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Hardening/softening behavior and reduced order modeling
of nonlinear vibrations of rotating cantilever beams

O. Thomas · A. Sénéchal · J.-F. Deü

Abstract This work addresses the large amplitude
nonlinear vibratory behavior of a rotating cantilever
beam, with applications to turbomachinery and tur-
bopropeller blades. The aim of this work is twofold.
Firstly, we investigate the effect of rotation speed on
the beam nonlinear vibrations and especially on the
hardening/softening behavior of its resonances and the
appearance of jump phenomena at large amplitude.
Secondly, we compare three models to simulate the
vibrations. The first two are based on analytical mod-
els of the beam, one of them being original. Those two
models are discretized on appropriate mode basis and
solve by a numerical following path method. The last
one is based on a finite-element discretization and inte-
grated in time. The accuracy and the validity range of
each model are exhibited and analyzed.
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1 Introduction

The large amplitude nonlinear vibratory behavior of a
rotating cantilever beam is addressed in this study. The
main application of this work is to analyze the vibra-
tions of turbomachinery and turbopropeller blades in
the geometrically nonlinear regime. Since blades are
designed more flexible, in particular when composite
materials are used, quantifying the amount of nonlinear
effects on the vibratory characteristics such as the res-
onance frequencies and predicting possible jump phe-
nomena is essential. The motivations of this work are
twofold. First, we address the effect of the centrifugal
forces due to rotation on the geometrically nonlinear
vibrations. Then, we propose and compare three mod-
els to simulate the vibrations, two being of a reduced
order and the third one being based on complete finite-
element time simulations.

The literature devoted to vibrations of blades mod-
eled as beams is bulky, and only some milestones are
mentioned here, related to the two main features con-
sidered here: the effect of rotation and the geometrical
nonlinearities. Early studies on rotating beams appear
in the 1920s, from the turbomachinery industry. Many
studies have treated the problem with linear models
and these works focused, in most cases, on the stiff-
ening effect of rotation, which increases the natural
frequencies of the beam. This effect is addressed in
[77] with a standard Euler–Bernoulli model and in [12]
with a Timoshenko model. The effect of various para-
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meters on the natural frequencies of rotating beams
has also been widely studied: the effect of variable and
non-symmetrical cross sections, pre-twist [60,63], pre-
cone, pre-lag, setting angle [11,44], root offset [14,43],
taper and rotary inertia, attached masses [5,38,57],
shrouds, springs [22] and various boundary conditions
[10]. The finite- element method has also been used
widely used: see, i.e., [8] and the textbook [32].

About geometrical nonlinearities, the pioneering
studies were devoted to non-rotating cantilever beams.
In this case, since the beam ends axial motion is not
restrained, geometrical nonlinearities do not create a
coupling between axial and transverse motion and the
usual von Kármán model (used for beams or strings
with restrained axial motion [49,68] or for plates and
shells [67,69]) is in this case linear [40]. As a conse-
quence, higher-order theories accounting for large rota-
tions must be used. The most common is the one pro-
posed in [17,18] by assuming an inextensible motion
of the beam and truncating the model up to the third
order in the cross-section rotations. The obtained ana-
lytical model has been the basis of numerous studies
since then and especially about nonlinear phenomena
[20,51,54,66].

Considering both rotation and geometrical nonlin-
earities was first addressed using time integration of a
finite-element nonlinear model [7,9]. Then, the frame-
work of nonlinear modes and invariant manifolds was
applied to a simplified model of a rotating beam based
on a vonKármán formulation [2,37,58], where the goal
was the size reduction in the model and its accuracy as
compared to a full-scale model. A von Kármán model
was also used in [65] with a p-version finite-element
method, whereas more refined finite-element models,
with several levels of simplifications, were proposed
and compared in [70]. In both cases, time simulations
are shown. In other studies, the influence of the rotation
velocity on the nonlinear resonances is considered. A
von Kármán model is used in [4] and solved with a
multiple scale perturbation method. In [29,71], non-
linear beam models including axial inertia and nonlin-
ear curvature are used to predict the nonlinear reso-
nances through a one-mode Galerkin expansion. The
same subject is also addressed in [39] with a refined
model based on a Cosserat theory of rods, that is used
to compute nonlinear modes through the multiple scale
perturbation method. Nonlinear resonance curves are
also computed in [13], with a fully numerical approach
based on a Galerkin discretization with Legendre poly-

nomials and a continuation method (harmonic balance
coupled to an asymptotic numerical technique).

The purpose of the present study is to compare the
results of several models of a rotating cantilever beam,
in terms of accuracy and validity range, in order to pre-
dict the effect of rotation on its nonlinear resonances.
Its motion is restricted to the plane that contains the
rotation axis, and three models are compared. The first
one (denoted VK), introduced in [2,58], is based on the
classical von Kármán assumptions that lead to keep, in
the strain–displacement law, only the first nonlinear
flexural term in the axial strain. As it will be explained,
thismodel is linear if the cantilever beam is not rotating,
whereas geometrical nonlinearities appear if rotation is
considered, as a consequence of a coupling between the
axial stretching produced by the centrifugal forces and
the transverse motion. The second model proposed in
this study (denoted Inxt.) is an extension of the classical
elastica model of [17,18] to the rotating case. It con-
sists in imposing the inextensionality constraint with
respect to the centrifugally rotated configuration of the
beam. Finally, the third model (denoted FE) is based
on a finite-element discretization of the beam geome-
try, using a nonlinear dynamic formulation of a total
Lagrangian Timoshenko plane beam element, as intro-
duced in [25]. Whereas VK and Inxt. models are valid
for moderate rotations since they are based on trunca-
tions, the FEmodel enables large amplitude simulation
with no restrictions on the rotation amplitude and thus
constitute a reference solution.

The VK and Inxt. models are analytical models con-
stituted of partial differential equations. They are dis-
cretizedusing the eigenmodebasis of the associated lin-
ear and non-rotating (i.e., without the centrifugal pre-
stress due to rotation) problem. A set of oscillators with
quadratic and cubic nonlinearities is obtained for both
models. The solution of those equations, in the case of
a harmonic forcing, are numerically computed with the
harmonic balance method coupled with the asymptotic
numerical method continuation method (HBM/ANM
[16]). On the contrary, results for the FE model are
obtained by numerically integrating it in time, with a
Newmark scheme coupled to a Newton–Raphson algo-
rithm at each time step. For each excitation frequency,
the time evolution is computed until the steady state is
obtained, whose maximum amplitude gives one point
of the resonance curve. To obtain the classical hys-
teretic behavior, the initial conditions of each simula-
tion are imposed by one beam position/velocity pair



taken in the previous simulation. Resonance curves for
the first two modes of the beam are computed with the
three methods for several rotation velocities, to evalu-
ate the dependence of the resonance frequencies on the
vibration amplitude and how it is affected by rotation.
The three models, in terms of accuracy and computa-
tional cost, are also compared.

The present study concerns initially straight beams,
with uniform cross section, made in a homogeneous
and isotropic material, with the motion restricted in
the plane containing the axis of rotation and the unde-
formed neutral axis. On the contrary, turbomachinary
blades are characterized by numerous complicating
features of geometrical and material nature (compos-
ite structure, complex and varying cross section, not
initially straight, etc.). Moreover, Coriolis forces, con-
tained in the plane of rotation, are also under con-
cern for rotating beams so that a model including full
3D motion has to be considered for realistic simula-
tions. As a consequence, if the behavior of a blade is
under concern, the results obtained here must be con-
sidered only on a phenomenological point of view, in
particular for the dependence of the nonlinear harden-
ing/softening behavior of the beam’s resonances. Fur-
ther studies, out of the scope of the present work, must
be undertaken to extend the present nonlinear dynam-
ics results to complexmaterial / geometric beam shapes
and 3D motion effects.

2 Governing equations

We consider a straight cantilever beam of length L
with a rectangular uniform cross section of area A,
made of a homogeneous and isotropic elastic mater-
ial of density ρ, Young’s modulus E and Poisson ratio
ν. The beam is attached to a hub of radius R, and
its transverse oscillations are restricted to the rotating
plane (flappingmotion). The reference frame is denoted
(eX , eY , eZ ), whereas the rotating frame is denoted(
ex , ey, ez

)
(Fig. 1a). The purpose of the present sec-

tion is to introduce all preliminary material necessary
for deriving the three models used and compared in
Sects 3 and 4.

2.1 Displacement field and deformation gradient

The classical Timoshenko assumptions are applied to
the beam in the rotating plane (ex , ez): any cross sec-

tion has a rigid-body displacement (Fig. 1b). Hence,
the displacement u(M) of any point M with respect to
an undeformed rotating configuration can be expressed
with a rotation operator R(θ) as follows:

u(M) = u(G) + [R(θ) − 1]GM, (1)

where G is the intersection of the cross section con-
taining M with the neutral axis, u(G) its displacement.
The rotation of the cross section and the identity matrix
are denoted, respectively, θ and 1. In the present two-
dimensional case, the rotation operator is given by

R(θ) =
(
cos θ − sin θ

sin θ cos θ

)
, (2)

expressed in the rotating frame (ex , ez). The position of
any point M of the beam in the reference configuration
is defined by its axial X and transverse coordinates
Y, Z , so that OG = Xex and GM = Y ey + Zez . If the
displacement of any point of the neutral axis is u(G) =
uex + wez , then the displacement field u = u(X, Z , t)
of the continuum (it does not depend on Y because of
the imposedmotion in the (ex , ez) plane) can bewritten
as

u = [u − Z sin θ ]ex + [w + Z(cos θ − 1)]ez . (3)

Therefore, the deformation gradient tensor F is

F = 1 + ∇u =
(
1 + u′ − Zθ ′ cos θ − sin θ

w′ − Zθ ′ sin θ cos θ

)
; (4)

where u′ = ∂u/∂X and ∇u is the tensor gradient of u,
whose Cartesian components are ∂ui/∂X j .

