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INTRODUCTION

Clustering word-like acoustic fragments has proven useful in a number of situations were no annotated resources are available to build models, the so-called 'zero resource' setting. In particular, unsupervised word discovery from acoustic data with zero resources has recently appeared as a new challenge in speech processing. Seminal work on the topic [START_REF] Park | Unsupervised word acquisition from speech using pattern discovery[END_REF] has triggered various approaches, e.g., [START_REF] Muscariello | Audio keyword extraction by unsupervised word discovery[END_REF][START_REF] Jansen | Towards spoken term discovery at scale with zero resources[END_REF][START_REF] Flamary | Spoken wordcloud: Clustering recurrent patterns in speech[END_REF], and led to the recent zero resource speech challenge [START_REF] Versteegh | The zero resource speech challenge 2015[END_REF]. This challenge targets the unsupervised discovery of linguistic units from raw speech in an unknown language, with linguistic units being either word-like units or phone-like units. A key ingredient to unsupervised word discovery is clustering of acoustic patterns that are likely to be words. In fact, all approaches in the literature detect potential repeating word-like fragments that * Now with Institute of Science and Technology Austria are further grouped together to identify meaningful patterns. The clustering step might be explicit [START_REF] Park | Unsupervised word acquisition from speech using pattern discovery[END_REF][START_REF] Flamary | Spoken wordcloud: Clustering recurrent patterns in speech[END_REF], or implicit [START_REF] Muscariello | Audio keyword extraction by unsupervised word discovery[END_REF].

The task of clustering word-like acoustic fragments requires a measure of the similarity between two fragments x and y, regardless of the clustering algorithm. The natural choice with speech signals is obviously the dynamic time warping (DTW) algorithm to account for possible temporal variations. This is for instance the choice made in [START_REF] Park | Unsupervised word acquisition from speech using pattern discovery[END_REF][START_REF] Muscariello | Audio keyword extraction by unsupervised word discovery[END_REF][START_REF] Jansen | Towards spoken term discovery at scale with zero resources[END_REF][START_REF] Flamary | Spoken wordcloud: Clustering recurrent patterns in speech[END_REF]. But DTW has a number of drawbacks that severely limit its effectiveness. In particular, DTW is very sensitive to spectral variations, as typically found across speakers. The use of posteriorgram representations improves the speaker-dependency of DTW [START_REF] Zhang | Resource configurable spoken query detection using deep Boltzmann machines[END_REF], yet pattern comparison remains sensitive to many variations including start and end point detection, spectral variability and significant speech rate variations. On the contrary, probabilistic models, such as hidden Markov models (HMM) and its variants, have proven significantly more robust to these variations but require training data.

In this paper, we propose an approach to implicitly define a similarity between acoustic fragments suited for clustering that takes full advantage of the modeling and generalization capabilities of HMMs, without the need for pre-trained models. The technique is thus perfectly fit for zero resource tasks.

The key idea behind this approach is that any supervised classifier naturally produces a partition of the dataspace thus providing a rough notion of similarity. In particular, in recent years, several studies have investigated the use of classifiers trained on randomly generated annotations of the data to uncover similarities between the samples [START_REF] Liu | Clustering through decision tree construction[END_REF][START_REF] Shi | Unsupervised learning with random forest predictors[END_REF][START_REF] Claveau | Knowledge discovery with CRF-based clustering of named entities without a priori classes[END_REF][START_REF] Joly | Random maximum margin hashing[END_REF]. In the latter, for instance, samples often falling on the same sides of random hyperplanes are grouped together, in the spirit of random projections in locality-sensitive hashing. Similarly, samples grouped in the same class by a set of randomly trained classifiers are deemed very similar, but benefits of the generalization capabilities of the classifiers which may lead to much more complex space separation than hyperplanes. We apply here this principle, named similarity by iterative classification (SIC), to audio similarity, using HMMs as classifiers to group word-like audio fragments.

