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Abstract: This paper addresses the issue of detecting change-points in multivariate

time series. The proposed approach differs from existing counterparts by making

only weak assumptions on both the change-points structure across series, and the

statistical signal distributions. Specifically change-points are not assumed to occur

at simultaneous time instants across series, and no specific distribution is assumed

on the individual signals.

It relies on the combination of a local robust statistical test acting on individual

time segments, with a global Bayesian framework able to optimize configurations

from multiple local statistics (from segments of a unique time series or multiple

time series).

Using an extensive experimental set-up, our algorithm is shown to perform well

on Gaussian data, with the same results in term of recall and precision as classical

approaches, such as the fused lasso and the Bernoulli Gaussian model. Furthermore,

it outperforms the reference models in the case of non normal data with outliers.

The control of the False Discovery Rate by an acceptance level is confirmed. In

the case of multivariate data, the probabilities that simultaneous change-points are

shared by some specific time series are learned.

We finally illustrate our algorithm with real datasets from energy monitoring and

genomic. Segmentations are compared to state-of-the-art approaches based on fused

lasso and group fused lasso.

Key words and phrases: Rank statistics, p-values, segmentation, Bayesian inference,

Markov Chain Monte Carlo methods, Gibbs sampling.
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1. Introduction

1.1. Generalities

The objective of change-points detection is to identify and localize abrupt changes

in the time series. This very active field of research has attracted lots of interest in

various topics where the time series can be modeled by homogeneous contiguous regions

separated by abrupt changes. These time series or signals are observed in different ap-

plications ranging from bioinformatics (Allison et al., 2002; Bleakley and Vert, 2011;

Muggeo and Adelfio, 2011) to industrial monitoring (Basseville and Nikiforov, 1993),

but also, for example, applications in audiovisual data (Desobry et al., 2005; Harchaoui

et al., 2009; Kim et al., 2009) and financial data (Bai and Perron, 2003; Talih and Hen-

gartner, 2005). Our framework is the off-line joint estimation of time series. This is

a challenging problem in signal processing and statistics: in terms of data modeling,

number of change-points to detect and size of the data.

Most of the methods developed for multiple change-point detection assume the time

series to be piecewise Gaussian. In the case of detecting one change-point, the Gaussian

assumption allows to derive exact approaches based on maximum likelihood (Hawkins,

2001). Other Bayesian methods have also been developed using a Bernoulli-Gaussian

modeling (Dobigeon et al., 2007; Bazot et al., 2010). In the case of simple Gaussian

models, Fearnhead (Fearnhead, 2006) builds a Bayesian approach based on independent

parameters that avoids the need for simulations. However from a practical point of view,

real datasets present often non Gaussian behavior, and the classical approaches may fail.

In order to propose a model-free approach, we choose to build our model based on an

inference function from the p-values of a statistical test computed on the data. The

choice of the statistical test introduces a crucial free parameter in the model, choosing a

t-test or Welch’s t-test is similar to the Bernoulli-Gaussian model developed previously

(Dobigeon et al., 2007). In this paper, we propose to use the Wilcoxon test so as to be

free to the Gaussian assumption and to be robust to outliers.

When the objective is to identify multiple change-points, the computational cost

is increasing drastically with the number of change-points present in the time series.

Using classical approach with maximum likelihood induces a combinatorial cost for the

optimization task and cannot be solved whenever the number of change-points is greater

than two. Solutions have been developed in order to achieve the optimization task, for

example, dynamic programming (Bai and Perron, 2003; Lung-Yut-Fong et al., 2011),

approaches specific for lasso-type penalties (Lavielle and Teyssiere, 2006; Massart, 2007)

or Bayesian approaches (Paquet, 2007). Our approach presented in this paper is based

on the derivation of a posterior distribution using prior on change-points. The change-

points are modeled using Bernoulli variables for the indicators. The solution is then
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obtained by estimating the Maximum A Posteriori (MAP) with a Gibbs sampler strat-

egy.

Nowadays, the datasets are usually recorded using several sensors. As many physi-

cal quantities, like electrical power on devices, temperature, humidity, are measured by

several sensors, events appear simultaneously in some or every time series, depending

on an implicit structure between observations. Detecting change-points in multivariate

data is a classical but major issue in many fields. The literature in signal processing

suggests different approaches for the multiple change-point detection problem in mul-

tivariate data. Existing univariate methods (as presented in (Basseville and Nikiforov,

1993; Harchaoui et al., 2013; Zou et al., 2007)) can be extended to the multivariate

case. In (Lung-Yut-Fong et al., 2011), the authors present a statistics inspired by the

well-known Wilcoxon/Mann-Whitney test on multivariate time series to detect multi-

ple change-points, but the events number is not clearly defined. Moreover these events

are supposed to occur simultaneously on every time series, assuming a fully connected

structure between all measured quantities. Research has been done also in genomics

in order to identify multiple change-points in multi-sample data (Nowak et al., 2011;

Vert and Bleakley, 2010). The authors developed a fused lasso latent feature model in

order to identify part of the observations that are changing knowing that samples share

common information. The dependencies between time series are taken into account in

another approach, that consists in using vague prior knowledge about data distribution

and their relationships. The authors of (Dobigeon et al., 2007) present a joint segmenta-

tion method based on Bayesian sampling strategy, with various distributions depending

on the physical properties of data. Bayesian inference efficiency depends on prior choice,

and is less accurate if data distribution is not correctly inferred. Moreover in Gaussian

models, algorithms appear to be highly sensitive to outliers.

Based on the change-points detection approach developed on the univariate case,

we combine a robust non-parametric test of time series to Bayesian inference with priors

on sensors relationships. This allows us to assess the segmentation jointly and either to

force given relationships between the time series or to learn these relationships.

