅, τ),
we have a subtree D0 deriving Γ `L : (∅, {∅} × T → τ), and for
every σ ∈ T a subtree Dσ deriving Γ `M : (∅, σ). By maximality,
whenever we can derive Γ `M : (∅, σ) for some σ, there should be
a child of the root of D labeled by Γ `M : (∅, σ), and then σ ∈ T .
This fixes the set T , and thus the set of child labels. The derivations
D0 and Dτ for τ ∈ T are unique by the induction assumption.

After these preparatory results about derivations we come back
to our proof. The next lemma deals with the base case: for the
last term in a sequence of reductions in S (this term is a narrow
tree) we create an equivalent term that will be the last term in the
corresponding sequence of reductions in S ′.

8 2016/5/4

Lemma 5.12. Let S ⊆ ∆, and let K be an S-narrow tree. Then
there exists a maximal derivation D for ` K : (S, r) such that
merge(trcum(D)) is a tree equivalent to K.

Proof. We proceed by induction on the structure of K, which is
necessarily of the form arM1 . . . Mr . If r = 0, then S = {a0}
and we take D to be the single-node derivation for `a0 : ({a0}, r);
we have trcum(D) = a0. Suppose that r ≥ 1. Then S can
be represented as a union of disjoint sets S1, . . . , Sr s.t. Mi is
a Si-narrow tree for each i ∈ {1, . . . , r}. By induction, ∀i ∈
{1, . . . , r} we obtain a maximal derivation Di for `Mi : (Si, r)
s.t. merge(trcum(Di)) is a tree equivalent to Mi. The derivation
D is obtained by deriving `ar : (∅, {(S1, r)}→ . . .→{(Sr, r)}→
r) and attaching D1, . . . , Dr using the application rule r times.
Because the Mi’s are of sort o, and LT o does not contain pairs of
the form (∅, σ), the definition of maximality requires no additional
children for the new internal nodes of D, and hence D is maximal.
Thus trcum(D) = (a0; trcum(D1); . . . ; trcum(Dr)).

We now describe what happens during a substitution.

Lemma 5.13. Suppose that D′ is a maximal derivation for Γ `
KαK [N/xαx] : (S, τ), where N is closed. Let Λ∅ be the set of
those (∅, σ) ∈ LT αx for which ` N : (∅, σ) can be derived.
Then there exists a set Λ ∈ LT αx , a maximal derivation DK for
Γ′ ` K : (S, τ) with Γ′ = Γ ∪ {x : λ | λ ∈ Λ}, and for each
λ ∈ Λ a maximal derivation Dλ for ` N : λ, such that

1. Λ∅ ⊆ Λ,
2. for every λ∈Λ\Λ∅ in DK there is a node labeled by Γ′ `x :λ,
3. the list trcum(D′) is merge-equivalent to the list

trcum(DK)[η]; trcum(Dλ1); . . . ; trcum(Dλk), where
Λ = {λ1, . . . , λk} with λ1 < · · · < λk, and
η = (tr(Dλ1)/x�λ1

, . . . , tr(Dλk)/x�λk
), and

4. if αK 6= o then also tr(D′) = tr(DK)[η].

Proof. We proceed by induction on the structure ofK. By Lemma 5.10,
for λ ∈ Λ∅, there exists a maximal derivation for ` N : λ, which is
unique by Lemma 5.11. We denote this unique derivation by Dλ.

We consider three cases. First suppose thatK is a nonterminal, or
a symbol, or a variable other than x. In this case K[N/x] = K. We
take Λ = Λ∅, and to obtainDK we just extend the type environment
in the only node of D′ by {x : λ | λ ∈ Λ}. Points 1-2 hold trivially.
For points 3-4 we observe that neither tr(DK) nor trcum(DK)
contains a variable x�λ (so the substitution η does not change these
terms); additionally trcum(Dλ) for λ ∈ Λ are empty (Lemma 5.5).

