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ABSTRACT

Recent work on zero resource word discovery makes inten-
sive use of audio fragment clustering to find repeating speech
patterns. In the absence of acoustic models, the clustering
step traditionally relies on dynamic time warping (DTW) to
compare two samples and thus suffers from the known limi-
tations of this technique. We propose a new sample compari-
son method, called ’similarity by iterative classification’, that
exploits the modeling capacities of hidden Markov models
(HMM) with no supervision. The core idea relies on the use
of HMMs trained on randomly labeled data and exploits the
fact that similar samples are more likely to be classified to-
gether by a large number of random classifiers than dissimilar
ones. The resulting similarity measure is compared to DTW
on two tasks, namely nearest neighbor retrieval and cluster-
ing, showing that the generalization capabilities of probabilis-
tic machine learning significantly benefit to audio word com-
parison and overcome many of the limitations of DTW-based
comparison.

Index Terms— zero-resource speech processing, word
discovery, audio words clustering, unsupervised learning,
acoustic similarity, dynamic time warping

1. INTRODUCTION

Clustering word-like acoustic fragments has proven useful in
a number of situations were no annotated resources are avail-
able to build models, the so-called ’zero resource’ setting. In
particular, unsupervised word discovery from acoustic data
with zero resources has recently appeared as a new challenge
in speech processing. Seminal work on the topic [1] has trig-
gered various approaches, e.g., [2, 3, 4], and led to the re-
cent zero resource speech challenge [5]. This challenge tar-
gets the unsupervised discovery of linguistic units from raw
speech in an unknown language, with linguistic units being
either word-like units or phone-like units. A key ingredient
to unsupervised word discovery is clustering of acoustic pat-
terns that are likely to be words. In fact, all approaches in the
literature detect potential repeating word-like fragments that
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are further grouped together to identify meaningful patterns.
The clustering step might be explicit [1, 4], or implicit [2].

The task of clustering word-like acoustic fragments re-
quires a measure of the similarity between two fragments x
and y, regardless of the clustering algorithm. The natural
choice with speech signals is obviously the dynamic time
warping (DTW) algorithm to account for possible temporal
variations. This is for instance the choice made in [1, 2, 3, 4].
But DTW has a number of drawbacks that severely limit its
effectiveness. In particular, DTW is very sensitive to spectral
variations, as typically found across speakers. The use of pos-
teriorgram representations improves the speaker-dependency
of DTW [6], yet pattern comparison remains sensitive to
many variations including start and end point detection, spec-
tral variability and significant speech rate variations. On the
contrary, probabilistic models, such as hidden Markov mod-
els (HMM) and its variants, have proven significantly more
robust to these variations but require training data.

In this paper, we propose an approach to implicitly define
a similarity between acoustic fragments suited for clustering
that takes full advantage of the modeling and generalization
capabilities of HMMs, without the need for pre-trained mod-
els. The technique is thus perfectly fit for zero resource tasks.
The key idea behind this approach is that any supervised clas-
sifier naturally produces a partition of the dataspace thus pro-
viding a rough notion of similarity. In particular, in recent
years, several studies have investigated the use of classifiers
trained on randomly generated annotations of the data to un-
cover similarities between the samples [7, 8, 9, 10]. In the
latter, for instance, samples often falling on the same sides of
random hyperplanes are grouped together, in the spirit of ran-
dom projections in locality-sensitive hashing. Similarly, sam-
ples grouped in the same class by a set of randomly trained
classifiers are deemed very similar, but benefits of the gen-
eralization capabilities of the classifiers which may lead to
much more complex space separation than hyperplanes. We
apply here this principle, named similarity by iterative classi-
fication (SIC), to audio similarity, using HMMs as classifiers
to group word-like audio fragments.



2. AUDIO SIMILARITY BY ITERATIVE
CLASSIFICATION

The key idea for computing the audio similarity between two
signals by iterative classification is that, if we consider a set
of independent classifiers, the more often two samples are as-
signed the same label by one of the classifiers, the more likely
it is that the two samples are similar. The principle of SIC is
thus to generate and apply a significant number of indepen-
dent classifiers and to count how often two samples are clas-
sified together among the set of independent classifiers.