1.2. Problem formulation

Our goal here is to detect and localize the multiple change-points in time series.

We consider a signal of length N , stored in a vector X where the sample xi denotes

the observation at time t such that i < t ≤ i + 1. The samples xi, 1 ≤ i ≤ N , are

assumed to be mutually independent. A change-point is defined as the last point of a

segment s whose samples (xi)i∈s share some similar statistical properties. For instance,

depending on the change hypotheses these samples can have the same mean or median,

be identically distributed according to a given or unknown distribution, ...
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In order to model the presence or absence of the change-point at the different time

instants, a vector R ∈ {0, 1}N is introduced where an entry ri is an indicator variable

such that

ri =

{
1 if xi is a change-point,

0 otherwise,
(1.2)

for all 1 ≤ i ≤ n, with by convention r1 = rN = 1.

As a consequence, detecting the change-points is now equivalent to infer the indi-

cator vector R. In a Bayesian framework, these estimates are deduced from its posterior

distribution f(R|X) which classically expresses as

f(R|X) ∝ L(X|R)f(R), (1.3)

where f(R) denotes the prior on R and L(X|R) is the likelihood of the data.

In section 2, we introduce our Bayesian change-point model, called the Bernoulli-

Detector. Extensive experimental set-up is given to quantify the performances of the

proposed algorithm. Then, in section 3, the model is extended to the multivariate case.

Results of simulations are presented to empirically validate the model and to evaluate

the performances, with comparisons with other classical methods. Then two applications

on real data are shown to illustrate the different approaches of the multivariate model,

in section 4. Finally the results are discussed in section 5.

2. Bernoulli detector model

This section is devoted to the introduction of the Bernoulli detector model. First,

the observation model given a configuration of change-points is explained. It allows us

to derive in part 2.1 a composite marginal likelihood in order to approximate the full

likelihood L(X|R) in (1.3). This data term is based on the p-values derived from any

statistical test to detect a change. To be free to the Gaussian assumption and to be

robust to outliers, we will focus on the non-parametric Wilcoxon rank sum test recalled

in part 2.2. The prior f(R) in (1.3) chosen for the change-point indicator vector is given

in part 2.3, and the resulting posterior density is given in part 2.4. The algorithm is

presented in part 2.5, and results on simulated data are given in part 2.6.

2.1. Composite marginal likelihood

So as to yield a surrogate of the likelihood function L(X|R) in equation (1.3), the

idea is to build an inference function from the p-values of a statistical test, applied on

each observation. Each p-value pi is considered as a random variable, computed from

the data. The test is applied on each xi, for 2 ≤ i ≤ N − 1, given the indicators vector

R. Under the null hypothesis H0 that xi is not a change-point, the p-value pi follows

a uniform distribution over [0, 1], see for example (Sackrowitz and Samuel-Cahn, 1999;
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Sellke et al., 2001). Under the alternative hypothesis H1, i.e. when xi is a change-point,

this distribution is unknown and should depend on the real distribution of the data.

However, the p-values tend to be smaller than under H0 for a consistent test. Following

an alternative proposition derived in (Sellke et al., 2001) for the calibration of p-values,

we choose the class of Beta distributions Be(γ, 1), with parameter 0 ≤ γ ≤ 1. Thus, the

density of pi is decreasing, and the uniform distribution is the special case where γ = 1.

It is interesting to note that this alternative Beta distribution leads to the following rela-

tionship F1(p) = F0(p)γ where F0 and F1 are the cumulative distribution functions (cdf)

under H0 and H1 respectively. This is a special case of Lehmann alternative (Lehmann,

1975) to test if a random variable is stochastically lower than the null hypothesis distri-

bution. Here the parameter γ ∈ (0, 1) is expressed as a function of the acceptance level

α such that

f(α|r = 1) = f(α|r = 0), (2.2)

where f(·|r = 1) and f(·|r = 0) are the p-value densities under H1 and H0 respectively.

With the beta model for the alternative H1, γ is therefore the unique solution in (0, 1)

of

γαγ−1 = 1, (2.3)

for all α in (0, e−1). Note that if α ≥ e−1, then the unique solution of (2.3) is γ = 1. In

this case, the alternative distribution H1 reduces to the uniform distribution H0, and the

model becomes inconsistent to identify the null hypotheses and the alternative ones. In

the following, the parameter α is assumed to be in (0, e−1). Note that an interpretation

of this acceptance level is given in section 2.4 for the single change-point detection.

This Beta-Uniform mixture modeling of the p-value distribution yields the following

marginal density for each p-value:

f(pi|R) =

1[0,1](pi) if ri = 0 (H0, xi is not a change-point),

γpγ−1i 1[0,1](pi) if ri = 1 (H1, xi is a change-point),
(2.4)

for all 2 ≤ i ≤ N − 1, where 1[0,1](·) is the indicator function on [0, 1] (1[0,1](p) = 1 if

p ∈ [0, 1], 0 otherwise).

Finally, the data term of the model is formed by the following inference function:

L∗(X|R) =

N−1∏
i=2

f(pi|R) =

N−1∏
2=1

(
γpγ−1i

)ri
. (2.5)

The term L∗(X|R) in the expression (2.5) is not a proper likelihood, as defined in (Mon-
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ahan and Boos, 1992). In fact, this data term is composed of a product of the marginal

likelihood of the (pi)1≤i≤N based on their univariate distributions and is termed a com-

posite marginal likelihood (Varin, 2008; Varin et al., 2011). As a consequence, the depen-

dencies between the p-values are not taken into account. Then the coverage probabilities

of posteriors sets should differ from the real ones. The use of composite likelihood in a

Bayesian framework has received recently some attention. In (Pauli et al., 2011; Ribatet

et al., 2012), the authors developed procedures based on moment matching conditions

for a suitable calibration of the composite likelihood. This yields an adjusted asymp-

totic for the posterior probability distribution. These methods are derived for composite

likelihood that are functions of some few continuous parameters, and rely on the asymp-

totic normality of the maximum composite likelihood estimates. Unfortunately, these

assumptions are not in agreement with our model, where the parameters correspond to

the binary change-point indicators of the vector R ∈ {0, 1}N . However, as explained in

section 2.4 and 2.6.2, the acceptance level α that parametrizes the Beta distribution in

(2.4) yields to a weak local control on the change-point detection and a global control

evaluated on simulations. Thus it induces a natural calibration of the posterior distri-

bution and can be used to control the detection performances.