Next, suppose that K = x. We take Λ = Λ∅ ∪ {(S, τ)}. As
DK we take the single-node derivation for Γ′ ` x : (S, τ), and as
D(S,τ) we take D′ in which we remove the type environment from
every node. Since N is closed, D(S,τ) remains a valid derivation
and it remains maximal (when (S, τ) ∈ Λ∅, we have already
defined D(S,τ) previously, but these two definitions give the same
derivation). Points 1-2 hold trivially. We have tr(D′) = tr(D(S,τ))
and trcum(D′) = trcum(D(S,τ)). We see that trcum(DK) is either
an empty list (when αK 6= o) or •0 (when αK = o), so attaching
trcum(DK)[η] does not change the class of merge-equivalence.
Moreover trcum(Dλ) for λ ∈ Λ∅ are empty (Lemma 5.5), which
gives point 3. If αK 6= o, we have tr(DK)[η] = x�(S,τ)[η] =

tr(D(S,τ)) = tr(D′) (point 4).
Finally suppose that K = LαL MαM , which is a more involved

case. In D′, below its root, we have a subtree C′0 deriving Γ `
L[N/x] : (S0, {(S1, τ1), . . . , (Sn, τn)} → τ), and for each
j ∈ {1, . . . , n} a subtree C′j deriving Γ ` M [N/x] : (Sj , τj),
where (S1, τ1) < · · · < (Sn, τn), and S0 ∩ (S1 ∪ · · · ∪ Sn) = ∅,
and S = S0 ∪ · · · ∪ Sn. We apply the induction assumption to all
these subtrees, obtaining a maximal derivation C0 for Γ ∪ {x : λ |

λ ∈ Λ0} ` L : (S0, {(S1, τ1), . . . , (Sn, τn)} → τ) and for each
j ∈ {1, . . . , n} a maximal derivation Cj for Γ ∪ {x : λ | λ ∈
Λj} ` M : (Sj , τj), and for each j ∈ {0, . . . , n} and λ ∈ Λj a
maximal derivation Dj,λ for ` N : λ.

Let Λ =
⋃
j∈{0,...,n} Λj . For λ ∈ Λ∅ we have already defined

Dλ, and we have Dλ = Dj,λ for every j ∈ {0, . . . , n}. Recall that
for every λ ∈ Λj \ Λ∅ there is a node in Cj deriving the labeled
type λ, and hence the set on the first coordinate of λ is a subset of
Sj (point 2). Since the sets Sj are disjoint, for every λ ∈ Λ \ Λ∅
there is exactly one j for which λ ∈ Λj , and we define Dλ to be
Dj,λ for this j.

We extend the type environment in every node of every Cj to
Γ′ = Γ ∪ {x : λ | λ ∈ Λ}, and we compose these derivations
into a single derivation DK for Γ′ ` K : (S, τ) using the rule
for application. In order to see that DK is maximal, take some
internal node of DK . Suppose first that this node is contained
inside some Cj and it is labeled by Γ′ ` P Q, and it is possible
to derive Γ′ ` Q : (∅, σ). Then it is as well possible to derive
Γ ∪ {x : λ | λ ∈ Λj} ` Q : (∅, σ), because Λ \ Λj contains only
labeled types with nonempty set on the first coordinate and they
anyway cannot be used while deriving a labeled type with empty
set on the first coordinate. Thus by maximality of Cj our node has
a child labeled by Γ′ ` Q : (∅, σ). Next, consider the root of DK ,
and suppose that it is possible to derive Γ′ ` M : (∅, σ). Then by
Lemma 5.6 it is as well possible to derive Γ′ ` M [N/x] : (∅, σ),
so also Γ `M [N/x] : (∅, σ) (since x does not appear in M [N/x]),
which by maximality of D′ means that (∅, σ) is one of (Sj , τj), and
thus the root of DK has a child labeled by Γ′ `M : (∅, σ) (created
out of the root of Cj).

Points 1, 2 follow from the induction assumption. It remains
to prove points 3, 4. Let Λ = {λ1 < · · · < λk} and η =
(tr(Dλ1)/x�λ1

, . . . , tr(Dλk)/x�λk
). Similarly, let Λj = {λj,1 <

· · · < λj,kj} and ηj = (tr(Dλj,1)/x�λj,1
, . . . , tr(Dλj,k)/x�λj,kj

).