2.2 Strain measures

2.2.1 Engineering strains

Engineering strains can be defined in a geometrical
manner with Fig. 1. The engineering axial strain ẽmea-
sures the strain along the neutral axis of a beam and is
defined by

ds = (1 + ẽ)dX, (5)



(b)

(a)

X

u(X)

θ(X)

w
(X

)

O

dX

ds

u(X + dX)

w
(X

+
d
X

)

ex

ϕ(X)

ez

eX

eX

Ω

ey

ex

Ωt

eY

LR

Z M

G

ez

Ω

γ̃(X)
ϕ(X)

m

R

Fig. 1 a Sketch of the rotating beam. b Detail of a beam element deformation

where an elementary part of the neutral axis of length
dX in the rotating configuration becomes ds in the
deformed configuration. Considering the local rotation
of the neutral axis denoted ϕ, one obtains:

sin ϕ = w′

1 + ẽ
, cosϕ = 1 + u′

1 + ẽ
, (6)

which can be combined to give:

ẽ =
√

(1 + u′)2 + w′2 − 1. (7)

The shear strain is

γ̃ = θ − ϕ, (8)

which measures the angle between the deformed cross
section and the normal plane to the deformed neutral
line.

2.2.2 Green–Lagrange strains

The Green–Lagrange strain tensor, denoted E, is given
by

E = 1

2

(
FTF − 1

)
= 1

2

(
∇u + ∇Tu + ∇uT∇u

)
,

(9)

so that, using (4), its components in the rotating basis
(ex , ez) are:

Exx = 1

2

[
(1 + u′)2 + w′2 − 1

]
− Zθ ′ [(1 + u′) cos θ

+w′ sin θ
]+ 1

2
Z2θ ′2, (10a)

Exz = Ezx = 1

2

[−(1 + u′) sin θ + w′ cos θ
]
,

Ezz = 0, (10b)

On any point of the neutral axis (defined by Z = 0),
the axial Green–Lagrange strain is

E0
xx = 1

2

[
(1 + u′)2 + w′2 − 1

]
= 1

2

[
(1 + ẽ)2 − 1

]
.

(11)



As a consequence, if the engineering strain ẽ is small,
then E0

xx � ẽ.

2.2.3 Consistent linearization

The expressions of the Green–Lagrange strains as a
function of displacements u, w and θ , Eq. (10), are
intricate and can be simplified in the case of small
strains. Since the beam is thin, it can experience large
displacements u and w, associated with large rota-
tion θ , while the local strains remain small. In other
words, a differential element of the beam in the ref-
erence configuration can be subjected to a rigid-body
displacement, which can be large, but will be min-
imally deformed. The nonlinear part of the Green–
Lagrange strain tensor represents in a mixed manner
both rigid-body rotations and local strains. In order
to simplify the Green–Lagrange strains without trun-
cating the rotation part, it is then convenient to split
it into a rigid-body rotation part and a pure strain
part, in order to apply linearization on the latter only.
This procedure is known as a consistent linearization
[25,26].

We apply a pseudo-polar decomposition to the
deformation gradient F:

F = R(θ)Ũ, (12)

where R(θ) is the rotation tensor associated with the
cross-section rotation θ [Eq. (2)] and Ũ is a stretch
tensor, which correspond to the part of the defor-
mation gradient cleared of the rigid-body displace-
ment. In the general case, Eq. (12) is not the stan-
dard polar decomposition, for which R(θ) must cor-
respond to the rotation of the principal directions of
strains [53]. As it will be seen, the present pseudo-
polar decomposition coincides with the standard polar
decomposition if the shear strains are neglected (see
Sect. 2.5).

Since the rotation matrix is orthogonal, one obtains
with Eqs. (2) and (4):

Ũ = R(−θ)F = 1 + L, (13)

with

L =
(
e − Zκ 0

γ 0

)
, (14)

and

⎧
⎪⎨

⎪⎩

e = (1+u′) cos θ+w′ sin θ−1 = (1+ẽ) cos γ̃ −1,

κ = θ ′,
γ = −(1 + u′) sin θ + w′ cos θ = −(1 + ẽ) sin γ̃ .

(15a)
(15b)
(15c)

The above expressions of e and γ as functions of the
engineering strains ẽ and γ̃ have been obtained by
replacing (1+ u′) and w′ by their expressions in terms
of the engineering strains ẽ and ϕ, given by Eq. (6), and
using the definition (8) of γ̃ .

Using its definition [Eq. (9)], E can then be written

E = 1

2

(
ŨTŨ − 1

)
= 1

2

(
L + LT + LTL

)
. (16)

In the case of small strains, it is now relevant to neglect
LTL with respect to L, because, as explained above, it
does not contain the rigid-body part of the continuum
transformation. This latter property clearly appears in
Eqs. (15a–c), which show that L depends only on the
engineering strains and not on the cross-section rota-
tion θ . Hence, when those local strains are small, i.e.,
ẽ � 1 (small axial strain), γ̃ � 1 (small shear) and
Zθ ′ � 1 (small thickness, which do not imply any
limitation on the curvature θ ′), the quadratic part of E
as a function of L [Eq. (16)] can be neglected:

E � Ẽ = 1

2

(
L + LT

)
, (17)

where Ẽ is known as the consistent linearization of E.
Finally, Ẽ can be written as follows

Ẽ =
(
e − Zκ γ /2

γ /2 0

)
, (18)

where the quantities e, κ and γ are defined by
Eqs. (15a–c) in terms of u, v and θ , or in terms of
engineering quantities ẽ and γ̃ . Those quantities thus
correspond to measures of the axial strain on the neu-
tral axis of the beam, of its curvature and of the shear
strain, respectively.

2.3 Constitutive equations and stress tensor

Since the strains are small, a Kirchhoff–Saint-Venant
constitutive law is used, which gives a linear relation



between the Green–Lagrange strain tensor E and the
second Piola–Kirchhoff stress tensor S. It writes:

E = 1 + ν

E
S − ν

E
tr (S) 1, (19)

where E is the Young modulus, ν is the Poisson ratio
and tr(S) is the trace of S. According to the usual Tim-
oshenko theory, the transverse stresses Syy and Szz are
neglected. Using Ẽ instead of E in Eq. (19) leads to the
following expressions of the axial stress Sxx and shear
stress Sxz

Sxx � S̃xx = E (e − Zκ) , Sxz = Szx � S̃xz = Gγ,

(20)

with G the shear modulus defined by G = E/2(1 +
ν). The S̃i j are the components of a stress tensor S̃
energetically conjugated to Ẽ. The generalized forces
(axial force N , bending moment M and shear force T )
are then

N =
∫

A
S̃xx dA = E Ae, M=

∫

A
Z S̃xx dA=E Iκ,

T =
∫

A
S̃xz dA = kGAγ, (21)

where A is the beam cross section and I its second
moment of area. k is a shear correction factor, taking
into account that the shear stress is not uniform in the
cross section [34].

2.4 Equations of motion

This section is devoted to the equations of motions that
are first written in a weak form to be directly used in
the finite-element model of Sect. 4 and that are then
transformed into a strong form for the analyticalmodels
of Sect. 3.

2.4.1 Weak form

The weak form of the equations of motions of the beam
is here obtained with the virtual work principle that
stands that for all time t and for all virtual displacement
δu,

δWi + δWe = δWa, (22)

where the internal, external and inertia virtual works
expressions are:

δWi = −
∫

V
S : δE dV, (23a)

δWe =
∫

V
fe · δu dV +

∫

∂V
Fe · δu dA, (23b)

δWa =
∫

V
ρ
 · δu dV, (23c)

where V is the domain occupied by the beam and ∂V
its boundary. In the above equations, fe and Fe are the
external body and surface forces, δE is the variation of
E due to the infinitesimal displacement δu and 
 the
acceleration field in the rotating frame

(
0, ex , ey, ez

)
.

Considering the displacement field (3), the infinites-
imal displacement δu writes:

δu = [δu − Z cos θδθ ] ex +[δw − Z sin θδθ ] ez . (24)

δE is derived from the consistent linearization of Eq.
(18) with the variations of e, κ and γ , whose expres-
sions are, from Eqs. (15a–c):

⎧
⎪⎨

⎪⎩

δe = cos θ δu′ + sin θ δw′ + γ δθ,

δκ = δθ ′,
δγ = − sin θ δu′ + cos θ δw′ − (1 + e)δθ.