In fact, the reason why a classifier labels two samples with
the same class is first and foremost because the two samples
exhibit structural similarity as modeled by the classifier. Ob-
viously, the type of classifier used must be adapted to the task
and able to capture the structural properties of the data. The
very principle of SIC was first introduced in [7] and [8] with
a similarity based on respectively decision trees and random
forests to distinguish synthetic samples from true data. A
first extension to time-structured data clustering using condi-
tional random fields was proposed in [9]. This last approach
is here adapted to speech signals clustering relying on hid-
den Markov models, a natural choice for the classification of
speech signals, where Markov models are trained directly on
the data to be clustered without the need for human-labeled
data.

2.1. The SIC algorithm

Let X = {x1 . . . xD} be a database of D audio samples. We
aim at defining a similarity function s : X ×X → R between
pairs of samples taken from X . Following the SIC principle,
we need to train a set of independent HMM classifiers on the
samples, each classifier providing a different partition of the
dataspace. This is achieved by randomly choosing a subset
of the data as training set and randomly generating labels on
this training data. HMM classifiers are then learned from this
synthetic (random) training set and applied on the remainder
of the samples to generate labels that will further serve as
the basis for defining a similarity between any two pair of
samples.

Formally, the following process is iteratedN times to gen-
erate a number of independent HMM classifiers so as to pre-
vent bias towards specific training parameters. The following
actions are performed at each iteration i.
We first extract a training and testing set from the database,
Tri and Tei, such that Tri ∩ Tei = ∅ and Tri ∪ Tei ⊂ X .
We then produce a synthetic random labeling for the training
samples in Tri. We denote αr (resp. αe) the proportion of
training (resp. testing) samples, and L the number of unique
labels which are randomly assigned to the samples in Tr.
Note that prior knowledge can be included during the label-
ing step in order to refine the process, e.g., if two samples are
already known to be very similar, they should be assigned the

Data: X , αr, Lmin, Lmax
Result: s : X × X → R
for i=1 to N do

Tri ← αr|X | random samples from X ;
Tei ← αe|X | random samples from X \ Tri;
Li ← rand(Lmin, Lmax);
foreach xj ∈ Tri do

Assign label lj , where j = rand(1, Li);
ci ← Learn(Tri, (lj)j); // Training
for {xp, xq} ∈ Tei × Tei do

s(xp, xq) += 1ci(xp)=ci(xq);
occ(xp, xq) += 1;

s← s/occ; // Normalization

Algorithm 1: Pseudo-code for SIC

same synthetic label. In our experiments, such knowledge is
however not available, hence we only resort to the basic ran-
domized assignation.

At each iteration i, we train a classifier ci on the random
training set for the iteration, Tri, and classify each sample
in Tei using ci. The classification result defines a similarity
score si : Tei × Tei → R, reflecting the assumption that
two samples obtaining the same label share some structural
similarity uncovered by the classifier. Formally, we define
si(x, y) as

si(x, y) = 1ci(x)=ci(y) =

{
1 if ci(x) = ci(y)

0 if ci(x) 6= ci(y)
. (1)

Finally, after the last iteration, the similarity between two data
points xp and xq from X is obtained as the average number of
times the two samples have been classified together over the
N iterations, i.e.,

sN (xp, xq) =

∑N
i=1 si(xp, xq) 1{xp,xq ∈ Tei}∑N

i=1 1{xp,xq ∈ Tei}
(2)

where
∑N

i=1 1{xp,xq ∈ Tei} is the number of times xp and xq
were both in the same test set.

The pseudo-code of the algorithm is given in Algorithm 1.
Note that other score functions than (1) could be considered,
e.g., using reward/penalty scores instead of a binary decision.
We experimented several such variants [11]. However, while
they change the overall distribution of the similarities, none
of the variants impact the clustering results significantly.

2.2. About randomization

The randomization of the learning parameters at each itera-
tion is an essential part of the algorithm to avoid bias towards
specific characteristics of the data in the final similarity. Re-
garding the training and testing sets, we keep their proportions
(αr and αe) constant throughout the iterations and only vary
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Fig. 1. Example of HMM type 1 (left) and type 2 (right)

their composition. The value of αr is determined according
to the size of the dataset and to the maximum number of syn-
thetic labels we consider, so as to ensure enough samples in
each training class on average. As for the testing samples, we
simply use the remaining samples (i.e. αe = 1−αr and hence
Te = X \ Tr.