Let us first see that tr(D′) = tr(DK)[η] (not only if αK 6= o,
as in point 4, but also if αK = o). By induction we know
that tr(C′0) = tr(C0)[η0], as surely αL 6= o. Thus tr(C′0) =
tr(C0)[η], since tr(C′0) (hence also tr(C0)[η0]) does not con-
tain variables x�λ, so substituting for them does not change
anything. If αM = o, we simply have tr(D′) = tr(C′0) and
tr(DK) = tr(C0), so clearly tr(D′) = tr(DK)[η] holds. If
αM 6= o, by induction we also know that tr(C′j) = tr(Cj)[ηj]
∀j ∈ {1, . . . , n}, and thus also tr(C′j) = tr(Cj)[η]; we have
tr(D′) = tr(C′0) tr(C′1) . . . tr(C′n) and similarly tr(DK) =
tr(C0) tr(C1) . . . tr(Cn), so we also obtain tr(D′) = tr(DK)[η].
To show point 3 we prove that trcum(D′) is merge-equivalent to
the list trcum(DK)[η]; trcum(Dλ1); . . . ; trcum(Dλk). By defini-
tion trcum(D′) consists of trcum(C′j) for j ∈ {0, . . . , n}, and
if αK = o then also of tr(D′). Similarly, trcum(DK)[η] equals
to trcum(C0)[η]; . . . ; trcum(Cn)[η], prepended by tr(DK)[η] if
αK = o. We have already shown that tr(D′) = tr(DK)[η]. By the
induction assumption, the list trcum(C′j) is merge-equivalent to
the list trcum(Cj)[ηj]; trcum(Dλj,1); . . . ; trcum(Dλj,kj

) for all
j ∈ {0, . . . , n}. We can replace here ηj by η, since trcum(C′j)
does not contain variables x�λ with λ ∈ Λ\Λj . To finish the
proof it is enough to observe that the concatenation of the lists
trcum(Dλj,1); . . . ; trcum(Dλj,kj

) for j ∈ {0, . . . , n} is merge-
equivalent to trcum(Dλ1); . . . ; trcum(Dλk). Indeed, for λ ∈ Λ∅
by Lemma 5.5 trcum(Dλ) is empty, and, as we have already shown,
every λ ∈ Λ \ Λ∅ belongs to exactly one Λj .

Lemma 5.14. Let D′ be a maximal derivation for ` L′ : (S, r),
and let L be a term that does not contain the initial nonterminal of
S and such that L→S L′. Then there exists a maximal derivation

9 2016/5/4

D for ` L : (S, r) and a term P that is merge-equivalent to
trcum(D′) and such that merge(trcum(D))→S′ P .

The lemma is proved by induction on the structure of L; cf. App. B.
The case when L starts with a nonterminal uses Lemma 5.13.

Corollary 5.15. Let L be a term that is of sort o and does not
contain the initial nonterminal of S , and let M be an S-narrow tree
generated by S from L. Then there exists a maximal derivation D
for ` L : (S, r) such that a tree equivalent to M can be generated
by S ′ from merge(trcum(D)).

Proof. We proceed by induction on the smallest length of the
sequence of reductions L →∗S M . If L = M , we just apply
Lemma 5.12. Suppose that the length is positive, and write L→S
L′ →∗S M . The initial nonterminal does not appear in L′ since
by assumption it does not appear on the right side of any rule. By
induction we obtain a maximal derivation D′ for ` L′ : (S, r)
such that a tree Q equivalent to M can be generated by S ′ from
merge(trcum(D′)). Then, from Lemma 5.14 we obtain a maximal
derivationD for ` L : (S, r) and a term P that is merge-equivalent
to trcum(D′) and such that merge(trcum(D))→S′ P . By Lemma
5.4 a tree equivalent to Q (and hence to M) can be generated by S ′
from P , and hence also from merge(trcum(D)).

Proof of Lemma 5.2. Consider a tree M generated by S, and a
sequence of reductions of S leading to M . In the first step
the initial nonterminal reduces to Ae0

1 . . . e
0
|∆|. Corollary 5.15

gives us a derivation D for ` Ae0
1 . . . e

0
|∆| : (∆, r) such that

merge(trcum(D)) generates a tree equivalent to M . Necessar-
ily trcum(D) = (Aτ0 ; e0

1; . . . ; e0
|∆|), so merge(trcum(D)) is ob-

tained as the result of the initial rule of S ′.

6. Conclusions
This work leaves open the question of the exact complexity of the
diagonal problem. The only known lower bound is given by the
emptiness problem, that is the same as for the model-checking
problem [20]. Our procedure is probably not optimal, one of the
reasons being the use of reflection in operation Theorem 2.1.

References
[1] P. A. Abdulla, L. Boasson, and A. Bouajjani. Effective lossy queue

languages. In In Proc. of ICALP’01, LNCS, pages 639–651, 2001.

[2] A. V. Aho. Indexed grammars - an extension of context-free grammars.
J. ACM, 15(4):647–671, Oct. 1968.

[3] K. Asada and N. Kobayashi. On word and frontier languages of unsafe
higher-order grammars. To appear in Proc. of ICALP’16.