2.2. Wilcoxon test

In order to be fully model-free, we choose a non-parametric statistical test for the

change-point detection. It is important to note that this is a major advantage over

classical Bayesian models, such as the Bernoulli-Gaussian model, especially when the xi

cannot be assumed to be normally distributed. Furthermore, we choose a robust test

based on the computation of ranks, namely the well-known Wilcoxon rank sum (aka

Mann-Whitney) test introduced in (Wilcoxon, 1945).

In our change-point detection framework, the rule is to reject the null hypothesis

that two populations defined by the observations belonging to two contiguous segments

have the same median. The test statistic is computed as

U = min(UY , UZ) (2.6)

with

UY = nY nZ +
nY (nY + 1)

2
−RY , (2.7)

UZ = nY nZ +
nZ(nZ + 1)

2
−RZ , (2.8)

and where nY and nZ are the sample size of the two segments denoted as Y and Z

respectively, and RY and RZ are the sum of the ranks of the observations in Y and

Z respectively, these ranks being the positions of the observations in the sorted vector
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(Y, Z). For small values of nY and nZ , the resulting p-values are tabulated from the

exact distribution. For larger samples, the p-values can be deduced from the asymptotic

normal distribution of U . In fact, a standardized value can be computed as

z =
U −mU

σU
(2.9)

where mU = nY nZ
2 and σU =

√
nY nZ(nY +nZ+1)

12 .

Finally, given the change-point indicator vector R defined in (2.4), each p-value pi

for a possible change-point xi, for 2 ≤ i ≤ N − 1, is derived from the statistical test

applied on the previous and next segments s−i = (xk)i−+1≤k≤i and s−i = (xk)i+1≤k≤i+

respectively, where i− and i+ are the indexes of the previous and the next change-points

respectively around the ith position in R. It allows us to compute the inference func-

tion (2.5).

2.3. Prior on indicators

The distribution of the indicators in R in the equation (1.3) is expressed given an hy-

perparameter q that depicts the probability to have a change-point. For the observation

xi:

f(ri|q) = qri(1− q)(1−ri) (2.10)

The indicators (ri)2≤i≤N−1 are assumed to be a priori mutually independent, then:

f(R|q) =

N−1∏
i=2

qri(1− q)(1−ri). (2.11)

At last, in a hierarchical framework, the hyperparameter q is also considered as a random

variable. A Jeffreys noninformative prior is chosen for this hyperparameter, which leads

to consider a Beta distribution Be( 1
2 ,

1
2 ).

2.4. Posterior distribution

The posterior distribution of the change-points indicators R and the hyperparameter

q is derived from the relations (2.5), (2.11) and the prior for q. It reads:

f(R, q|X) ∝ L∗(X|R)f(R|q)f(q), (2.12)

∝

(
N−1∏
i=2

(γpγ−1i )ri

)([N−1∏
i=2

qri(1− q)1−ri
] 1

π
q−

1
2 (1− q)− 1

2

)
. (2.13)
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The conditional probability to have a change-point in xi is then deduced as

Pr(ri = ε|r2, . . . , ri−1, ri+1, . . . , rN−1, q,X) =

f(r2, . . . , ri−1, ε, ri+1, . . . , rN−1, q|X)

f(r2, . . . , ri−1, 0, ri+1, . . . , rN−1, q|X) + f(r2, . . . , ri−1, 1, ri+1, . . . , rN−1, q|X)
,

(2.14)

for all ε ∈ {0, 1}.
Based on this posterior, it is now possible to derive some properties of the classical

Bayesian estimates of a change-point for a given location i under some simple hypotheses.

We assume in the following propositions that there is no other change-point in the signal.

We denote as R
\i
0 the void configuration event such that rk = 0 for all k 6= i, and q stands

for the a priori change-point probability Pr(ri = 1) = q.

Proposition 2.4.1. MAP estimator r̂i given R
\i
0 and q. Under the previous hypothesis,

the conditional MAP estimate is

r̂i ≡ arg max
ε

Pr(ri = ε|R\i0 , q,X) =

1 if γpγ−1i > 1−q
q

0 otherwise.

As a consequence, if q = 1− q = 1/2, then r̂i = 1 iff the p-value is lower than the chosen

significance level α, i.e. pi < α according to (2.3) and (2.4).

Proposition 2.4.2. MMSE estimator r̂i given R
\i
0 and q. Under the previous hypoth-

esis, the conditional MMSE estimate is

r̂i ≡ E[ri|R\i0 , q,X] =
γpγ−1i q

1− q + γpγ−1i q
.

If q = 1− q = 1/2, r̂i > 1/2 iff the p-value is lower than the chosen significance level α,

i.e. pi < α.

The proofs of these propositions are directly derived from the definition of these

estimators, the expression of the posterior distribution (2.14) and the choice of the

parameter γ in (2.3).

These properties illustrate the influence of the significance level α chosen in (2.3)

to calibrate the distribution (2.4) under the alternative hypothesis for the single change-

point problem. If the priors on the configurations are equivalent then the presence of a

change-point is favored when the support against the null hypothesis is significant for

the level α.