AUDIO SIMILARITY BY ITERATIVE CLASSIFICATION

The key idea for computing the audio similarity between two signals by iterative classification is that, if we consider a set of independent classifiers, the more often two samples are assigned the same label by one of the classifiers, the more likely it is that the two samples are similar. The principle of SIC is thus to generate and apply a significant number of independent classifiers and to count how often two samples are classified together among the set of independent classifiers. In fact, the reason why a classifier labels two samples with the same class is first and foremost because the two samples exhibit structural similarity as modeled by the classifier. Obviously, the type of classifier used must be adapted to the task and able to capture the structural properties of the data. The very principle of SIC was first introduced in [START_REF] Liu | Clustering through decision tree construction[END_REF] and [START_REF] Shi | Unsupervised learning with random forest predictors[END_REF] with a similarity based on respectively decision trees and random forests to distinguish synthetic samples from true data. A first extension to time-structured data clustering using conditional random fields was proposed in [START_REF] Claveau | Knowledge discovery with CRF-based clustering of named entities without a priori classes[END_REF]. This last approach is here adapted to speech signals clustering relying on hidden Markov models, a natural choice for the classification of speech signals, where Markov models are trained directly on the data to be clustered without the need for human-labeled data.

The SIC algorithm

Let X = {x 1 . . . x D } be a database of D audio samples. We aim at defining a similarity function s : X × X → R between pairs of samples taken from X . Following the SIC principle, we need to train a set of independent HMM classifiers on the samples, each classifier providing a different partition of the dataspace. This is achieved by randomly choosing a subset of the data as training set and randomly generating labels on this training data. HMM classifiers are then learned from this synthetic (random) training set and applied on the remainder of the samples to generate labels that will further serve as the basis for defining a similarity between any two pair of samples.

Formally, the following process is iterated N times to generate a number of independent HMM classifiers so as to prevent bias towards specific training parameters. The following actions are performed at each iteration i. We first extract a training and testing set from the database, T r i and T e i , such that T r i ∩ T e i = ∅ and T r i ∪ T e i ⊂ X . We then produce a synthetic random labeling for the training samples in T r i . We denote α r (resp. α e ) the proportion of training (resp. testing) samples, and L the number of unique labels which are randomly assigned to the samples in T r. Note that prior knowledge can be included during the labeling step in order to refine the process, e.g., if two samples are already known to be very similar, they should be assigned the

Data: X , α r , L min , L max Result: s : X × X → R for i=1 to N do T r i ← α r |X | random samples from X ; T e i ← α e |X | random samples from X \ T r i ; L i ← rand(L min , L max ); foreach x j ∈ T r i do
Assign label l j , where j = rand(1, L i ); c i ← Learn(T r i , (l j ) j ); // Training for {x p , x q } ∈ T e i × T e i do s(x p , x q ) += 1 ci(xp)=ci(xq) ; occ(x p , x q ) += 1; s ← s/occ; // Normalization Algorithm 1: Pseudo-code for SIC same synthetic label. In our experiments, such knowledge is however not available, hence we only resort to the basic randomized assignation.

At each iteration i, we train a classifier c i on the random training set for the iteration, T r i , and classify each sample in T e i using c i . The classification result defines a similarity score s i : T e i × T e i → R, reflecting the assumption that two samples obtaining the same label share some structural similarity uncovered by the classifier. Formally, we define s i (x, y) as

s i (x, y) = 1 ci(x)=ci(y) = 1 if c i (x) = c i (y) 0 if c i (x) = c i (y) . (1) 
Finally, after the last iteration, the similarity between two data points x p and x q from X is obtained as the average number of times the two samples have been classified together over the N iterations, i.e.,

s N (x p , x q ) = N i=1 s i (x p , x q ) 1 {xp,xq ∈ T ei} N i=1 1 {xp,xq ∈ T ei} (2) 
where N i=1 1 {xp,xq ∈ T ei} is the number of times x p and x q were both in the same test set.

The pseudo-code of the algorithm is given in Algorithm 1. Note that other score functions than (1) could be considered, e.g., using reward/penalty scores instead of a binary decision. We experimented several such variants [START_REF] Royer | Knowledge discovery in multimedia content by diversion of supervised learning techniques[END_REF]. However, while they change the overall distribution of the similarities, none of the variants impact the clustering results significantly.

About randomization

The randomization of the learning parameters at each iteration is an essential part of the algorithm to avoid bias towards specific characteristics of the data in the final similarity. Regarding the training and testing sets, we keep their proportions (α r and α e ) constant throughout the iterations and only vary q 1 start q 2 q 3 q 1 start q 2 q 3

Fig. 1. Example of HMM type 1 (left) and type 2 (right) their composition. The value of α r is determined according to the size of the dataset and to the maximum number of synthetic labels we consider, so as to ensure enough samples in each training class on average. As for the testing samples, we simply use the remaining samples (i.e. α e = 1-α r and hence T e = X \ T r.