[4] G. Bachmeier, M. Luttenberger, and M. Schlund. Finite automata for
the sub- and superword closure of CFLs: Descriptional and compu-
tational complexity. In In Proc. of LATA’15, volume 8977 of LNCS,
pages 473–485, 2015.

[5] L. Breveglieri, A. Cherubini, C. Citrini, and S. Crespi-Reghizzi. Multi-
push-down languages and grammars. Int. J. Found. Comput. Sci.,
7(3):253–292, 1996.

[6] C. H. Broadbent, A. Carayol, C.-H. L. Ong, and O. Serre. Recursion
schemes and logical reflection. In LICS’10, pages 120–129, 2010.

[7] L. Clemente, P. Parys, S. Salvati, and I. Walukiewicz. Ordered tree-
pushdown systems. In In Proc. of FSTTCS’15, volume 45 of LIPIcs,
pages 163–177, 2015.

[8] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree automata techniques and
applications. http://www.grappa.univ-lille3.fr/tata, 2007.

[9] B. Courcelle. On constructing obstruction sets of words. Bulletin of
EATCS, 1991.

[10] W. Czerwiński, W. Martens, L. van Rooijen, and M. Zeitoun. A note
on decidable separability by piecewise testable languages. In FCT’15,
volume 9210 of LNCS, pages 173–185, 2015.

[11] W. Czerwiński, W. Martens, L. van Rooijen, M. Zeitoun, and G. Zet-
zsche. A characterization for decidable separability by piecewise
testable languages. Submitted, 2015.

[12] W. Damm. The IO- and OI-hierarchies. Theoretical Computer Science,
20:95–207, 1982.

[13] H. Gruber, M. Holzer, and M. Kutrib. The size of Higman–Haines sets.
Theor. Comput. Sci., 387(2):167–176, 2007.

[14] P. Habermehl, R. Meyer, and H. Wimmel. The downward-closure of
Petri net languages. In In Proc. of ICALP’10, volume 6199 of LNCS,
pages 466–477, 2010.

[15] M. Hague. Parameterised pushdown systems with non-atomic writes.
In FSTTCS, volume 13 of LIPIcs, pages 457–468, 2011.

[16] M. Hague, J. Kochems, and C.-H. L. Ong. Unboundedness and
downward closures of higher-order pushdown automata. In Proc. of
POPL’16, pages 151–163, 2016.

[17] M. Hague, A. S. Murawski, C.-H. L. Ong, and O. Serre. Collapsible
pushdown automata and recursion schemes. In Proc. of LICS’08, pages
452–461. IEEE Computer Society, 2008.

[18] G. Higman. Ordering by divisibility in abstract algebras. Proc. London
Math. Soc., s3-2(1):326–336, Jan. 1952.

[19] P. Hofman and W. Martens. Separability by short subsequences and
subwords. In ICDT 2015, volume 31 of LIPIcs, pages 230–246, 2015.

[20] N. Kobayashi and C.-H. L. Ong. Complexity of model checking
recursion schemes for fragments of the modal mu-calculus. Logical
Methods in Computer Science, 7(4), 2011.

[21] G. M. Kobele and S. Salvati. The IO and OI hierarchies revisited.
Information and Computation, 243:205–221, 2015.

[22] R. Mayr. Undecidable problems in unreliable computations. Theor.
Comput. Sci., 297(1-3):337–354, Mar. 2003.

[23] C.-H. L. Ong. On model-checking trees generated by higher-order
recursion schemes. In Proc. of LICS’06, pages 81–90, 2006.

[24] S. Salvati and I. Walukiewicz. Using models to model-check recursive
schemes. Logical Methods In Computer Science, 2015.

[25] S. L. Torre, A. Muscholl, and I. Walukiewicz. Safety of parametrized
asynchronous shared-memory systems is almost always decidable. In
In Proc. of CONCUR’15, volume 42 of LIPIcs, pages 72–84, 2015.

[26] J. van Leeuwen. Effective constructions in well-partially-ordered free
monoids. Discrete Math., 21(3):237–252, May 1978.

[27] G. Zetzsche. An approach to computing downward closures. In In
Proc. of ICALP’15, volume 9135 of LNCS, pages 440–451, 2015.

[28] G. Zetzsche. Computing downward closures for stacked counter
automata. In In Proc. of STACS’15, volume 30 of LIPIcs, pages 743–
756, 2015.

10 2016/5/4

http://www.grappa.univ-lille3.fr/tata

A. Closure under linear transductions and full
trio

In this section we prove that finite tree languages generated by
HORSes are closed under linear bottom-up tree transductions.