The number of synthetic labels at iteration i, Li is cho-
sen at random within an interval [Lmin, Lmax]. In practice, the
value of Li is positively correlated with the granularity and
discriminative power of the target similarity, as raising the
number of labels increases the classification grain. Clearly,
having a large number of labels will make it unlikely that two
samples be classified together unless they are highly similar.
As a consequence, the similarity will be significantly greater
than zero only for samples that are indeed very close one from
another. All other distances will tend towards zero.

Randomization should also be considered in the classifier
setting. We use hidden Markov models for which we vary
the topology at each iteration, alternating between two types
of chains. As illustrated in Fig. 1, HMM type 1 designates
a linear Markov chain with loop transitions on each emitting
state and direct forward transitions while HMM type 2 ad-
ditionally displays skip transitions. In addition to changing
the topology, the number of states and features parameters
are also chosen randomly (see Sect. 3.1).

3. EXPERIMENTS

The similarity by iterative classification is evaluated as input
of two tasks, namely nearest neighbor retrieval and clustering
applied to audio words, and is compared against DTW.

3.1. Experimental Setting

The word-like audio samples are extracted from a subset of
the ESTER2 dataset [12], which contains audio streams ex-
tracted from various French radio news shows. We considered
all words that can be extracted from the reference transcript,
filtering out potential outliers. We excluded samples with a
length inferior to 0.2 seconds, as well as all words with less
than 10 occurrences. As clustering is purely acoustic, possible

homonyms were merged in a single category. The resulting
database contains 13,477 audio samples for 543 unique clus-
ters. The main difficulty of the task lies in the high variability
of speaker and recording conditions (radio studio, outdoors,
phone conversation. . . ) among the samples of a given class.
The fact that words were taken from broadcast news speech
and extracted from their context also adds to the difficulty be-
cause of context removal and coarticulation.

We use Mel frequency cepstral coefficients as a classical
representation of speech signals. The features are extracted
with the HTK toolkit [13], which we also use to train the
HMM classifiers. For DTW, we use MFCC features with first,
second and third order regression coefficients and remove the
cepstral mean coefficient. On the contrary, following the same
randomization process as earlier, we vary the type of coeffi-
cients extracted for the MFCC features at each iteration of
SIC. Note that using variance normalization or more robust
features would certainly slightly improve the results, however
both for SIC and for the baseline. We thus chose to experi-
ment with difficult features to show the robustness of SIC in
adverse conditions. We also set the main parameters values
as αr = 0.4, Lmin = 100 and Lmax = 200, which on average
ensures roughly 40 samples in each synthetic class. While
a higher number of synthetic labels could better capture the
high granularity of the ground-truth clustering (543 classes),
it would lead to higher computation times and memory usage.

SIC is compared to a standard DTW similarity in terms
of nearest neighbor retrieval, where the neighbors of a sam-
ple are the members of its ground-truth class, and in terms of
clustering, relying on Markov clustering [14]. The interest of
the nearest neighbor retrieval evaluation is that it avoids the
dependency to a particular clustering algorithm and parame-
ter setting. These results should thus be considered as a more
objective assessment of the similarity performance than the
one obtained via clustering. Yet, the clustering results shows
the benefits in a more realistic task.

For all experiments, we report the mean average preci-
sion (mAP), average f-score at rank 1 and 100 for the near-
est neighbor retrieval task. The mAP evaluates the precision
(relatively to the ranks of the ground-truth neighbors in the
list returned by the similarity), while the f-measure captures
both recall and precision. For the clustering tasks, we report
standard evaluation measures comparing the resulting clus-
ters with ground-truth classes, that is: adjusted rand index, V-
measure, normalized mutual information and adjusted purity.
The adjusted Purity characterizes how pure the clusters are
(basing on the number of different classes appearing in a clus-
ter). The adjusted Rand Index uses pairs counting and takes
into account both correctly and incorrectly classified pairs of
samples. Finally, the V-measure and normalized mutual in-
formation are both based on entropy and information theory
notions, rather than pairs counting. A complete presentation
and discussion of these scores can be found in [15].