Finally, the hyperparameter q can be viewed as a nuisance parameter and is now

marginalized out: in (2.13), one can see that the posterior of q reduces to a beta distri-

bution Be(K+ 1
2 , N −K−

3
2 ), where K =

∑N−1
i=2 ri is the total number of change-points.
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After integrating q in equation (2.13), the marginalized posterior expressed as follow:

f(R|X) ∝ Γ

(
K +

1

2

)
Γ

(
N −K − 3

2

)N−1∏
i=2

(γpγ−1i )ri . (2.15)

2.5. Algorithm

To estimate the Maximum A Posteriori (MAP) of the posterior density (2.15), a

Monte Carlo Markov Chain Method is applied, with a Gibbs sampler strategy. The best

sampled change-point configuration, i.e. the configuration that maximizes the poste-

rior distribution (2.15) among all the sampled configurations, is retained as the MAP

approximation.

The pseudo-code of the implemented Gibbs sampler is given in algorithm 1. At each

MCMC iteration, the indicators are sampled for the time points 2 ≤ i ≤ N − 1, that

are picked up randomly. To sample the indicator ri, the p-value pi is computed, but

also the p-values pi− and pi+ for the previous and the next change-points which have to

be updated according to the new segmentation induced by the possible values of ri. To

express the conditional distribution for the new indicators, we introduce the following

notations: Ri− denotes the vector of the indicators before ri (excluded), Ri+ denotes

the vector of the indicators after ri (excluded), R(m−1) denotes vector of the indicators

that have been updated at iteration m − 1 and R(m) denotes vector of the indicators

that have already been updated at iteration m. Then, at iteration m and time point i,

r
(m)
i is drawn from its conditional distribution

Pr(ri = ε|R(m−1)
i− , R

(m)
i− , R

(m−1)
i+ , R

(m)
i+ ;X) =

f(ε|R(m−1)
i− , R

(m)
i− , R

(m−1)
i+ , R

(m)
i+ ;X)

f(0|R(m−1)
i− , R

(m)
i− , R

(m−1)
i+ , R

(m)
i+ ;X) + f(1|R(m−1)

i− , R
(m)
i− , R

(m−1)
i+ , R

(m)
i+ ;X)

.

In addition, in order to improve the mixing properties of the sampler, a blocked

Gibbs sampler is applied around the current change-points: if r
(m−1)
i = 1, then at itera-

tion m, the indicators ri−1, ri and ri+1 are sampled together from their joint conditional

probability.

To reduce the computational cost of this algorithm, an approximation is done: at

each iteration m and time point i, only the p-value p
(m)
i of the currently sampled r

(m)
i

is computed, without considering the impact of a new segmentation on the p-values p−i
and p+i of the previous and next change-points. When these p-values are not updated,
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Algorithm 1: Univariate Bernoulli-Detector, blocked Gibbs sampler

require α
initialize R(0), M
for m← 1 to M do

initialize the index set I = {2, . . . , N − 1}
while I 6= ∅ do

pick randomly i in I

if r
(m−1)
i = 1 then

sample r
(m)
i−1 , r

(m)
i and r

(m)
i+1 from their joint conditional probability

remove i− 1, i, i+ 1 from I

else

sample r
(m)
i from its conditional probability

remove i from I

return R

the conditional change-point probability becomes:

Pr(ri = 1|p(m)
i ,K\i) =

(K\i + 1/2)γ
(
p
(m)
i

)γ−1
(K\i + 1/2)γ

(
p
(m)
i

)γ−1
+N −K\i − 5/2

, (2.16)

where K\i is the number of change-points but i in the current indicator vector. One

consequence of this sampling procedure is that the mixing properties of the sampler

are greatly improved, thus the blocked sampling approach is no longer necessary. This

is a computational advantage for the analysis of multivariate data, as seen further in

part 3. In that case, the conditional probabilities does not form a compatible joint

model and are said to be incompatible. A discussion about these potentially incompati-

ble conditional-specified distributions (PICSD) is done in (Chen and Ip, 2012). However

the approximation is empirically justified in the section 2.6 as it provides similar seg-

mentation performances than the block Gibbs sampler. The new algorithm, with this

pseudo-Gibbs sampling strategy, is described in algorithm 2. Performances of both al-

gorithms are tested on simulated data.

2.6. Simulations

2.6.1. Empirical performances for single change-point detection

As a first validation, a signal of N = 100 time points with a single change-point at

t = 50 is simulated. The data are generated following a normal distribution N (µk, σ) for

the kth segment, with different levels of noise. A signal-to-noise ratio (SNR) between to
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Algorithm 2: Univariate Bernoulli-Detector, pseudo-Gibbs sampler

require α
initialize R(0), M
for m← 1 to M do

initialize the index set I = {2, . . . , N − 1}
while I 6= ∅ do

pick randomly i in I

compute p
(m)
i

sample r
(m)
i according to (2.16)

remove i from I

return R

successive segments k and l is defined as follow:

SNR = 10 log
(µk − µl)2

σ2
. (2.6)

Both algorithms with the blocked Gibbs sampler (algorithm 1) and the pseudo

Gibbs sampler (algorithm 2) are compared, for several values of the SNR. The acceptance

level α is set to 0.01. 1000 MCMC iterations are done for each test. To quantify the

performances of both algorithms in term of quality of the change-points detection, the

precision and the recall are computed, for 1000 estimated MAP. These classical quantities

are defined as:

recall =
TP

TP + FN
precision =

TP

TP + FP
(2.7)

where TP is the number of true positive, FN is the number of false negative and FP

is the number of false positive. The results for several SNR are shown in figure 2.1:

the blocked Gibbs sampler and the pseudo-Gibbs sampler lead to the same detection

performances, this justifies empirically the approximation done in algorithm 2. Due

to the reduced computational cost of algorithm 2, we will use this algorithm, called

Bernoulli detector, in the sequel of the paper.