An FTT is complete if every variable xi appearing on the left
side of any transition also appears in the term t on the right side
of the transition, i.e., no subtree is discarded. A restriction is a
special case of an FTT where there is only one control state, and
where every transition is of the form ar (q,x1) . . . (q, xr) −→
q, bn xi1 . . . xin with 1 ≤ i1 < · · · < in ≤ r, i.e., it relabels
the tree and discards some its subtrees. Clearly, every FTT is the
composition of a complete FTT with a restriction.

A higher-order recursion scheme with states (HORSS) is a triple
H = (Q, (qinit , Ainit),R), where Q is a finite set of control states,
(qinit , Ainit) is the initial process with qinit the initial control state
and Ainit the initial nonterminal that is of sort o, andR is a finite
set of rules of the form

(I) p,Aα1→···→αk→o xα1
1 · · · xαk

k → q,Ko

(II) p, ar xo1 · · · xor → ar (p1, x1) · · · (pr, xr)

where the term K uses only variables from the set {xα1
1 , . . . , x

αk
k }.

Rules of type (I) are as in standard HORS except that they are
guarded by control states. Rules of type (II) correspond to a finite
top-down tree automaton reading the tree produced by the HORS.
The order of S is defined as the highest order of a nonterminal for
which there is a rule in S. Let us now describe the dynamics of
HORSSes. A process is a pair (p,M) where M is a closed term of
sort o and p is a state in Q. A process tree is a tree built of symbols
and processes, where the latter are seen as symbols of rank 0. A
HORSSH defines a reduction relation→H on process trees:

(p,Ax1 . . . xk → q,K) ∈ R(H)

(p,AM1 . . . Mk)→H (q,K[M1/x1, . . . ,Mk/xk])

(p, ar x1 · · · xr → a (p1, x1) · · · (pr, xr)) ∈ R(H)

(p, arM1 · · ·Mr)→H a (p1,M1) · · · (pr,Mr)

Kl →H K′l for some l ∈ {1, . . . , r} Ki = K′i for all i 6= l

arK1 . . . Kr →H arK′1 . . . K
′
r

We are interested in finite trees generated by HORSSes. A process
tree T is a tree if it does not contain any process. A HORSS H
generates a tree T from a process (p,M) if (p,M) →∗H T . The
language L(H) is the set of trees generated by the initial process
(qinit , Ainit).

A HORS can be seen as a special case of a HORSS where
Q has only one state p̂ with the trivial rule p̂, a x1 · · ·xk →
a (p̂, x1) · · · (p̂, xk). It is well known that this extension does not
increase expressive power of HORS, in the sense that given a
HORSS H it is possible to construct a (standard) HORS S of the
same order asH (but where the arity of nonterminals is increased)
such that L(H) = L(S) [17]. However, while combining a HORS
with an FTT it is convenient to create a HORSS, as its states can be
used to simulate states of the FTT.

On the other hand, it is also useful to have the input HORS in
a special normalized form, defined next. We say that a HORS is
normalized if every its rule is of the form

Ax1 . . . xp → h (B1 x1 . . . xp) . . . (Br x1 . . . xp) ,

where r ≥ 0, h is either one of the xi’s, a nonterminal, or a symbol,
and the Bj’s are nonterminals. The arity p may be different in each
rule. We will not detail the rather standard procedure of transforming
any HORS into a normalized HORS without increasing the order.

It amounts to splitting every rule into multiple rules, using fresh
nonterminals in the cut points.

Lemma A.1. HORSes are affectively closed under complete linear
tree transductions.

Proof. Let S be a HORS and let A be a linear FTT. We construct
a HORSS H s.t. L(H) = T (A)(L(S)). The set of control states
ofH is taken to be the set of control states of the FTT A. As noted
above, we can assume w.l.o.g. that S is normalized.

First, if S contains a rule A~x → hM1 · · ·Mr with h not a
symbol, then H contains the rule p,A~x → p, hM1 · · ·Mr for
every control state p.

Next, for every such rule with h being a symbol ar , and for every
transition of A having ar on the left side, we take to H one rule
illustrated by means of a representative example: if A contains a
transition

a2 (p1, x1) (p2, x2) −→ p, b2 (c1 x1)x2

and S contains a rule A~y → a2 (B1 ~y) (B2 ~y), thenH contains the
rule

p,A ~y → b2 (c1 (p1, B1 ~y)) (p2, B2 ~y)

Technically speaking, this is not a HORSS rule, but it can be turned
into one type (I) rule and several type (II) rules by adding new states.