Measure
Setting Type 1/2 Type 1/2 Type 1/2 Type 1/2 Type 1/2 Type 1 Type 2

7 states 10 st. 12 st. 14 st. 20 st. random(7;20) 20 st.
mAP 16.49 18.27 19.86 20.61 20.63 20.53 20.20
f@1 57.66 59.47 61.79 62.86 62.46 62.64 62.44
f@100 14.56 15.89 16.82 17.28 17.19 17.13 17.02
Adj. Rand Index 0.130 0.149 0.133 0.136 0.135 0.107 0.153
V-measure 0.597 0.612 0.616 0.619 0.623 0.619 0.621
Norm. Mutual Info 0.585 0.598 0.601 0.604 0.608 0.604 0.608
Adj. Purity 0.476 0.524 0.552 0.556 0.556 0.543 0.539

Table 1. Influence of the randomization on the HMM topology. Bold entries indicate the best result for each evaluation metric.

Evaluation
Similarity

DTW SIC

mAP 3.11 20.61
f@1 14.05 62.86
f@100 4.65 17.28
Adjusted Rand Index 0.003 0.135
V-measure 0.177 0.623
Normalized Mutual Info 0.154 0.608
Adjusted Purity 0.117 0.556
Clusters found 542 542

Table 2. Clustering and retrieval results comparison of the
DTW and SIC similarity on the ESTER2 dataset

3.2. Results

We first present in Tab. 1 a comparison of various SIC runs
(2,000 iterations each) with different HMM topologies. La-
bel ”type 1/2” denotes runs where one of the two topologies
is chosen at random at each iteration. We also indicate the
total number of states in the HMM, which is usually constant
when type 2 is present, as the skip transitions allow for var-
ious lengths of Markov chains. Finally, given that the mini-
mum length of the samples is 0.2s and the feature sampling
frequency of 100Hz, the maximum number of states in the
HMMs is set to 20. Tab. 1 shows that increasing the number
of states in the HMM improves the results for all the evalua-
tion measures. However the topology of the HMM itself has
no significant influence as the results are roughly the same for
type 1, type 2 or type1/2 runs with 14-20 states.

Results comparing SIC and DTW are reported in Tab. 2,
where SIC was estimated over 2,000 iterations with type
1/2 HMMs having 14 states. We observe that SIC clearly
outperforms DTW for the different evaluation metrics. The
advantage of SIC over DTW is clearly due to the fact that
the exploitation of adequate classifiers, even if trained with
artificially generated labels, allows us to build a similarity
measure with a more complex internal representation of the
data, thus better capturing the resemblance existing between
the samples. Detrimental to DTW is also the scaling of scores
between distinct pairs of samples. On the contrary, SIC does

not face score calibration issues. An in-depth analysis of the
results shows that both similarities perform better on classes
of rare words, e.g., person’s names. A possible explanation
to this observation lies in the burstiness phenomenon: Rare
words tend to appear in specific contexts, while common
words are more likely to occur in more various contexts and
hence exhibit greater variability among their samples. While
this phenomenon benefits to both SIC and DTW, SIC im-
provement over DTW is overall much higher for these rare
words, leading us to believe that in situations with fewer
variability SIC displays more significant gain over DTW.

In terms of computational cost, the main bottleneck for
SIC are the numerous training and testing phases with the
different classifiers. For our experiments, we developed a
parallel implementation of SIC and ran it on several 8 cores
and 48GB RAM nodes. As an order of magnitude, running
50 iterations of SIC on one single node required on average
9.53GB RAM, 1h12 of actual elapsed time (real), and 4h48
of CPU time cumulated over all processes (sys+usr). This
also raises the question of the convergence speed of the algo-
rithm. While the results reported here were obtained for 2,000
iterations to ensure convergence, we observed in practice that
the similarity usually reaches a stable point around 1,000 it-
erations. In [11], we present a more complete analysis of the
convergence speed and also propose an on-the-fly stopping
criterion for the SIC algorithm, based on the evolution of the
average entropy of the similarity throughout the iterations.

4. CONCLUSION

In this paper we propose a method to infer a similarity on a set
of samples in unsupervised scenarios. The algorithm relies on
the assumption that supervised classifiers are able to uncover
structural similarities between samples, even when trained on
a synthetic random labeling of the data. We exploit this idea
to build an iterative similarity construction process based on
hidden Markov models and easily parallelizable. The results
show that the obtained similarity measure outperforms a clas-
sic dynamic time warping distance for the tasks of nearest
neighbor retrieval and clustering of audio words with variable
speech contexts.
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