The Bernoulli detector is compared to other classical approaches: the Bernoulli

Gaussian model, and the fused lasso (Tibshirani, 2011). For this last one, we used the

R package genlasso (Tibshirani and Arnold, 2014). The regularization parameter λ has

been adjusted to make the recall curve as similar as possible to the recall curve of the

Bernoulli detector, for the exact change-point position. We choose λ = 22.3. 1000

tests are run for the Bernoulli detector (with 1000 MCMC iterations) and the fused

lasso, and 500 for the Bernoulli Gaussian model (with 1000 MCMC iterations). The

segmentation obtained with the fused lasso is determined from the coefficients of the

solution of the optimization problem: a change-point is localized where the difference

between two successive coefficients exceeds 10−10. The recall and precision curves for
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Figure 2.1: Single change-point on data following a normal distribution with the
Bernoulli detector model. Two cases are tested: with the blocked Gibbs sampler (blocked
Gibbs, algorithm 1), and with the pseudo Gibbs sampler (pseudo Gibbs, algorithm 2).
The plots in (a), (b), (c) are recall curves and in (d), (e), (f) are precision curves, for
several values of SNR. Three tolerances are tested in the estimated change-point location
in time, at ±t points: (a), (d) t = 0 (exact position), (b), (e) t = 1 and (c), (f) t = 5.

the three methods are plotted in figure 2.2. The recalls and the precisions are globally

the same, except for the fused lasso when the tolerance in the change-point position

is ±5 time points. This is explained by the fact that the fused lasso estimates a few

more change-points than the other methods for the λ we choose. However this method

is parametrizable by λ and is much faster than the other ones with the MCMC approach.

2.6.2. False discovery rate

To maximize the probability of detecting the true positive by controlling the false

positives in the case of multiple hypothesis testing, a widely used way is to control the

false discovery rate (FDR). This term is defined as the expected proportion of incorrectly
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(e) Precision, t = 1
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Figure 2.2: Detection performances on data following a normal distribution of the
Bernoulli detector model (BD), the fused lasso (FL) with parameter λ = 22.3 and the
Bernoulli Gaussian model (BG). The plots in (a), (b), (c) are recall curves and in (d),
(e), (f) are precision curves, for several values of SNR. Several tolerances are tested in
the estimated change-point location in time, at ±t points: (a), (d) t = 0 (exact position),
(b), (e) t = 1 and (c), (f) t = 5.

rejected null hypotheses:

FDR = E
[ V

R ∨ 1

]
(2.8)

where V is the number of false positives, and R is the number of positives. When the

m tests are independent, the Benjamini-Hochberg procedure, presented in (Benjamini

and Hochberg, 1995), allows to control the FDR. However the case of dependent tests

statistics are frequently encountered, that is why other procedures have been proposed

to control this rate. In the case where the test statistics are positively dependent, the

authors of (Benjamini and Yekutieli, 2001) present another procedure. In our case, the

p-values computed by the statistical test are highly dependent, because the positions of

the change-points define the segments for the test. The addition or the suppression of one

of them affects the previous and the next p-value. Despite this particular dependency,
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we are interested in the evolution of the FDR with the acceptance level α.

Tests have been conducted on a signal of N = 320 time points, made of 16 segments

of 20 points. The data are generated from a normal distribution. Between two successive

segments, the difference between the means is ±1.0 and the SNR, as defined for the

previous simulation 2.6.1, is 5.0 dB. The FDR is computed from the mean of the ratios
V
R (or 0 if R = 0) obtained from the MAP estimators of 350 simulations with 2000 MCMC

iterations, for different values of α. There are m = 318 hypothesis to test, and 15 of them

are real discoveries. Note that the first and the last points of the signal are not included.

The results are shown in figure 2.3, for three tolerances in the estimated change-points

positions. The FDR is increasing with the acceptance level α. This empirically confirms

a global control by α on the change-points detection, in addition to the single change-

point control detailed in proposition 2.4.1 and 2.4.2.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
α

0.0

0.2

0.4

0.6

0.8

1.0

FD
R

t=0
t=1
t=2

Figure 2.3: Evolution of the FDR with α and its standard deviation, for several precisions
t in the position of the estimated change-points.

2.6.3. Robustness with respect to outliers

In this experiment, the ability to detect change-points in data with outliers is tested.

Several signals are generated with a single change-point, similarly as in section 2.6.1, but

here the observations of the segment k follow a Student’s t-distribution of parameters

(ν, µk, σ), where ν = 3.0 and σ2 = ν
ν−2 . The SNR is defined between two segments, by
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the expression (2.6). The Bernoulli detector model is applied with an acceptance level

α = 0.01, and 1000 MCMC iterations are done. The recall and precision are computed

from 1000 MAP estimators of R, for several values of SNR. The curves are presented in

the figure 2.4, for three tolerances in the estimated change-point position.

To compare these results, fused lasso (1000 simulations) and the classical Bernoulli

Gaussian model (500 simulations) are applied on the same data. the regularization pa-

rameter λ is set to the same value as for the normal data. The resulting recalls and

precisions are depicted in the figure 2.4. Like in the normal case, the recall curves are

similar, but there are significant differences between the methods for the precision. The

Bernoulli detector’s performances do not change with the data following a Student’s t-

distribution. But the fused lasso and the Bernoulli Gaussian model detect several false

change-points, due to the presence of outliers. This result shows that when the Gaus-

sian observation model is very different from the distribution of the data, it should be

changed to be closer to the correct distribution. For this particular simulation, the ob-

servation model should have been taken for distributions with heavy tails. Our approach

presents the advantage to be adequate to a full range of data distributions having good

performances either for Gaussian distributions or distributions with heavy tail.