Finally, we also add rules corresponding to ε-transitions of A,
what is again defined by an example: if A contains a transition

p, x1 −→ q, a1 x1

then, for every nonterminal A of S,H contains the rule

q,A ~y → a1 (p,A ~y)

The two inclusions needed to show that L(H) = T (A)(L(S))
can be proved straightforwardly by induction on the length of
derivations.

The difficulty in proving closure under possibly non-complete
FTTs is that when combining a (non-complete) FTT transition of the
form e.g. a2 (p, x1) (p, x2) −→ p, b1 x1 with a HORS rule of the
form e.g. A~y → a2 (B1 ~y) (B2 ~y), we cannot simply discard the
subterm B2 ~y, but we have to make sure that it generates at least one
tree on which the FTT has some run. While concentrating on closure
only under restrictions, one think becomes easier: a restriction has
a run almost on every tree. There is, however, one exception: a
restriction A does not have a run on a tree that uses a symbol for
which A has no transition. We deal with this in Lemma A.2, below.
However, knowing that on every tree there is a run of A is not
enough; we also need to know that B2 ~y generates at least one tree.
This problem is resolved by Lemma A.3.

Lemma A.2. For every set of (ranked) symbols Θ and every HORS
S we can build a HORS S ′ of the same order, such that L(S ′)
contains those trees from L(S) which use only symbols from Θ.

Proof. We start by assuming w.l.o.g. that S is normalized. Then,
we simply remove from S all rules that use symbols not in Θ.
Then surely trees in L(S ′) use only symbols from Θ. On the other
hand, since S was normalized, every removed rule was of the form
A~y → ar (B1 ~y) . . . (Br ~y) (with ar 6∈ Θ), so whenever such
a rule was used, an ar-labeled node was created. In consequence,
removing these rules has no influence on generating trees that use
only symbols from Θ.

A HORS S = (Ainit ,R) is productive if, whenever we can
reduce Ainit to a term M (which may contain nonterminals), then
M can be reduced to some finite tree. By using the reflection
operation [6], we can easily turn a HORS into a productive one.

11 2016/5/4

Lemma A.3. For every HORS S we can build a productive HORS
S ′ of the same order generating the same trees.

Proof. First, we construct a deterministic scheme T from the non-
deterministic scheme S. To T we will be then able to apply a
reflection transformation. We use a letter + to eliminate non-
determinism. For every nonterminal A of S we collect all its rules:
Ax1 . . . xp → K1, . . . , A x1 . . . xp → Km, and add to T the
single rule:

Ax1 . . . xp → +2 K1 (+2 K2 (. . . (+2 Km−1 Km) . . .)) .

The (possibly infinite) tree generated by T represents the language
of trees generated from S since the non-deterministic choices that
can be made in S are represented by nodes labeled by + in the tree
generated by T . In this latter tree, we can find every tree generated
by S using a finite number of rewriting steps consisting of replacing
a subtree rooted in + by one of its children.

We now take the monotone applicative structure (see [21, 24])
M = (Mα)α∈Sorts where Mo is the two element lattice, with
maximal element > and minimal element ⊥. Intuitively, > means
nonempty language and ⊥ means empty language. We interpret +2

as the join (max) of its arguments, and every other symbol ar as
the meet (min) of its arguments; in particular symbols of rank 0 are
interpreted as >. This allows us to define the semantics [[M,χ, ν]]
of a term given a valuation χ for nonterminals and ν for variables
(these valuations assign to a variable/nonterminal a value in M
of an appropriate sort). The definition of [[M,χ, ν]] is standard, in
particular [[K L,χ, ν]] = [[K,χ, ν]]([[L, χ, ν]]).

The meaning of nonterminals in T is given by the least fix-
point computation. For a valuation χ of the nonterminals of
T , we write T (χ) for the valuation χ′ such that χ′(A) =
λg1. · · · .λgp.[[K,χ, [g1/x1, . . . , gp/xp]]] where Ax1 . . . xp →
K is the rule for A in T . Then the meaning of nonterminals
is given by the valuation that is the least fixpoint of this opera-
tor: χT =

∧
{χ : T (χ) ⊆ χ}. Having χT we can define the

semantics of a term M in a valuation ν of its free variables as
[[M,ν]] = [[M,χT , ν]].