(25a)

(25b)

(25c)

CombiningEqs. (20), (21) and (23a)with an integration
over the cross section, using the above Eqs. (25a–ca–
c) and integrating the result by parts, one obtains the
following expression for the work of internal forces:

δWi =
∫ L

0

{
(N cos θ − T sin θ)′ δu

+ (N sin θ + T cos θ)′ δw
+ [T (1 + e) − Nγ + M ′] δθ

}
dX

−
[
(N cos θ + T sin θ) δu

+ (N sin θ − T cos θ) δw + Mδθ
]L

0
. (26)

Since the cantilever beam is rotating with a constant
angular velocity� = �ez , it is submitted to a centrifu-
gal force, denoted f�e, and a Coriolis force, denoted
f�c, whose expressions are:

f�e = −ρ � × (� × Om) , f�c = −2ρ � × v, (27)



with v the velocity in the rotating frame and m the
current position of point M , which can be written with
the first time derivative of Eq. (3). One then obtains:

f�e = ρ�2 (R + X + u − Z sin θ) ex ,

f�c = −2ρ�
(
u̇ − Z θ̇ cos θ

)
ey, (28)

where the axial position X of a point M in the initial
configuration is measured with respect to the hub of
radius R (see Fig. 1). The above expressions come into
play in the body force fe. Following the same steps
than for the work of the internal forces, considering
Eq. (23b) leads to the following expression for thework
of the external forces:

δWe =
∫ L

0

{
ρA�2 (R + X + u) δu

−ρ I�2 sin θ cos θδθ

+ (nδu + pδw + qδθ)
}
dX

+
[
Neδu + Teδw + Meδθ

]L

0
, (29)

wheren and p are forces per unit length applied, respec-
tively, along ex and ez , andq amoment (per unit length).
Ne, Te and Me are the forces and moments applied at
the ends of the beam, in x = R, L . Those external loads
come from fe and Fe.

Finally, the work of inertia forces writes:

δWa =
∫ L

0

(
ρAüδu + ρAẅδw + ρ I θ̈ δθ

)
dX. (30)

2.4.2 Strong form

Applying the virtual work principle (22) for all δu, or,
equivalently, for all δu, δw and δθ , leads to the follow-
ing equations of motion of the beam:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ρAü = (N cos θ − T sin θ)′

+ ρA�2 (R + X + u) + n,

ρAẅ = (N sin θ + T cos θ)′ + p,

ρ I θ̈ = T (1 + e) − Nγ + M ′

+ ρ I�2 sin θ cos θ + q,

(31a)

(31b)

(31c)

associated with the natural boundary conditions

N cos θ + T sin θ = Ne at X = 0, L, (32a)

N sin θ + T cos θ = Te at X = 0, L, (32b)

M = Me at X = 0, L . (32c)

Consequently, in the present case of a cantilever beam
clamped to the hub in X = 0, the boundary conditions
are:

u = w = θ = 0, at X = 0, (33a)

N = T = M = 0, at X = L. (33b)

It can be noticed that the effects of rotation add
two terms in the set of equations of motion. The term
�2 (R + X + u) is the axial prestress and ρ I�2 sin θ

cos θ an additional moment, both due to centrifugal
forces. Since the effect of Coriolis forces is along ey ,
it has no influence on the beam motion since the latter
is restricted to the plane (ex , ez).

2.5 Remarks on the Euler–Bernoulli assumptions

The Euler–Bernoulli assumptions, that will be used for
the analyticalmodels, consist in neglecting (1) the shear
strain and (2) the rotatory inertia I . It leads to impose
γ̃ = 0, which shows with Eqs. (15a, c) that γ = 0
and e = ẽ. This latter relation means that applying the
consistent linearization to the Green–Lagrange strains
leads to exactly the same strain measure than the engi-
neering strains.

Moreover, one can observe that in the present case
where the shear strains are neglected, the pseudo-polar
decomposition (12) is the standardpolar decomposition
since R(θ) is the rotation of the principal directions of
strains.As a consequence, Ũ is the standard right stretch
tensor (see [53] for its definition). It will be denoted by
U in the following. One can notice that it is symmetric,
whereas Ũ is not.

2.6 Comparison with other works

A large amount of work has been devoted to non-
linear statics and dynamics of flexible beams. The
earlier studies, that emerged after 1950, were analyt-
ical, whereas in the last 15years, numerical modeling
mainly by thefinite-elementmethodhas emerged.Most
of those studies aim at simulating complex behaviors
of beams, stemming from initial complex geometry
(such as initial twist or curvature), anisotropic com-
posite structure as well as three-dimensional coupled
motions (such as bending in both planes and torsion),
that eventually create warping effects, and geometrical



nonlinearities. Because of those complex features, sev-
eral modeling strategies have been proposed in the lit-
erature, which can appear distinct at first sight (in terms
of strain and stress measure, constitutive laws, deriva-
tion of the equations of motions, etc.) but which rely in
fact on the same physical assumptions. The remaining
of this section gives a synthetic overview of some of
these works, classified according to the strain measure
which is used to derive the model.

(a) The first family groups the early studies, originated
in [17,18] and widely used after ([19,33,50,54]
among others), which proposed an elastica analyt-
icalmodel accounting for vibrations of a beamwith
large rotations. The chosen strain measure corre-
sponds to the engineering strains ẽ and κ = θ ′
of the present study and the stress measure is a
consequence of the constitutive laws N = E Aẽ
and M = E Iθ ′, which are postulated and not
a result of a proper derivation from the 3D con-
tinuum mechanics laws. This family also groups
the studies based on Cosserat rods theories [1,15,
40,41,61,73], in which the same strain measure is
used, but derived from the derivatives of the cross-
section position and orientation in the deformed
configuration. The same stress measure and con-
stitutive laws are postulated and used. A few other
works, devoted to finite- element formulations, use
the same strain measure, but with a stress measure
and a constitutive law derived from the standard
3D Kirchhoff–Saint-Venant law [26,62].

(b) A second family of works explicitly use the Biot
strain tensor (also called Biot-Jaumann), defined
by EB = U − 1 with U the standard right stretch
tensor, according to a linear constitutive law with
the energetically conjugated stress tensor [21,28,
30,45,55,78].

(c) Finally, a third family of works, that includes
our formulation, is based on a standard deriva-
tion of the equations from the 3D nonlinear con-
tinuum mechanics laws, the only assumptions
being (1) Timoshenko orEuler–Bernoulli kinemat-
ics; (2) the consistent linearization of the Green–
Lagrange strain tensor; and (3) a linear constitutive
law between Green–Lagrange strains and second
Piola–Kirchhoff stresses [25,26].

In fact, all these four families of works are more or less
equivalent, and all promote the use of Ẽ [Eq. (18)] as
strain measure instead of the full Green–Lagrange one

[Eqs. (10a–b)]. This in fact leads to neglect the part
of the Green–Lagrange strains which is quadratic with
respect to the beam transverse coordinate Z [28,64]. In
the case of an Euler–Bernoulli kinematics, the deriva-
tions of the present article (Sects. 2.1–2.5) prove that
the engineering strains (ẽ, κ), the consistent lineariza-
tion of Green–Lagrange strains (e, κ) and Biot strains
are perfectly the same, as well as the constitutive laws
N = E Aẽ = E Ae andM = E Iκ . In the case of a Tim-
oshenko kinematics, engineering strains (ẽ, κ, γ̃ ) dif-
fer from (e, κ, γ ), which also differs from Biot strains.
However, [30] proves that under the assumption of
small strains, Biot strains can be simplified to give
exactly the same formula than the present consistent
linearization, so that Ẽ is the strain measure used in
[30]. For more details about comparisons between dif-
ferent families of works, the interested reader can refer
to [23,26,28,30,76].

In our work, the equilibrium Eqs. (31) are rigor-
ously obtained as a consequence of the general weak
form (22) with the particular kinematics (3). These
equilibrium Eqs. (31) have been previously obtained
in the case of no rotation (� = 0) by several authors
studying nonlinear vibrations of beams [24,48,75] or
interested in a consistent derivation of the governing
equations [59], directly by writing the dynamic equi-
librium of a beam elementary part. As a consequence,
the physical meaning of the generalized forces N , T
and M is obvious: they represent the normal force,
shear force and bending moments defined in the cur-
rent configuration. According to our derivations, it thus
means that the strains Ẽ, which are a consistent lin-
earization of the Green–Lagrange strains, are energet-
ically conjugated to the generalized forces N , T and
M . Moreover, those generalized forces are associated
with a particular stress measure S̃, that is close to the
second Piola–Kirchhoff stress tensor S [see Eq. (20)].
Whereas the physical interpretation of S is often not
obvious, the one of S̃ is clear: our derivations show that
it is associated with the generalized forces on the cur-
rent configuration of the beam. The interested reader
can also refer to [35,36] for more details about those
issues.

3 Analytical models

This section focuses on the derivation of the two ana-
lytical models considered in this paper: a von Kármán



model (VK) and a large rotations model based on an
inextensibility constraint with respect to the centrifu-
gally stiffened rotated configuration of the beam.

3.1 Von Kármán model

3.1.1 Equations of motion

This nonlinear model is obtained by linearizing the
kinematics and neglecting all the nonlinear terms in the
Green–Lagrange strains, except the one corresponding
to the first nonlinear stretching/bending coupling. It has
been first introduced in the case of plates in [72] and
shells in [46] and applied to beams with restricted ends
in [47,74] and in numerous works since. Combined
with Euler–Bernoulli assumptions (Sect. 2.5), it leads
to truncate (1) the fiber rotations and (2) the axial strains
[Eqs. (7), (10)] to:

sin θ � θ, cos θ � 1, (34)

e = ẽ � u′ + 1

2
w′2, (35)

so that Exx � e − Zw′′ and Exz = Ezx = Ezz = 0.
Using this strain measure in the virtual work princi-
ple of Eq. (22), the following equations of motions are
obtained:

{
ρAü = N ′ + ρA�2 (R + X + u) + n

ρAẅ = (Nw′)′ − M ′′ + p

(36a)

(36b)

with the constitutive laws that write:

N = E Ae = E A

(
u′ + 1

2
w′2
)

, M = E Iw′′.