3. Extension to multivariate case

The Bernoulli detector model can be extended to the multivariate case. Then, the

data of the K time series are stored in a K × N matrix X, where each signal is a row

of X, and the indicators matrix R is a K × N matrix whose rows are the one defined

in equation (1.2), with the convention that rj,1 = rj,N = 1, ∀j ∈ {1, ...,K}. Like in the

univariate case, we are interested in the comparison of the medians of two successive

segments s+ and s−, to apply the rank test. The observations are simply supposed to

be independent in time and from a signal to another.

In (Lung-Yut-Fong et al., 2011), the authors introduce a method for multiple change-

points detection in multivariate time series, based on a multivariate extension of the

Wilcoxon rank sum test. However in that case, the change-points are supposed to be

simultaneous across all time series. It leads to a more powerful test than some indepen-

dent univariate approaches as soon as the joint change-points assumption is valid. In

the case of real data, this assumption often appears to be too restrictive.

In our model assumption, the change-points are not necessarily shared across the

whole set of time series. The column vector Ri = (r1,i, ..., rK,i)
T , for signals 1 to K, gives

the configuration Ri ∈ {0, 1}K at time index i. This configuration, written ε, denotes

which time series have a simultaneous change-point at a given time i. E is the set of

all possible configurations, where E is a subset of {0, 1}K . Without any assumption on

the possible configurations, that is in a noninformative case, E = {0, 1}K . A parameter

P , defined as the vector of probabilities Pε, is introduced to denote the probabilities to
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(e) Precision, t = 1
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Figure 2.4: Detection performances on data following a Student’s t-distribution of the
Bernoulli detector model (BD), the fused lasso (FL) with parameter λ = 22.3 and the
Bernoulli Gaussian model (BG). The plots in (a), (b), (c) are recall curves and in (d),
(e), (f) are precision curves, for several values of SNR. Several tolerances are tested in
the estimated change-point location in time, at ±t points: (a), (d) t = 0 (exact position),
(b), (e) t = 1 and (c), (f) t = 5.

have each of all possible configurations ε in the indicators matrix R. The Bayes’ rule

now yields:

f(R|X) ∝
∫
P

L∗(X|R)f(R|P )f(P )dP . (3.3)

The specific prior chosen for the parameter P is detailed in part 3.2.

3.1. Change-point model

The likelihood function is built like in the univariate case for each signal. As the

observations of the matrix X are assumed to be independent, the likelihood expresses

as follow:

L(X|R) =

K∏
j=1

N−1∏
i=2

f(xj,i|rj,i). (3.4)
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Then, the p-value pj,i for xj,i is computed by considering the previous and next segment

in the signal j: sj,i− = (xj,k)i−+1≤k≤i and sj,i+ = (xj,k)i+1≤k≤i+ , where i− and i+ are

the indexes of the previous and the next change-points respectively around xj,i in the

signal j, given the indicators matrix R. The same parametrization of the p-values as in

(2.3) and (2.4) is chosen. It leads finally to the inference function

L∗(X|R) =

K∏
j=1

N−1∏
i=2

(
γpγ−1j,i

)rj,i
. (3.5)

3.2. Prior on indicators

The time series have a dependency structure that depicts the probabilities that

the same event impacts the connected signals at the same time. Here the events are

localized as change-points. The connected signals, for example those that are linked by

a dependency relationship, have then a high probability to present their change-points

simultaneously. With our notations, it means that if the signal k depends on the signal

l, then Rk,i = Rl,i with a high probability, and the coefficients ε(k) and ε(l) tend to have

the same value for a given time point. Following the approach presented in (Dobigeon

et al., 2007), this leads to consider the vector of probabilities P = (Pε)ε∈E , where Pε

is the probability to observe the configuration ε in R. The parameter P encodes the

dependencies of the change-point between the different time series. This gives us an

information about the dependency structure between the time series.

In the multivariate case, the vectors (Ri)2≤i≤N−1 are assumed to be a priori inde-

pendent, thus the equation (2.11) for the prior on indicators becomes

f(R) =

N−1∏
i=2

f(Ri). (3.6)

When the vector P of probabilities of the configurations is explicitly expressed, the

equation (3.6) becomes

f(R|P ) =
∏
ε∈E

PSε(R)
ε (3.7)

where Sε(R) is the number of times that the configuration ε appears in the columns of

R.

As in (Dobigeon et al., 2007), a vague prior is chosen for P : the parameter follows

a Dirichlet distribution DL(d), with hyperparameter vector d = (dε)ε∈E and where L is

the cardinal of E . All the dε are set to the same deterministic value dε ≡ d = 1, then the

distribution of P is uniform.
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3.3. Posterior distribution

The relations (3.5), (3.7) and the choice of the prior on the hyperparameter P leads

to the following posterior:

f(R,P |X) ∝ L∗(X|R)f(R|P )f(P ), (3.8)

∝

 K∏
j=1

N−1∏
i=2

(
γpγ−1j,i

)rj,i(∏
ε∈E

PSε(R)+dε−1
ε

)
. (3.9)

The vector of parameters Pε can be integrated out. Since P follows the Dirichlet distri-

bution

Pε ∼ DL(Sε(R) + dε), (3.10)

the marginalized posterior becomes:

f(R|X) ∝

 K∏
j=1

N−1∏
i=2

(γpγ−1j,i )rj,i

× ∏ε∈E Γ(Sε(R) + dε)

Γ(N + L)
. (3.11)

3.4. Algorithm

The pseudo-code of the new method is described in the algorithm 3. Again, a

MCMC method is applied with a Gibbs sampling strategy using the pseudo Gibbs ap-

proximation. It allows here, when rj,i = 1, to avoid the sampling of each combinations

of 0 and 1 for a block of indicators at time indexes i−1, i, i+1 and for all J signals, that

is (23)K configurations. The columns vectors Ri are sampled at each iteration, following

the posterior (3.11), by updating only the p-values (pj,i)1≤j≤K,i. An additional step can

be done to sample the vector P in order to have the distribution of each configuration

ε ∈ E . The complexity of this multivariate algorithm depends linearly on the number L

of tested configurations ε for the columns of R.