Least fixed point models of schemes induce an interpretation on
infinite trees by finite approximations. An infinite tree has value >
iff it represents a non-empty language [21]. The important point is
that the semantics of a term and that of the infinite tree generated
from the term coincide.

We can now apply to T the reflection operation [6] with respect
to the above interpretation M. The result is a scheme T ′ that
generates the same tree as T but where every node is additionally
marked by a tuple (a1, . . . , ar, b) where a1, . . . , ar is the semantics
of the arguments of that node (i.e., subtrees rooted at its children)
and b is the semantics of the subtree rooted at that node. What is
important here is that T ′ has the same order as T which is the same
as that of S. The additional labels allow us to remove unproductive
parts of the tree generated by T ′. For this we introduce two more
nonterminals Π1 and Π2 of sort o→ o→ o. We then add the rules
Π1 x1 x2 → x1, Π2 x1 x2 → x2. Now we replace every occurrence
of +2 labeled by (>,⊥,>) by Π1, and every occurrence of +2

labeled by (⊥,>,>) by Π2. After these transformations we obtain
a scheme T ′′ generating a tree which contains exactly those nodes
of T ′ that are labeled with (>, . . . ,>,>).

We convert T ′′ into a HORS S ′ whose language is the same as
that of S. For this we replace every remaining occurrence of +2

(thus labeled by (>,>,>)) by a nonterminal C of sort o→ o→ o,
and we add two rewrite rules C xy → x and C xy → y. We also
remove the additional labels from symbols. By construction, S ′ is
productive and L(S ′) ⊆ L(S). Moreover, since we only eliminated
non-productive nonterminals, L(S ′) = L(S).

Lemma A.4. Let S be a productive HORS, and A a restriction
such that for every symbol ar appearing in any tree generated by
S there is a transition of A having ar on the left side. Then we can
build a HORS S ′ whose language is T (A)(L(S)).

Proof. First, w.l.o.g. we assume that S is normalized (notice that
while converting a productive HORS to a normalized one, it remains
productive). Every rule S ~y → h (B1 ~y) . . . (Br ~y) of S in which
h is not a symbol is also taken to S ′. If h = ar is a symbol, we
consider every transition of A having ar on the left side. Since A is
a restriction, this transition is of the form

ar (p, x1) . . . (p, xr) −→ p, bn xi1 · · ·xin ,
where 1 ≤ i1 < · · · < in ≤ r. Then, to S ′ we take the rule

A~y → bn (Bi1 ~y) · · · (Bin ~y) .

In general, T (A)(L(S)) ⊆ L(S ′). Since S is productive, the
subterms Bi ~y obtained by rewriting the initial nonterminal Ainit

produce at least one tree, and since for every symbol in this tree
there is a transition of A having this symbol on the left side, A has
some run on this tree. Thus T (A)(L(S)) = L(S ′).

Theorem 2.1. HORSes are effectively closed under linear tree
transductions.

Proof. A transduction A realized by an FTT is the composition of a
complete one B and a restriction C. We first apply Lemma A.1 to the
complete transduction realized by B. Then, using Lemma A.2 we
remove from the generated language all trees that use symbols not
appearing on the left side of any transition of C. Next, we turn the
resulting HORS into a productive one by Lemma A.3, and, finally,
we apply Lemma A.4 to the resulting productive HORS and the
restriction realized by C. We end up with a HORS producing the
image of A applied to the original HORS, and being of the same
order.

B. Proof of Lemma 5.14
We recall the the statement of the lemma.

Lemma 5.14. Let D′ be a maximal derivation for ` L′ : (S, r),
and let L be a term that does not contain the initial nonterminal of
S and such that L→S L′. Then there exists a maximal derivation
D for ` L : (S, r) and a term P that is merge-equivalent to
trcum(D′) and such that merge(trcum(D))→S′ P .

Proof. We proceed by induction on the structure of L.
Suppose first that L = arM1 . . . Mr (where surely r ≥