(37)

This problem is further simplified by (1) considering
no axial external forcing n = 0 and (2) neglecting the
axial inertia ρAü. This is the model considered in [2,
4,37,58,65].

To solve this problem, one has to choose two prin-
cipal unknowns, for the transverse and axial motion.
In order to keep linear the boundary condition at the
beam’s tip (N = 0 at x = L), N is chosen as the axial
unknown instead of u. Expressing u′ as a function of N
and w with (37) and differentiating (36a) with respect

to time, the VK model is written, for all X and t :

⎧
⎪⎨

⎪⎩

N ′′ + ρA�2
(
1 + N

E A
− 1

2
w′2
)

= 0,

ρAẅ + E Iw′′′′ − (Nw′)′ = p,

(38a)

(38b)

with the following boundary conditions, for all t :

⎧
⎪⎨

⎪⎩

N ′(0, t) = −ρA�2R, N (L , t) = 0,

w(0, t) = 0, w′(0, t) = 0,

w′′(L , t) = 0, w′′′(L , t) = 0.

(39a)

(39b)

The above model is rewritten in terms of dimen-
sionless variables of order O(1), to identify the free
parameters as well as to properly condition the model
for the numerical simulations of Sect. 3.3. The follow-
ing dimensionless variables, denoted by overbars, are
introduced:

X̄ = X

L
, w̄ = w

L
, R̄ = R

L
,

N̄ = N

E A
, t̄ = t

L2

√
E I

ρA
,

�̄ = �L2

√
ρA

E I
, p̄ = pL3

E I
. (40)

Substituting these variables into Eqs. (38a,b) and drop-
ping for simplicity the overbars in the result, we find
for all X and t :

⎧
⎪⎪⎨

⎪⎪⎩

N ′′ + ε�2
(
1 + N − 1

2
w′2
)

= 0,

ẅ + w′′′′ − 1

ε
(Nw′)′ = p,

(41a)

(41b)

with the boundary conditions, for all t :

N ′(0, t) = −ε�2R, N (1, t) = 0,

w(0, t) = w′(0, t) = w′′(1, t) = w′′′(1s, t) = 0,

(42)

where the only material/geometrical parameter is ε =
I/AL2 = h2/(12L2).

3.1.2 Static and dynamic splitting

To take into account the effect of rotation, the prob-
lem is split in two parts. The first one corresponds to
the rotating beam without transverse vibrations, thus



submitting to an axial elongation due to the centrifugal
force. The second part is the transverse vibration super-
imposed on the centrifugally prestressed configuration.
The axial force N is split into static and dynamic parts,
as follows:

N (X, t) = Ns(X) + Nd(X, t). (43)

where Ns satisfies the static version of problem (41a,
b) with w ≡ 0, for all X :

N ′′
s + ε�2Ns = −ε�2, (44)

associated with boundary conditions (47). A closed-
form solution for this equation is:

Ns = 1 + μR sinμ

cosμ
cos(μX) − μR sin(μX) − 1,

(45)

with μ2 = ε�2.
Finally, introducing Eq. (43) into Eqs. (41a,b) leads

to derive the final set of equations of motion, in terms
of w and Nd, for all X and t :

⎧
⎪⎪⎨

⎪⎪⎩

N ′′
d + ε�2

(
Nd − 1

2
w′2
)

= 0,

ẅ + w′′′′ − 1

ε

(
Nsw

′)′ − 1

ε

(
Ndw

′)′ = p,

(46a)

(46b)

with the boundary conditions, for all t :

N ′
d(0, t) = 0, Nd(1, t) = 0,

w(0, t) = w′(0, t) = w′′(1, t) = w′′′(1, t) = 0,

(47)

3.1.3 Expansion onto normal mode bases

The dynamic problem (46) is discretized by expanding
the transverse displacement w and the dynamic part
of the axial force Nd on the normal modes bases of
the associated linear and unstressed problem. They are
thus sought as:

w(X, t) =
∞∑

k=1


k(X) qk(t),

Nd(X, t) =
∞∑

k=1

�k(X) ηk(t), (48)

where {qk}k∈N∗ and {ηk}k∈N∗ are the transverse and
axial modal coordinates, functions of time. The trans-
verse and axial modes of the cantilever beam are solu-
tions of, for all k ∈ N

∗:


′′′′
k − β4

k
k = 0, � ′′
k − α2

k�k = 0, (49)

with boundary conditions deduced from (47). There
expressions are:


k(X) = cos(βk X) − cosh(βk X)

+cos(βk) + cosh(βk)

sin(βk) + sinh(βk)

(sinh(βk X) − sin(βk X)) , (50)

�k(X) = √
2 cos(αk X), (51)

where the {βk}k∈N∗ are the solutions of cos(β) cosh(β)

+ 1 = 0 and αk = (2k − 1)π/2. Those modes are
orthogonal and naturally normalized so that:

∫ 1

0

2

k dX = 1,
∫ 1

0
�2

k dX = 1. (52)

By injecting Eqs. (50) and (51), respectively, in
Eqs. (46a) and (46b), and using the orthogonality prop-
erties, the following dynamical system is obtained, for
all k ∈ N

∗:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ε�2 − α2

k

)
ηk = ε�2

2

∞∑

p=1

∞∑

q=1

Ek
pqqpqq ,

q̈k + β4
k qk = 1

ε

∞∑

p=1

Ak
pqp

+ 1

ε

∞∑

p=1

∞∑

q=1

Hk
pqηpqq + pk

(53a)

(53b)

where ωk = β2
k is the natural frequency of the kth

transverse mode and

Ek
pq =

∫ 1

0

′

p

′
q�k dX,

Ak
p =

∫ 1

0

(
Ns


′
p

)′

k dX, (54)

Hk
pq =

∫ 1

0

(
�p


′
q

)′

k dX,

pk =
∫ 1

0
p
k dX. (55)



3.2 Inextensible model

In the von Kármán model, only one nonlinearity mech-
anism is considered: the coupling between the axial
strain and the transverse displacement included in
Eq. (35). To take into account higher-order geomet-
rical nonlinearities, an extension to the rotating case of
the elastica model of [17,54] is proposed here.

3.2.1 Governing equations

The derivation starting point is the strong form (31),
simplified by the Euler–Bernoulli assumptions (Sect.
2.5). Then, one extracts the axial force N from [31(a)]
and the shear force T from [31(c)]:

N = ρA

cos θ

∫ X

L

[
ü−�2 (R+X+u)

]
dX + T tan θ,

T = − E Iθ ′′

λ
, (56)

where the vanishing of N and T at X = L [Eq. (33a)]
has been used for the integration, and Eqs. (21) and
(15) have been used and λ = 1 + e. Introducing those
expressions into the bending motion Eq. [31(b)], one
obtains:

ρAẅ + E I

(
θ ′′

λ cos θ

)′

−ρA

(
tan θ

∫ X

L

[
ü − �2 (R + X+u)

]
dX

)′
= p.

(57)

At this stage, we assume that the beam oscillations
are inextensional with respect to the centrifugally pre-
stressed configuration. We separate e, the axial strain
on the neutral fiber, into static and dynamic compo-
nents: e(X, t) = es(X) + ed(X, t). The inextensional-
ity assumption, extended to the case of a rotating beam,
consists in neglecting the dynamic axial strain (ed � 0).
The static strain es comes from the resolution of the sta-
tic problem without transverse displacement, so that:

λ = 1 + e � 1 + es = 1 + Ns

E A
. (58)

where Ns is defined by Eq. (45). It enables to condense
the axial displacement u, by using (7):

u =
∫ X

0

(
λ

√
1 − (w′/λ)2 − 1

)
dX, (59)

where the vanishing of u in X = 0 has been used for
the integration [Eq. (33b)].

The last step of the model derivation is to replace in
(57) θ by its expression as a function of w with:

sin θ = w′

λ
⇒ θ = arcsin

w′

λ
,

cos θ =
√

1 −
(

w′
λ

)2

,

tan θ = w′

λ

/
√

1 −
(

w′
λ

)2

, (60)

that stems from Eq. (6). The obtained equation of
motion, highly nonlinear in terms of w, is a large rota-
tion analytical model of the rotating cantilever beam,
valid for any value of the fiber rotation θ .

A simplifiedmodel is obtained by expanding all non-
linear terms in Taylor series of w and truncating the
result to order 3. It leads to the following equation of
motion:

ρAẅ + E I
(
w′′′ + w′w′′2 + w′′′w′2)′

+ ρA

2

[
w′
∫ X

L

∂2

∂t2

(∫ X

0
w′2 dX

)
dX

]′

− E I
(
(w′es)′′ + w′′′es

)′

+ ρA�2
[
(w′(1 − es) + 1

2
w′3)

∫ X

L
(R + X) dX

]′

− ρA�2
[
w′
∫ X

L

∫ X

0

(
1

2
w′2 + es

)
dX dX

]′
= p.