3.5. Simulations

In this experiment, we simulated four time series of 1000 points, with the depen-

dency structure shown in figure 3.1: all change-points are induced by signal 1, with

different probabilities. There are 20 segments in signal 1. Within a segment s, all ob-

servations are i.i.d. and follow a normal distribution N (µs, σ), such that between two

successive segments s+, s−, the SNR, defined in equation (2.6), is 0.0 dB. The algo-

rithm is applied with an noninformative prior on the dependencies between time series:

namely all configurations ε are tested, E = {0, 1}4. The acceptance level α is 0.01, and
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Algorithm 3: Multivariate Bernoulli-Detector

require E = {ε0, ..., εl, ..., εL} ⊂ {0, 1}J , α

initialize R(0), Sε(R
(0)), M

for m← 1 to M do
initialize the index set I = {2, . . . , N − 1}
while I 6= ∅ do

pick randomly i in I
for j ← 1 to K do

compute p
(m)
j,i

sample R
(m)
i from its posterior (3.11)

remove i from I

optional sample P (m) from its posterior (3.10)

return R, P

2000 MCMC iterations are done. The resulting MAP estimation of the change-points

positions is represented in figure 3.2. This simulation is showing that the change-points

are well estimated, and those that are not precisely at their true position are though

simultaneously detected on the expected signals (see for instance the change-point at

time 60, on signals 1 and 3).

The probabilities Pε are drawn, following the distribution (3.10), to show the esti-

mation of the dependency structure. They are represented in figure 3.3. To increase the

values, the conditional distributions are computed, given the case that there is at least

one change-point. In figure 3.3, there is one boxplot by distribution of probability Pε.

The most important ones are P1100 and P1110, due to the higher probabilities to have

the same change-points in signal 1 and 2 and in signal 1, 2 and 3 simultaneously.

1

2
3

4

0.9

0.
5

0.1

Figure 3.1: Dependency structure between the four simulated time series for the existence
of change-point. Each node represents a signal. The weight wk→l of the directed edge
from node k to l denotes the probability that a change-point in signal k exists in signal
l simultaneously.

4. Applications

4.1. Household electrical power consumption
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Figure 3.2: Joint detection of change-points in multivariate time series. The true and
estimated change-points positions are shown by the dashed and full vertical lines respec-
tively. The means of each segment is added in full line.

In this section, the ability of the algorithm to learn the dependency structure from

data is illustrated using measurements of household power consumption (Bache and

Lichman, 2013). This real dataset consists of four time series. One of them, denoted 1,

depicts the global electrical energy consumption in the house, while the others (respec-

tively denoted 2, 3 and 4) are devoted to the measurements of power demand by specific

devices. Thus, the relationships between the four time series is known: the signals 2, 3

and 4 are independent of each other, and the signal 1 is the sum of the signals 2, 3 and

4, and of other missing signals.

The Bernoulli detector model is applied with a noninformative prior on the de-

pendency structure, for 2000 MCMC iterations. Visual results on a small portion of

signals are represented in figure 4.1 for the change-points detection: the major changes

are detected. Similarly to the previous simulations, the probabilities of each non-empty

configuration ε, given that there is at least one change-point, are plotted in figure 4.2.

The most probable configurations in R are, in decreasing order of the median, 1010,

1100, 1001, 1000 and 0010. The three first ones reveal the links within the time series of

the groups (1, 3), (1, 2) and (1, 4). The importance of P1000 is due to the unknown events

from the hidden part of the electrical installation, not measured. The signal 3 seems to

have several change-points that are not found in signal 1. The choice of an informative

prior on the configurations would eliminate this problem: only the configurations such

that if ε(k) = 1 then ε(1) = 1 for k ∈ {2, 3, 4} are allowed. This would also help to find

a better time localization for some estimated change-points.

4.2. Comparative Genomic Hybridization array data
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Figure 3.3: Posterior distributions of the Pε, for each configuration ε in E = {0, 1}4, in
multivariate time series. The most important ones are hatched.

In this application, we consider a publicly available dataset of Comparative Genomic

Hybridization array (aCGH) data, from bladder tumour samples, presented in (Stransky

et al., 2006). The data come from the R package ecp (James and Matteson, 2013)

and consists in 43 samples from tumours of different patients, measuring the log2-ratio

between the number of transcribed DNA copies from tumorous cells and from a healthy

reference. Each sample has 2215 probes. Changes in DNA copy number are one of the

mechanisms responsible for alterations in gene expression. Several mono or multivariate

change-points detection methods have already been applied to these data, see (Lung-

Yut-Fong et al., 2011; Matteson and James, 2014; Vert and Bleakley, 2010). The DNA

sequences that are over or under-expressed are jointly segmented for different patients.

The rationale behind the application of change-point detection algorithms to these data

is to search for shared parts of DNA code, whose transcription is deregulated, therefore

likely to involve a similar mechanism of the tumour. Due to the complexity of the

algorithm, not all 43 samples are processed. One can notice on the figure 4.3 that some

outliers exists in the data, but no preprocessing is needed, thanks to the robustness to

outliers of our proposed Bernoulli Detector model.