The number of synthetic labels at iteration i, L i is chosen at random within an interval [L min , L max ]. In practice, the value of L i is positively correlated with the granularity and discriminative power of the target similarity, as raising the number of labels increases the classification grain. Clearly, having a large number of labels will make it unlikely that two samples be classified together unless they are highly similar. As a consequence, the similarity will be significantly greater than zero only for samples that are indeed very close one from another. All other distances will tend towards zero.

Randomization should also be considered in the classifier setting. We use hidden Markov models for which we vary the topology at each iteration, alternating between two types of chains. As illustrated in Fig. 1, HMM type 1 designates a linear Markov chain with loop transitions on each emitting state and direct forward transitions while HMM type 2 additionally displays skip transitions. In addition to changing the topology, the number of states and features parameters are also chosen randomly (see Sect. 3.1).

EXPERIMENTS

The similarity by iterative classification is evaluated as input of two tasks, namely nearest neighbor retrieval and clustering applied to audio words, and is compared against DTW.

Experimental Setting

The word-like audio samples are extracted from a subset of the ESTER2 dataset [START_REF] Galliano | Corpus description of the ESTER evaluation campaign for the rich transcription of French broadcast news[END_REF], which contains audio streams extracted from various French radio news shows. We considered all words that can be extracted from the reference transcript, filtering out potential outliers. We excluded samples with a length inferior to 0.2 seconds, as well as all words with less than 10 occurrences. As clustering is purely acoustic, possible homonyms were merged in a single category. The resulting database contains 13,477 audio samples for 543 unique clusters. The main difficulty of the task lies in the high variability of speaker and recording conditions (radio studio, outdoors, phone conversation. . . ) among the samples of a given class. The fact that words were taken from broadcast news speech and extracted from their context also adds to the difficulty because of context removal and coarticulation.

We use Mel frequency cepstral coefficients as a classical representation of speech signals. The features are extracted with the HTK toolkit [START_REF] Young | The HTK Book, version 3.4[END_REF], which we also use to train the HMM classifiers. For DTW, we use MFCC features with first, second and third order regression coefficients and remove the cepstral mean coefficient. On the contrary, following the same randomization process as earlier, we vary the type of coefficients extracted for the MFCC features at each iteration of SIC. Note that using variance normalization or more robust features would certainly slightly improve the results, however both for SIC and for the baseline. We thus chose to experiment with difficult features to show the robustness of SIC in adverse conditions. We also set the main parameters values as α r = 0.4, L min = 100 and L max = 200, which on average ensures roughly 40 samples in each synthetic class. While a higher number of synthetic labels could better capture the high granularity of the ground-truth clustering (543 classes), it would lead to higher computation times and memory usage.

SIC is compared to a standard DTW similarity in terms of nearest neighbor retrieval, where the neighbors of a sample are the members of its ground-truth class, and in terms of clustering, relying on Markov clustering [START_REF] Stijn Van Dongen | A cluster algorithm for graphs[END_REF]. The interest of the nearest neighbor retrieval evaluation is that it avoids the dependency to a particular clustering algorithm and parameter setting. These results should thus be considered as a more objective assessment of the similarity performance than the one obtained via clustering. Yet, the clustering results shows the benefits in a more realistic task.

For all experiments, we report the mean average precision (mAP), average f-score at rank 1 and 100 for the nearest neighbor retrieval task. The mAP evaluates the precision (relatively to the ranks of the ground-truth neighbors in the list returned by the similarity), while the f-measure captures both recall and precision. For the clustering tasks, we report standard evaluation measures comparing the resulting clusters with ground-truth classes, that is: adjusted rand index, Vmeasure, normalized mutual information and adjusted purity. The adjusted Purity characterizes how pure the clusters are (basing on the number of different classes appearing in a cluster). The adjusted Rand Index uses pairs counting and takes into account both correctly and incorrectly classified pairs of samples. Finally, the V-measure and normalized mutual information are both based on entropy and information theory notions, rather than pairs counting. A complete presentation and discussion of these scores can be found in [START_REF] Nguyen | Information theoretic measures for clusterings comparison[END_REF]. 