(61)

The first line of the above equation corresponds to the
standard elastica equation as written in [17,54] (that is
recovered if the rotation is canceled,� = es = 0). The
second term corresponds to the beam’s bending stiff-
ness, which incorporates cubic nonlinear terms that are
a consequence of the nonlinear dependence of the cur-
vature κ = θ ′ on the transverse displacement w (often
called nonlinear curvature terms). The third term in
Eq. (61) comes from the axial inertia ü, which is cou-
pled to the bending due to the large rotation motion
(often called a nonlinear inertia effect). Both those
nonlinear effects are absent in the von Kármán model.
Higher-order approximations of Eq. (61), without rota-
tion, are proposed in [52].

In addition, the second and the third lines in Eq. (61)
gather additional terms brought by the rotation. At last,
the rotation implies a cubic nonlinearity (4th and 5th



terms) on the beam motion in addition to its linear
stiffening effect (3rd term). The boundary conditions
associated with Eq. (61) are deduced from those of
the general problem. In contrast to the von Kármán
model, where the linearization of the kinematics leads
to w(0) = w′(0) = w′′(L) = w′′′(L) = 0, the trun-
cated third-order kinematics give nonlinear boundary
conditions that are here linearized:

w(0) = 0, (62a)

θ(0) = 0 ⇒ w′(0) = 0, (62b)

M(L) = 0 ⇒ θ ′(L) = 0 ⇒ w′′(L)

+ w′(L)e′
s(L) = 0, (62c)

T (L) = 0 ⇒ θ ′′(L) = 0 ⇒ w′′′(L)

+ 2w′′(L)e′
s(L) + w′(L)e′′

s (L) = 0. (62d)

The abovemodel is rewritten in the followingdimen-
sionless form, using the same changes of variables than
for the von Kármán model Eq. [40]. It is found that:

ẅ+w′′′′ = −
(
w′w′′2+w′′′w′2)′+((w′es)′′+w′′′es

)′

− 1

2

[
w′
∫ X

1

(∫ X

0
w′2 dX

)..

dX

]′

−�2
[
(w′(1 − es) + 1

2
w′3)

∫ X

1
(R + X) dX

]′

+�2
[
w′
∫ X

1

∫ X

0

(
1

2
w′2 + es

)
dX dX

]′
+ p,

(63)

where ēs = es and the overbars have been omitted.

3.2.2 Expansion onto a normal mode basis

The discretization consists of expending the displace-
ment w onto an eigenmode basis and then using the
orthogonality properties to obtain a set of coupled oscil-
lators. Therefore, and similarly to the previous sec-
tion, w is sought as Eq. (48). From a mathematical
point of view, any basis can be chosen if the bound-
ary conditions are verified. For this reason, the modes

 (Eq. (50)), solutions of the linear and non-rotating
problem [the left-hand side of Eq. (63)], can be used if
they match the new boundary conditions Eq. (62). The
transverse modes are now:


k(X) = cos(βk X) − cosh(βk X) + a (sinh(βk X)

− sin(βk X)) , (64)

with

a = cos(βk)+cosh(βk)+(sin(βk)+sinh(βk))e′
s(1)

sin(βk)+sinh(βk) + (cosh(βk) − cos(βk))e′
s(1)

,

where the {βk}k∈N∗ are solutions of

cosβ cosh β + [
cosβ sinh β + 2 sin β sinh β e′

s(1)

+ sin β cosh β] e′
s(1) − sin β sinh β e′′

s (1) = −1.

(65)

Since the βk depend on es , the projection is valid only
for a given angular velocity, but the orthogonality prop-
erties stay the same. The mode (ωk,
k) are the trans-
verse linear modes of the non-rotating beam matching
the boundary conditions of the rotating beam. Inject-
ing Eq. (48) in Eq. (63), multiplying by
k , integrating
from 0 to 1 and using the orthogonality properties leads
to, for all k ∈ N

∗:

q̈k + β4
k qk =

∞∑

p=1

(
Ak
p + �2Bk

p

)
qp

−
∞∑

p=1

∞∑

q=1

∞∑

r=1

((

k
pqr + 1

2
�2�k

pqr

)
qqqr

+�k
pqr

(
q̈qqr + q̇q q̇r

))
qp + pk . (66)

where the coefficients Ak
p, B

k
p,


k
pqr ,�

k
pqr et�

k
pqr and

the modal forcing pk are given in ‘Appendix 1’.

3.3 Numerical solving

The VK and Inxt. models, based on a partial differ-
ential equation, were discretized using the vibration
mode basis of the associated linear and non-rotating
problem. It leads to two sets of second-order differen-
tial Eqs. (53) and (66), the first one having quadratic
nonlinear terms, whereas the second one being cubic.
In the case of a harmonic forcing, periodic solutions
of those equations are numerically computed with the
asymptotic numerical method, a special continuation
method, coupled with the harmonic balance method
(ANM/HBM) and implemented in the software Man-
lab [3,16]. In this framework, the problem to solvemust
bewritten under the formof a first-order dynamical sys-
tem with quadratic nonlinearities only. The VK model
naturally writes:



⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̇k = vk,

v̇k = −2μkvk − β4
k qk + 1

ε

Nt∑

p=1

Ak
pqp

+ 1

ε

Na∑

p=1

Nt∑

q=1

Hk
pqηpqq + pk,

0 =
(
ε�2 − α2

k

)
ηk

− �2

2

Nt∑

p=1

Nt∑

q=1

Ek
pqqpqq ,

(67a)

(67b)

(67c)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̇k = vk ,

v̇k = χk ,

0 = −χk − 2μkvk − β4
k qk +

Nt∑

p=1

(
Ak
p + �2Bk

p

)
qp

−
Nt∑

p=1

(
Rk
p + Qk

p

)
qp + pk ,

0 = Rk
p −

Nt∑

q=1

Nt∑

r=1

(

k
pqr + 1

2
�2�k

pqr

)
qqqr ,

0 = Qk
p −

Nt∑

q=1

Nt∑

r=1

�k
pqr

(
χqqr + vqvr

)
.

(68a)
(68b)

(68c)

(68d)

(68e)

The modal truncation is set to Na axial and Nt trans-
verse modes, and modal viscous damping terms have
been added, with damping constant μk . It is worth
noticing that the VK model is naturally quadratic,
whereas the Inxt model is cubic so that numerous addi-
tional variables (Rp

k , Q
p
k ) must be added, as in [42]

for piezoelectric laminated beams.Otherworks [13,56]
use elegant formulations of the equations of motion ,
first proposed in [31], using both the displacement and
the velocity as variables. By expansion onto a suitable
basis, a naturally quadratic formulation is obtained,
which is exact without any restriction on the displace-
ment/rotation magnitude.

4 Finite-element model

The third model (denoted as FE) is based on a finite-
element discretization of the beam geometry, based on
a total Lagrangian nonlinear formulation and a Tim-
oshenko kinematics [25]. Whereas the VK and Inxt.
models are valid for moderate rotations, the present
FE model enables large amplitude simulation with no

restrictions on the rotation amplitude and thus consti-
tutes a reference solution.

The discretization procedure is based on the weak
form (22), the simplifiedGreen–Lagrange strains (15a–
c) and the linear constitutive laws (21), with all details
gathered in ‘Appendix 2’. The following discretized
nonlinear dynamic problem is obtained for all time t :

Mq̈ + Dq̇ + f(q) = fext, (69)

with given initial conditions q(0) = q0 and q̇(0) = q̇0.
In the above equation, q(t) = [u1 w1 θ1 . . . uN , wN

θN ]T is the generalized coordinate vector, of size 3N ,
which gathers the node generalized displacements (ui ,
wi and θi are, respectively, the axial displacement,
the transverse displacement and the fiber rotation the
i th node finite-element node and N is the number of
nodes); M is the mass matrix, of size 3N × 3N ; and
f(q) = fint(q) − f�(q) is the nonlinear forces vec-
tor, which gathers the elastic internal forces vector
fint(q) and the centrifugal forces vector f�(q). The lat-
ter is proportional to �2, and in the case of no rotation
(� = 0), f = fint and Eq. (69) is the nonlinear equa-
tion ofmotion of a cantilever beam. A viscous damping
term has been added, where D is the damping matrix,
and finally, fext is the external forces vector. Both fint(q)

and f�(q) are nonlinear functions of q because of the
geometrical nonlinearities. The expression of the pre-
vious terms is given in ‘Appendix 2’.

The above FE model is numerically integrated in
time with a Newmark implicit scheme (γ = 1/2,
β = 1/4) coupled to a Newton–Raphson algorithm
at each time step [27]. This numerical scheme does not
include numerical dissipation, which is not a problem
here since some physical mass proportional damping is
added throughmatrixD. For each excitation frequency,
the time evolution is computed until the steady state is
reached, whose maximum amplitude gives one point
of the resonance curve. To obtain the classical hys-
teretic behavior of the nonlinear resonance curves, the
initial conditions of each simulation are imposed by
one beam position/velocity pair taken at the end of the
previous simulation.The expressionof the tangent stiff-
ness matrix Kt = ∂f/∂q is given in ‘Appendix 2’.