To illustrate segmentations performed by counterparts change-point detection al-

gorithms, these data are also processed by the group fused lasso method, presented

in (Bleakley and Vert, 2011), which is an extension of the fused lasso to the multivari-

ate case. Please note that the purpose is to approximate all time series by a unique

piecewise-constant function, so all signals have the same segmentation, even when some

change-points are not shared by all signals, but the accuracy of this method increases

with the number of time series. We used the MATLAB package GFLseg (Bleakley and
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Figure 4.1: Segmentation of the household electrical power consumption dataset, with a
noninformative prior. The detected change-points are the vertical lines.

Vert, 2011) on the data to generate the figure 4.4 on the same individuals. The change-

points are defined from the segments of the smoothed data. In the case of the Bernoulli

detector, the delimitations of each chromosome are not introduced.

The fused lasso (Tibshirani, 2011) is also applied on each patient’s data, in a univari-

ate framework, with the parameter λ = 3.0. The change-points are detected when the

difference between two successive values of the approximate piecewise-constant function

is over 10−5. The resulting segmentation is shown in the figure 4.5.

The comparison between the solutions of the Bernoulli detector, the group fused

lasso and the fused lasso reveals three different objectives in the change-point detection.

With an independent univariate treatment, by the fused lasso, each signal is taken indi-

vidually, and the segmentation can be optimized to fit the data at best. With the group

fused lasso, the goal is to identify some recurrent change-points positions, shared by sev-

eral signals. It leads to a unique segmentation, that is improved by an increasing number

of time series, but the less frequent features of some signals may be ignored. Our ap-

proach is between these two: the parameter P is learned to express the probability that

some signals share a change-point, and the parameter R gives the resulting segmentation.

5. Discussion and conclusion

The Bernoulli detector model has been introduced in this paper. It combines a

robust non-parametric statistical test and a Bayesian framework. Unlike classical ap-

proaches described in the literature, only weak assumptions are made on the change-
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Figure 4.2: Posterior distributions of the Pε, for the household electrical power consump-
tion dataset, with a noninformative prior. The most important ones are hatched.

points structure across multivariate time series. The proposed method rather yields an

estimate P , which describes the probability that two or more time series have simulta-

neous events or not. Additionally the proposed approach leads to two major advantages:

first the composite marginal likelihood is built from the p-values of a robust statistical

test based on ranks. The dependencies between the p-values are not taken into account,

but the inference function chosen, based on a Beta distribution of the p-values under H1

is empirically validated. Moreover the change-point model allows a kind of control on

the change-point detection by the acceptance level α. The impact of α has been mea-

sured on the FDR. However this control has only be formalized in the case of a single

change-point, due to the difficulty to express the dependencies between the p-values.

For the experiments, we opted for the Wilcoxon rank-sum test, that is outlier-

insensitive, and for which no normality assumption on data are necessary. The method

has been compared to other classical methods in the univariate case, for a signal change-

point. Their performances are similar for normal data, and the Bernoulli detector model

is still efficient in term of precision for data with outliers, whereas the fused lasso (Tib-

shirani, 2011) and the Bernoulli Gaussian methods detect non-existing change-points.

The second advantage is the introduction of the prior on the probability of shared

change-points on some signals (Dobigeon et al., 2007). This term is learned by the

model, and leads to information about an underlying dependency structure between the

time series. More complex data structures can be analysed than the usual ones, where

all signals are independent, then a univariate method is applied, or fully connected,

and then a unique segmentation is search. Another way to use the Bernoulli detector

model is to introduce an informative prior on the dependency structure, and to remove
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Figure 4.3: Change-point detection on aCGH data, with the Bernoulli detector model
for patients 8, 9, 21, 48, 49 and 53 jointly.

the configurations that are not possible or that have a small probability. Then the

computation is much faster and the segmentation of the time series is more precise.

However it is not conceivable to process jointly a large amount of time series.

A MCMC method has been chosen for the algorithm of the Bernoulli detector.

The use of this algorithm is then much longer than more classical ones, like the fused

lasso. In particular in the multivariate case, the complexity is linear with the number

of configurations tested. This impact can be reduced by the choice of an in formative

prior on the dependency structure when it is possible. Another solution is the use of an

approximate Gibbs sampler, that reduces the number of operations. This approximation

has been empirically validated.

The Bernoulli detector has been applied on real datasets: some measurements of

electrical power consumption and some aCGH profiles data. With the first application,

we show the ability to learn the probability of simultaneous change-points in particular

groups of time series. With the second application, we show an example of complex
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Figure 4.4: Change-point detection on aCGH data, with the group fused lasso for patients
8, 9, 21, 48, 49 and 53 jointly.

dependency structure, where each signal has shared change-points with other signals,

but has unique change-points too. This approach differs from the usual ones (Tibshi-

rani, 2011; Bleakley and Vert, 2011). A clinical analysis of such results might lead to

information about common or unique deregulation mechanisms of the genes expressions

between several patients. From the estimated probabilities P , it might be possible in

future work to discuss about the estimation of the causality between the time series, and

to establish a representation of the relationships between the signal with a graph.

Finally, we have introduced an innovative way to detect and localize multiple change-

points in multivariate time series, without assumption on the number of change-points,

and to learn alternatively the underlying dependency structure between the signals. De-

spite the relatively long computation time, it presents some noticeable advantages over

other methods with interesting detection performances. This approach may be com-

plementary to other methods like the fused of group lasso, especially in the case of

multivariate data.
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Figure 4.5: Change-point detection on aCGH data, with the fused lasso on each patient
8, 9, 21, 48, 49 and 53, taken independently.
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