Results

We first present in Tab. 1 a comparison of various SIC runs (2,000 iterations each) with different HMM topologies. Label "type 1/2" denotes runs where one of the two topologies is chosen at random at each iteration. We also indicate the total number of states in the HMM, which is usually constant when type 2 is present, as the skip transitions allow for various lengths of Markov chains. Finally, given that the minimum length of the samples is 0.2s and the feature sampling frequency of 100Hz, the maximum number of states in the HMMs is set to 20. Tab. 1 shows that increasing the number of states in the HMM improves the results for all the evaluation measures. However the topology of the HMM itself has no significant influence as the results are roughly the same for type 1, type 2 or type1/2 runs with 14-20 states.

Results comparing SIC and DTW are reported in Tab. 2, where SIC was estimated over 2,000 iterations with type 1/2 HMMs having 14 states. We observe that SIC clearly outperforms DTW for the different evaluation metrics. The advantage of SIC over DTW is clearly due to the fact that the exploitation of adequate classifiers, even if trained with artificially generated labels, allows us to build a similarity measure with a more complex internal representation of the data, thus better capturing the resemblance existing between the samples. Detrimental to DTW is also the scaling of scores between distinct pairs of samples. On the contrary, SIC does not face score calibration issues. An in-depth analysis of the results shows that both similarities perform better on classes of rare words, e.g., person's names. A possible explanation to this observation lies in the burstiness phenomenon: Rare words tend to appear in specific contexts, while common words are more likely to occur in more various contexts and hence exhibit greater variability among their samples. While this phenomenon benefits to both SIC and DTW, SIC improvement over DTW is overall much higher for these rare words, leading us to believe that in situations with fewer variability SIC displays more significant gain over DTW.

In terms of computational cost, the main bottleneck for SIC are the numerous training and testing phases with the different classifiers. For our experiments, we developed a parallel implementation of SIC and ran it on several 8 cores and 48GB RAM nodes. As an order of magnitude, running 50 iterations of SIC on one single node required on average 9.53GB RAM, 1h12 of actual elapsed time (real), and 4h48 of CPU time cumulated over all processes (sys+usr). This also raises the question of the convergence speed of the algorithm. While the results reported here were obtained for 2,000 iterations to ensure convergence, we observed in practice that the similarity usually reaches a stable point around 1,000 iterations. In [START_REF] Royer | Knowledge discovery in multimedia content by diversion of supervised learning techniques[END_REF], we present a more complete analysis of the convergence speed and also propose an on-the-fly stopping criterion for the SIC algorithm, based on the evolution of the average entropy of the similarity throughout the iterations.

CONCLUSION

In this paper we propose a method to infer a similarity on a set of samples in unsupervised scenarios. The algorithm relies on the assumption that supervised classifiers are able to uncover structural similarities between samples, even when trained on a synthetic random labeling of the data. We exploit this idea to build an iterative similarity construction process based on hidden Markov models and easily parallelizable. The results show that the obtained similarity measure outperforms a classic dynamic time warping distance for the tasks of nearest neighbor retrieval and clustering of audio words with variable speech contexts.

Table 1 .

 1 Influence of the randomization on the HMM topology. Bold entries indicate the best result for each evaluation metric.

		Setting Type 1/2 Type 1/2 Type 1/2 Type 1/2 Type 1/2	Type 1	Type 2
	Measure		7 states	10 st.	12 st.	14 st.	20 st.	random(7;20) 20 st.
	mAP		16.49	18.27	19.86	20.61	20.63	20.53	20.20
	f@1		57.66	59.47	61.79	62.86	62.46	62.64	62.44
	f@100		14.56	15.89	16.82	17.28	17.19	17.13	17.02
	Adj. Rand Index	0.130	0.149	0.133	0.136	0.135	0.107	0.153
	V-measure		0.597	0.612	0.616	0.619	0.623	0.619	0.621
	Norm. Mutual Info	0.585	0.598	0.601	0.604	0.608	0.604	0.608
	Adj. Purity		0.476	0.524	0.552	0.556	0.556	0.543	0.539
	Evaluation	Similarity DTW	SIC				
	mAP		3.11 20.61				
	f@1		14.05 62.86				
	f@100		4.65 17.28				
	Adjusted Rand Index	0.003 0.135				
	V-measure		0.177 0.623				
	Normalized Mutual Info 0.154 0.608				
	Adjusted Purity	0.117 0.556				
	Clusters found	542	542				

Table 2 .

 2 Clustering and retrieval results comparison of the DTW and SIC similarity on the ESTER2 dataset