Since the rotation of the beam brings it into a pre-
stressed state, it is convenient to split up the dis-
placement q into a static and dynamic contributions:
q(t) = qs + qd(t). The displacement qs is then solu-
tion of the following nonlinear static problem:



f(qs) = 0. (70)

A Newton–Raphson algorithm solves Eq. (70) to com-
pute the static solutionqs. It is thenusedfirst to compute
the natural frequencies of the centrifugally prestressed
beam, which are solution of the following eigenprob-
lem, associatedwith Eq. (69) linearized aroundq = qs:

[
Kt(qs) − ω2M

]
� = 0 (71)

Then, qs is used as the initial condition to the time
integration algorithm of Eq. (69).

5 Numerical results

In this section, results from each of the three proposed
models (VK, Inxt. andFE) are presented and compared.
The numerical simulations are carried out with a beam
of length L = 1 m, of rectangular cross section of
thickness h = 5 mm and width b = 0.1 m, with a hub
radius of R = 0.1 m, made in a homogeneous mate-
rial of Young’s modulus E = 104 GPa and density
ρ = 4400 kg/m3 (order of magnitude of a Titanium
alloy). Various rotating angular velocities are tested,
between � = 0 and � = 3000 RPM (where RPM
stands for round per minute), which is close to the tran-
sonic velocity of the beam’s tip.

It must be noticed that a value� = 3000RPMof the
rotating velocity creates centrifugal axial stresses in the
beam close to the elastic limit of the material. In partic-
ular, using Eq. (45) with the above numerical values of
the parameters, one obtains amaximal normalized axial
force (at the hub radius) N̄s = Ns/E A = 2.5 · 10−3

for � = 3000 RPM. For a Titanium alloy, the elastic
limit is σe = 800 MPA and the strain at the elastic
limit is σe/E = 7.3 ·10−3, thus closing (but above) the
maximal strain considered in this study.

5.1 Linear vibrations

The natural modes of the beam are affected by the rota-
tion since it produces a centrifugal force which stiff-
ens the beam. As a consequence, its natural frequen-
cies increase as a function of the rotation velocity, as
shown in Fig. 2a. Fig. 2b, c, d) shows the effect of the
centrifugal force on the mode shape. This stiffening
effect, that affects the small amplitude oscillations of

the beam around its prestressed static configuration in
the rotating frame, is called here a linear hardening
effect of the rotation, well documented elsewhere (see,
i.e., [12,77]).

The results of the three models of the present work
were also validated. Firstly, the natural frequencies
computed by the present Timoshenko finite-element
model are compared to the result of the Euler–Bernoulli
model of [77] inTable 1. The discrepancies are less than
1%. As a consequence, the linear part of our finite-
element model is fully validated. Moreover, we can
consider that for the simulated beam, there is no differ-
ence between Timoshenko and Euler–Bernoulli mod-
els, since it is very thin (h/L = 5 ·10−3). Secondly, the
linear results of the three models (FE, VK and Inxt) are
compared in Table 2, showing discrepancies less than
1%. Their convergence as a function of the discretiza-
tion is shown in Fig. 3. It is interesting to notice that
both analytical models (VK and Inxt) display the same
convergence even if (1) the expansion bases and (2)
their linear part are different: compare first Eqs. (50)
and (64) and then Eqs. (53b) and (66).

5.2 Nonlinear resonance curves

The behavior of the beam subjected to large ampli-
tude oscillations about its prestressed (rotating) con-
figuration is addressed in this section, for the first two
modes. The results from the three geometrically non-
linear models, VK (Sect. 3.1), Inxt (Sect. 3.2) and FE
(Sect. 4), are compared. The beam is subjected to a
point sine force of frequency �, applied at its tip, and
the resulting oscillations are simulated using the three
models. The resonance curves of Figs. 6 and 7 are
obtained. Each curve shows the maximal amplitude,
over one period in the steady state, of the beam’s tip
oscillations, for a given driving frequency �.

The damping, for the three models, is chosen pro-
portional to the mass. In the FE model, it leads to
chose D = 2ξ0ωiM in Eq. (69), with a damping ratio
ξ0 = 5 · 10−3 and ωi being the natural frequency
of the centrifugally prestressed beam corresponding
to the studied resonance (ω1 for Fig. 6 and ω2 for
Fig. 7). For the VK and Inxt. models, which are based
on modal expansions, the i th modal damping constant
is μi = ξ0ωi in Eqs. (67) and (68), the same for all
modes.
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Fig. 2 Linear modes dependence upon the rotation velocity (FE
model with 200 finite elements). a Natural frequencies of the
four first modes as a function of�; b,c,d deformed shapes of the

first three modes for various rotations velocities (see the inset
legend for details)

Table 1 Natural frequencies [Hz] of the first three modes of the beam as a function of the rotation velocity, computed by the FE model
(200 finite elements) and compared to the results of Ref. [77]

Rotation velocity [RPM] 0 201 402 804

Mode 1

FE 200 elts. 3.927 5.358 8.220 14.709

Ref. [77] 3.927 5.358 8.220 14.709

Mode 2

FE 200 elts. 24.608 26.044 29.940 41.994

Ref. [77] 24.609 26.045 29.941 41.997

Mode 3

FE 200 elts. 68.901 70.339 74.469 88.905

Ref. [77] 68.906 70.344 74.475 88.916

Beam with no root offset (R = 0)

As explained in Sect. 4, the FE model is solve
by time integration. The integration time necessary to
obtain the steady state, so that the transient is fully
damped, depends on the damping ratio of the modes.
We chose here a number of oscillations period equal
to 1/ξ0 = 200 (Fig. 4). Moreover, because of the
geometrical nonlinearities, it has been noticed that the
Newton–Raphson algorithm used at each time step was

very sensible to unpredictable divergences, so that it
has been necessary to choose up to 500 (thus very
small) time increments per period. The residual for
the Newton–Raphson convergence has been chosen to
10−7. Each point of the curves of Figs. 6 and 7 is
obtained by a single time integration over 200 peri-
ods with the driving frequency kept constant. The next
point is then obtained by another time integration, with



Table 2 Natural frequencies [Hz] of the first three modes of the beam as a function of the rotation velocity, computed by the FE model
(20 or 40 finite elements), the VK model and the Inxt model (each with 6 transverse modes retained in the modal truncation)

Rotation velocity [RPM] 0 500 1000 2000 3000

Mode 1

FE 20 elts. 3.927 10.288 19.068 36.876 54.720

FE 40 elts. 3.927 10.288 19.068 36.876 54.720

VK 6 modes 3.927 10.289 19.079 36.979 55.019

Inxt 6 modes 3.927 10.289 19.074 36.936 54.876

Mode 2

FE 20 elts. 24.758 33.511 51.326 92.406 135.017

FE 40 elts. 24.644 33.414 51.229 92.268 134.822

VK 6 modes 24.609 33.388 51.232 92.454 135.377

Inxt 6 modes 24.609 33.386 51.220 92.363 135.076

Mode 3

FE 20 elts. 70.116 79.548 102.296 162.032 227.087

FE 40 elts. 69.193 78.689 101.491 161.091 225.863

VK 6 modes 68.906 78.425 101.256 160.871 225.690

Inxt 6 modes 68.906 78.427 101.303 161.277 226.783
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Fig. 3 Convergence of the natural frequencies as a function of
discretization and rotation velocity. Normalized natural frequen-
cies ωi/ωi th, where ωi th is the numerical value at full resolu-
tion of the model (20 modes for the analytical models and 200
elements for the FE model). a VK and Inxt models (identical

results); b FE model. Solid line: mode 1; solid line with dot:
mode 2; solid line with space: mode 3; circle: 0 RPM; times sym-
bols: 500 RPM; square box: 1000 RPM; diamond: 2000 RPM;
asterisk: 3000 RPM

the final beam state (in displacement and velocities of
all the degrees of freedom) of the previous frequency
step as initial conditions, in order to be able to sim-
ulate the bistable parts of the curves. In some cases,
both upward and downward frequency sweeps were
simulated. This leads to very time-consuming numeri-
cal simulations (with 90 frequency steps, a single curve
needs 90 × 500 × 200 =9,000,000 time increments).

However, themodel is able to compute very large oscil-
lations of the beam, as shown in Fig. 5. The number of
finite elements for each simulation (Table 3) as been
chosen so that the convergence of the natural frequen-
cies (Table 2) is obtained.

For the VK and Inxt models, as explained in Sect.
3.3, the solving relies on theANM/HBMmethod so that
a continuous curves for all the harmonics amplitude and
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Fig. 4 Time evolution of the tip of the beam at mode 1 resonance, FE model, rotation at 3000 RPM, transverse and axial displacements.
Zoom in the steady state. Fourier series decomposition of the transverse displacement in the steady state

phase are obtained. The maximum displacement over
one steady-state oscillation period is computed in post-
treatment. The convergence depends on the number Nt

and Na of modes retained in the expansions as well as
the number of harmonics in the HBM Fourier series
expansion (see Table 3). It will be further discussed in
Sect. 5.5.

5.3 Comparison of models

The beam vibratory behavior, stemming from each of
the three models (VK, Inxt. & FE), for the first and the
second bending mode, is shown in Figs. 6 and 7, for
several speed of rotations. The FE model being based
on a full (not truncated) description of the rotations
of the beam’s cross section, it is considered here as
the reference, as opposed to the two analytical models
that are approximated. Their validity range can thus be
inferred by comparing qualitatively and quantitatively
the hardening/softening behavior of the resonances, as
a function of the rotation speed.