1). Then L′ = arM ′1 . . . M
′
r , where Ml →S M ′l for some

l ∈ {1, . . . , r}, and Mi = M ′i for all i 6= l. The derivation
D′ contains a node labeled by ` ar : (∅, {(S1, r)} → · · · →
{(Sr, r)} → r), and for each i ∈ {1, . . . , r} a subtree D′i deriv-
ing ` M ′i : (Si, r) (they are merged together by using the ap-
plication rule r times), where S1, . . . , Sr are disjoint and their
union is S. We apply the induction assumption to Ml, obtain-
ing a derivation Dl for ` Ml : (Sl, r) and a term Pl merge-
equivalent to trcum(D′l) and such that merge(trcum(Dl))→S′ Pl.
We can write Pl = merge(list ′l) (where the length of list ′l and
trcum(Dl) is the same). We take Di = D′i for i 6= l, and
out of the single-node derivation for ` ar : (∅, {(S1, r)} →
· · · → {(Sr, r)} → r) and of derivations Di for i ∈ {1, . . . , r}
we compose a derivation D, using the application rule r times.
We see that trcum(D) = (a0; trcum(D1); . . . ; trcum(Dr)), and
trcum(D′) = (a0; trcum(D′1); . . . ; trcum(D′r)). Moreover, taking
list ′i = trcum(Di) for i 6= l we get merge(trcum(D)) →S′

merge(a0; list ′1; . . . ; list ′r), where merge(a0; list ′1; . . . ; list ′r) is
merge-equivalent to trcum(D′). It remains to observe that D is

12 2016/5/4

maximal. Indeed, the nodes inside some Di have all required chil-
dren since Di are maximal, and the new internal nodes created in
D describe applications with an argument Mi of sort o, and it is
impossible to derive `Mi : (∅, σ) for any σ (since LT o does not
contain pairs with empty set on the first coordinate).

The remaining possibility is that L = ANα1
1 . . . N

αk
k . Let

Ax1 . . . xk → K be the rule of S used in the reduction L→S L′,
that is such that L′ = K[N1/x1, . . . , Nk/xk]. Take D0,K = D′.
For i ∈ {1, . . . , k}, consecutively, we apply Lemma 5.13 toDi−1,K

and Ni, creating sets Λi ⊆ LT αi and maximal derivations Di,K
and Di,λ for λ ∈ Λi. Let DK = Dk,K ; it derives Γ ` K : (S, r),
where Γ = {xi : λ | i ∈ {1, . . . , k}, λ ∈ Λi}. By point 2 of
Lemma 5.13 we know that for every λ ∈ Λi with a nonempty set
on the first coordinate, in DK there is a node labeled by Γ ` xi : λ.
On the one hand, since our type systems requires that subsets of
Σ0 coming from different children are disjoint, we can be sure that
the sets on the first coordinate of labeled types in Λ1, . . . ,Λk are
disjoint. It follows that τA = Λ1 → · · · → Λk → r is a type.
On the other hand, nodes labeled by Γ ` xi : λ give the only
possibility for introducing elements of S to our derivation DK (by
assumption in K we do not have nullary symbols, since A is not
the initial nonterminal), which means that the union of the sets
on the first coordinate of labeled types in Λ1, . . . ,Λk is S. Since
(S, r) ∈ LT o, we have S 6= ∅, and thus k ≥ 1, which means that
(∅, τA) is a labeled type.

In order to obtain the required derivation D for ` L : (S, r), we
start with the single-node derivation for ` A : (∅, τA), and using
the application rule k times we attach derivations Di,λ for each
i ∈ {1, . . . , k} and λ ∈ Λi. This derivation is maximal, since Di,λ
were maximal, and by point 1 of Lemma 5.13 the newly created
internal nodes have all required children (whenever it is possible to
derive a type judgment ` Ni : (∅, σ), we are deriving it in D).

Recall that trcum(D) is a concatenation of tr(D) and of
trcum(Di,λ) for every i ∈ {1, . . . , k} and λ ∈ Λi. For i ∈
{1, . . . , k} let ηi be the substitution that maps xi�λ to tr(Di,λ)
for every λ ∈ Λi. In S ′ we have the rule Aτ x1 . . . xk →
merge(trcum(DK)), where xi lists variables xi�λ for λ ∈ Λi
if αi 6= o, and is empty if αi = o (for i ∈ {1, . . . , k}). Notice that
this rule applied to tr(D) gives merge(trcum(DK))[η1, . . . , ηk]
(substitutions ηi for i such that αi = o can be skipped, since
anyway variables xi�λi,j

for such i do not appear in trcum(DK)).
As P we take merge(·) of the concatenation of this term and
of all trcum(Di,λ); as we have said merge(trcum(D)) →S′ P .
From point 3 of Lemma 5.13 it follows that trcum(D′) is merge-
equivalent to P , what finishes the proof.

13 2016/5/4

	Introduction
	Preliminaries
	The Main Result
	Narrowing the HORS
	Lowering the Order
	Type System
	Transformation
	Soundness
	Completeness

	Conclusions
	Closure under linear transductions and full trio
	Proof of Lemma 5.14