First, the VK model completely fails to predict the
correct nonlinear behaviors of the beam response. For
instance, for rotating speed around 50 RPM, it predicts
a softening behavior, whereas the correct trend of the
resonance is hardening.On the contrary, the Inxt.model
is accurate, up to amplitudes of the order of L/3 (with
L the beam length). These results can be explained
by considering the physical source of the nonlineari-
ties in the VK and Inxt. model. In the first one, they
stem from the coupling between the axial tension N
in the beam and its bending. Since the beam is free
at its end, N is zero for zero rotation speed: the VK
model is linear if � = 0, with a straight resonance. In
reality, the resonance of mode 1 of a non-rotating can-

tilever beam is hardening, whereas it is softening for
mode 2 (see, it i.e., [54]), which is the trend predicted
by the FE and Inxt. models. For nonzero rotation speed,
the centrifugal force creates a nonzero axial tension N ,
which is coupled to the bending and creates geometrical
nonlinearities. Those nonlinearities are always soften-
ing, since all resonance curves computed with the VK
model bend to the lower frequencies.

On the contrary, the Inxt. model takes into account
higher-order nonlinearities, coming from the curvature
and the axial inertia, both neglected in the VK model.
Our simulations show that those latter nonlinearities,
coupled to the centrifugal effect of the rotation speed,
lead to correctly predict the trend of bending of the res-
onance curves, over a large range of vibration ampli-
tudes. Above, it suffers from the too severe Taylor
expansion truncation [up to order three, see Eq. 61)]
of the rotation sines and cosines.

5.4 Rotation effect on the nonlinearities

Our simulations bring new results about the harden-
ing/softening behavior of the rotating beam’s modes.
By using the amplitude and frequency of the resonance
of each of the curves of Figs. 6 and 7 (and others for
other rotation speeds, not shown), the backbone curves
of Fig. 8 are obtained. One can observe that the rotation
speed has a strong softening effect on mode 1, whereas
it has a slight hardening effect on mode 2. In other
words, mode 1 is hardening for low rotation speeds
(up to about 60 RPM) and become softening above.
Mode 2, on the contrary, is hardening at any rotation
speed, with an effect which slightly decreases with the
rotation speed.



Table 3 Characteristics of the models in the nonlinear simulations

Model Transverse mode Axial mode Harmonics Finite elements Degrees of freedom
Nt Na H

VK 6 10 7 − 16

Inxt. 6 − 7 − 6

FE, mode 1 − − − 20 63

FE, mode 2 − − − 40 123

0 0.2 0.4 0.6 0.8 1 1.2

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Axial position [m]

Tr
an

sv
er

se
 d

is
pl

ac
em

en
t [

m
]

0 RPM

0 0.2 0.4 0.6 0.8 1 1.2

−0.2

−0.1

0

0.1

0.2

Axial position [m]

Tr
an

sv
er

se
 d

is
pl

ac
em

en
t [

m
]

3000 RPM

0 0.2 0.4 0.6 0.8 1 1.2
−0.1

0

0.1

Axial position [m]

Tr
an

s.
 d

is
p.

 [m
]

3000 RPM

(c)

(b)(a)

Fig. 5 Large amplitude oscillations of the beam at resonance, FE model. a Mode 1, no rotation (0 RPM), largest forcing of Fig. 6; b
mode 1, rotation at 3000 RPM, largest forcing of Fig. 6; and c mode 2, rotation at 3000 RPM, largest forcing of Fig. 7

Even if those results have been obtained for a par-
ticular beam with a given geometry made in a given
material, by considering the dimensionless form of the
Inxt. model [Eqs. (45), (58) and (63)], one deduce that
they depend only of two parameters: the hub radius
R/L = 0.1 and the aspect ratio ε = h2/(12L2) =
2.08 · 10−6. The limit dimensionless rotation speed
for mode 1 in this case, corresponding to 60 RPM, is
�̄ = �L2√ρA/E I = 1.19.

Those nonlinear hardening/softening effects of the
rotation speed must not be confounded with the always
hardening effect on the (linear) natural frequencies (see
Sect. 5.1). The latter is due to the centrifugal effect
due to the beam’s rotation, which brings an additional
stiffness to the beam which increases its natural fre-
quencies. The nonlinear hardening/softening effect of
the resonances exhibited here comes from the time (the

period) necessary for the beam to do one oscillation at
resonance, which depends on the amplitude of those
oscillation because of geometrical nonlinearities and
which is also affected by the rotation speed.

The nonlinearities stemming from the amplitude of
motion not only bend the resonance curves, but also
create some harmonics in the response, which is peri-
odic but not a pure sine oscillation. In the present case,
Fig. 4 shows that there is no even harmonics (which
stems from the symmetry of the system in the transverse
direction) that the harmonics content is very poor: there
is less than 1.5% of H3 and basically negligible higher
harmonics. The number H = 7 of harmonics retained
in the Fourier series expansions for the ANM/HBM
solving method of the analytical models is since fully
validated.
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Fig. 6 First bending mode frequency response for various rota-
tion velocities and various forcing amplitudes F0. Maximal
amplitude of tip oscillations normalized by beam length (wm/L)
as a function of driving frequency normalized by the natural fre-

quency ( f/ f0). Solid line with space: VK model; solid line: Inxt
model; circle: FE model upward frequency sweep; left triangle:
FE model downward frequency sweep

5.5 Convergence of analytical models

The convergence of the analytical models depends on
the number ofmodes Na and Nt retained in theGalerkin
expansions [see Eqs. (67 and (68)] as well as the num-
ber of Harmonics chosen for the Fourier series expan-
sion of each of the variables in the HBM. Since the
modes are those of the unstressed beam (i.e., with no

rotation speed), the number of modes Na and Nt influ-
ences both the natural frequency and the bending of the
resonance curve. Figure 9 shows this effect on the Inxt.
model. A number Nt = 6 of transverse modes are thus
sufficient to ensure the convergence. By comparing the
two columns of plots of Fig. 9, one can observe that
increasing the number of modes Nt has more effect
on the convergence of the natural frequency (left col-
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Fig. 7 Second bending mode frequency response for various
rotation velocities and various forcing amplitudes F0. Maximal
amplitude of tip oscillations normalized by beam length (wm/L)
as a function of driving frequency normalized by the natural fre-
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upward frequency sweep; ‘�’: FE model downward frequency
sweep
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(FE model) for various rotation velocities and various forcing amplitudes
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Fig. 9 Convergence of the Inxt model, around the resonance of
the first bending mode, as a function of the number of transverse
modes Nt retained in the expansion of Eq. (66). Left column
(a,c,e): resonance curves as a function of the driving frequency.

Right column (b,d,f): same curves as a function of the driving
frequency normalized by the natural frequency of the mode com-
puted with Nt transverse modes

umn) than on the bending of the resonance curve (right
column). This leads to think that a quicker conver-
gence would be obtained if the basis chosen to expand
the dynamics was the modal basis of the centrifugally
forced beam (and not the one of the unstressed beam
used in the present study), which in this case would
include the linear stiffening of the rotation. This point
is left for future studies.

6 Conclusion

The present paper brings two families of results: the
first one is about the comparison of several models and
numerical strategies used to simulate the oscillations
of a rotating beam; the second one is about the physics
of the nonlinear oscillations and how they are modified
by the rotation speed.



Three models have been proposed. For the VK
model, taken from earlier studies of the literature
[2,4,37,58,65], it has been found that it completely
fails to represent accurately (even qualitatively) the
nonlinear oscillations of the beam, mainly because the
physical source of the nonlinearities is missing. An
original analytical model, the Inxt. model, has been
proposed. It relies on a classical model of the literature,
modified here to include the effect of the rotation speed.
Since it includes the nonlinear curvature and inertia
effects coming from the large displacement oscilla-
tions of the cantilever beam, it accurately predicts the
hardening/softening behavior of the resonances of the
beam, up to an amplitude of oscillations compatible
with the third- order Taylor expansion upon which it
relies. Finally, the proposed FE model, including no
restriction on the rotation of the beam’s cross section,
has been the reference one, with the drawback of being
very time-consuming to be solved because of the New-
mark scheme used, very sensible to the geometrical
nonlinearities and imposing very small time steps. In
the future, the correct solving strategy would be to use
a continuation method (like the MAN/HBM) directly
on the finite-elementmodel, to gather the advantages of
the geometrically exact FE element model to a robust
computation strategy of the resonance curves. Another
ideawould be to reduce theFEmodel by a propermodal
expansion and to use the MAN/HBM on this reduced
model.

For the physics of the nonlinear oscillations, the
present study clearly shows for the first time the effect
of the rotation speed on the hardening/softening behav-
ior of the two first resonances of the beam. For the
first mode, the effect of the rotation speed is harden-
ing. There exists a critical rotation speed above which
mode 1 becomes softening, whereas it is hardening
below. For the second mode, which is found harden-
ing for any rotation speed, the effect of the latter is to
reduce the hardening effect as it increases, thus having
a softening effect. The harmonics content is also found
very poor (less than 2% of harmonics), even for oscil-
lations of very large amplitude (half the length of the
beam), so that the oscillations are very close to a sine
signal.
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Appendix 1: Nonlinear coefficients for the inexten-
sible model

The coefficients Ak
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modal forcing pk are given by
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pk =
∫ 1

0
p
k dX. (72f)

Appendix 2: Finite-element details

Details of the beam finite-element discretization of
Sect. 4 are specified here, by starting from the varia-
tional formulation of Eq. (22). In the following, a super-
script or a subscript e refers to elementary quantities.
The generalized displacements are discretized using
linear shape functions. Thus, axial displacement, trans-
verse displacements and fiber rotations on one finite
element of length Le are gathered into ue = [u w θ ]T
and related to the elementary dofs vector qe by, for all
X ∈ [0 Le]:

ue(X) = N(X) qe (73)

where qe = [u1 w1 θ1 u2 w2 θ2]T,



N(X) =
⎡

⎣
N1 0 0 N2 0 0
0 N1 0 0 N2 0
0 0 N1 0 0 N2

⎤

⎦ , (74)

and u1, w1 and θ1 (respectively, u2, w2 and θ2) cor-
respond to the first (respectively, second) node of the
beam element. The two shape functions are:

N1(X) = 1 − X

Le
, N2(X) = X

Le
. (75)

Therefore, the discretized expressions of strains e, γ

and κ (Eqs. (15a–c)) are found to be:

ee =
(
1 + u2 − u1

L

)
cos θ +

(
w2 − w1

L

)
sin θ − 1,

(76a)

γ e =
(

w2 − w1

L

)
cos θ −

(
1 + u2 − u1

L

)
sin θ,

(76b)

κe = θ2 − θ1

L
. (76c)

They are gathered into the elementary strain vector
e = [ee γ e κe]T which can be written as e(X) =
B(X, qe)qe, with B the elementary discretized gradi-
ent matrix.

The works of the internal forces, the external forces
and the acceleration forces [Eqs. (23a–c)] are dis-
cretized as follows:

δWa =
∫ Le

0
δue T J üe = δqe T

(∫ Le

0
NTJN dX

)

︸ ︷︷ ︸
Me

qe,

δWi = −
∫ Le

0
(E Aeδe + kGγ δγ + E Iκδκ) dX

= −
∫ Le

0
δeTCe dX

= −δqe T
(∫ Le

0
BTCBqe dX

)

︸ ︷︷ ︸
feint(q

e)

,

δWe = ρ�2
∫ Le

0

[
A (R + X + u) 0 − 1

2
I sin (2θ)

]
N dX

︸ ︷︷ ︸
fe T�

δqe

+
∫ Le

0
[n p q]N dX

︸ ︷︷ ︸
fText

δqe.

where

J =
⎡

⎣
A 0 0
0 A 0
0 0 I

⎤

⎦ and C =
⎡

⎣
E A 0 0
0 kGA 0
0 0 E I

⎤

⎦ .

The elementary mass matrix is obtained by directly
evaluating the above integral, to obtain:

Me = ρLe

6

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎣

2A 0 0 A 0 0
0 2A 0 0 A 0
0 0 2I 0 0 I
A 0 0 2A 0 0
0 A 0 0 2A 0
0 0 I 0 0 2I

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎦

. (77)

The integral for the internal force vector is evaluated
by thanks to a reduced integration with the one-point
Gauss rule at X = Le/2 to avoid shear locking [6, Sect.
5.4.1]. We denote by θ̄ = (θ2 + θ1)/2, c̄ = cos θ̄ and
s̄ = sin θ̄ the values of cos θ and sin θ at X = Le/2.
One thus obtains:

feint = E Aē

⎡

⎢⎢
⎢⎢⎢⎢
⎣

−c̄
−s̄

γ̄ Le/2
c̄
s̄

γ̄ Le/2

⎤

⎥⎥
⎥⎥⎥⎥
⎦

+ kGAγ̄

⎡

⎢⎢
⎢⎢⎢⎢
⎣

s̄
−c̄

− (1 + ē) Le/2
−s̄
c̄

− (1 + ē) Le/2

⎤

⎥⎥
⎥⎥⎥⎥
⎦

+E I κ̄

⎡

⎢⎢
⎢⎢⎢⎢
⎣

0
0

−1
0
0
1

⎤

⎥⎥
⎥⎥⎥⎥
⎦

, (78)

where ē = ee(θ̄), γ̄ = γ e(θ̄) and κ̄ = κe(θ̄). Then,
the integral in the centrifugal force vector f� is eval-
uated with the average angle θ̄ . The reason is that
θ = N1θ1 + N2θ2, which is the exact expression of
θ coming from the finite-element discretization, gives
efforts as a fraction whose denominator is (θ1 − θ2)

2.
Therefore, it may lead to tremendous efforts when
the beam passes through its initial position (θ1 ≈ θ2),
whereas it is not the case since the initial position is
the one where the only effort involved is those due to
rotation. Using this reduced integration only for θ leads
to obtain:



fe� = 1

4
ρ I�2Le

⎡

⎢⎢⎢⎢⎢⎢
⎣

0
0

sin
(
2θ̄
)

0
0

sin
(
2θ̄
)

⎤

⎥⎥⎥⎥⎥⎥
⎦

︸ ︷︷ ︸
fnl�

+ 1

6
ρA�2Le

⎡

⎢⎢⎢⎢⎢⎢
⎣

2u1 + u2
0
0

u1 + 2u2
0
0

⎤

⎥⎥⎥⎥⎥⎥
⎦

︸ ︷︷ ︸
f lin�

+ 1

6
ρA�2Le

⎡

⎢⎢⎢⎢⎢⎢
⎣

L + 3R
0
0

2L + 3R
0
0

⎤

⎥⎥⎥⎥⎥⎥
⎦

︸ ︷︷ ︸
fcste�

(79)

The elementary stiffness matrix, used for the New-
ton–Raphson algorithm iterations, is obtained in the
followingway. It is obtainedbydifferentiating the inter-
nal force vector and the centrifugal force vector:

Kt = ∂f
∂q

= ∂fint
∂q

− ∂f�
∂q

= Kmat+Kgeo−Kc−Kgc.

(80)

This matrix is the sum of the material stiffness Kmat,
the geometric stiffness Kgeo, the centrifugal stiffness
Kc and the geometric centrifugal stiffness Kgc. Among
these four contributions to the total stiffness, Kgeo and
Kgc are deflection dependent, whereasKmat andKc are
linear. The material stiffness comes from the variation
of the nodal displacement δq of the generalized forces
while keeping the discretized gradient B fixed and the
geometric stiffness comes from the variation ofBwhile
the generalized forces are kept fixed. The centrifugal
stiffness stands for the constant additional stiffness due
to the rotation, and the geometric centrifugal stiffness
represents the deflection-dependent centrifugal effect
that depends on the rotation angle θ .

On then obtains, at the elementary level:

∂feint
∂qe

=
∫ Le

0
BTCB dX

︸ ︷︷ ︸
Kmat

+
∫ Le

0

∂BT

∂qe
CBqe dX

︸ ︷︷ ︸
Kgeo

= Ke
e + Ke

γ + Ke
κ (81)

These three contributions correspond to the tangent
stiffness matrix due to the axial strain e, the shear γ
and the curvature κ , which write:

Ke
e = E A

L

⎡

⎢
⎢⎢
⎢⎢
⎣

K1 K3 K4 −K1 −K3 K4
K2 K5 −K3 −K2 K5

K6 −K4 −K5 K6
K1 K3 −K4

K2 −K5
K6

⎤

⎥
⎥⎥
⎥⎥
⎦

,

Ke
γ = kGA

L

⎡

⎢⎢
⎢⎢
⎢
⎣

K2 −K3 K7 −K2 K3 K7
K1 K8 K3 −K1 K8

K9 −K7 −K8 K9
K2 −K3 −K7

K1 −K8
K9

⎤

⎥⎥
⎥⎥
⎥
⎦

,

Ke
κ = E I

L

⎡

⎢
⎢⎢
⎢⎢
⎣

0 0 0 0 0 0
0 0 0 0 0
1 0 0 −1
0 0 0
0 0

1

⎤

⎥
⎥⎥
⎥⎥
⎦

,

with

K1 = c̄2, K2 = s̄2, K3 = c̄s̄,

K4 = Le

2
(ēs̄ − γ̄ c̄) , K5 = − Le

2
(ēc̄ + γ̄ s̄) ,

K6 = L2
e

4

[
γ̄ 2 − ē (ē + 1)

]
,

K7 = Le

2

[
γ̄ c̄ − (ē + 1) s̄

]
,

K8 = Le

2

[
γ̄ s̄ + (ē + 1) c̄

]
,

K9 = L2
e

4

[
(ē + 1)2 − γ̄ 2

]
.

The centrifugal stiffness Ke
c and the geometric cen-

trifugal stiffness Ke
gc come from

∂fe�
∂qe

= Ke
c + Ke

gc, (83)

with

Ke
c = 1

6
ρAL�2

⎡

⎢⎢⎢⎢
⎢⎢
⎣

2 0 0 1 0 0
0 0 0 0 0
0 0 0 0
2 0 0
0 0
0

⎤

⎥⎥⎥⎥
⎥⎥
⎦

, (84a)

Ke
gc = 1

4
ρ I L�2 cos 2θ̄

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

0 0 0 0 0 0
0 0 0 0 0
1 0 0 1
0 0 0
0 0
1

⎤

⎥
⎥⎥⎥
⎥⎥
⎦

.
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