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Abstract

Clonal interference, competition between multiple co-occurring beneficial mutations, has a major
role in adaptation of asexual populations. We provide a simple individual based stochastic model of
clonal interference taking into account a wide variety of competitive interactions which can be found in
nature. In particular, we relax the classical assumption of transitivity between the different mutations.
It allows us to predict genetic patterns, such as coexistence of several mutants or emergence of Rock-
Paper-Scissors cycles, which were not explained by existing models. In addition, we call into questions
some classical preconceived ideas about fixation time and fixation probability of competing mutations.
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Introduction

From the works of the ’great trinity’ of Fisher [18, 19], Wright [45] and Haldane [22] the questions of
fixation probability and fixation time of new beneficial mutations have been widely studied. These are
indeed fundamental questions if we aim at understanding how and how fast a population can adapt to a
changing environment, the dynamics of genetic diversity, or the long term behaviour of ecological systems.

The first models of adaptation in asexual populations postulated that the beneficial mutations were
rare enough for populations to evolve sequentially by rapid fixations of a positively selected mutation
alternating with long periods with no mutation (see [38] for a review of these models). However, various
empirical evidence [14, 30, 31] show that in large asexual populations, several mutations can co-occur,
which especially can lead to a competition between beneficial mutations. This phenomenon is known as
clonal interference [21], and has a major importance for adaptation of asexual populations, such as bacteria
and other prokaryotes, yeasts and other fungi, or cancers. Consequently in recent years there has been a
growing interest in developing experimental studies and theoretical models to analyse clonal interference
[2, 21, 14, 6, 15, 29, 30].

Most models investigating how clonal interference might affect the probability and time of fixation of
beneficial mutations, and thus adaptation, made two important but limiting assumptions: first population
sizes are constant and independent of the fitness of the individuals, and second fitnesses only depend on
the type of the mutations and not on the state of the population, i.e. fitnesses are assumed transitive.
However, as emphasized by Nowak and Sigmund [37], there is a reciprocal feedback between adaptation
and environmental changes because of ecological interactions between individuals, especially competition.
Mutation with the highest fitness invades the population, but its fitness might depend on the density of
the other mutations present in the population and might thus change during the course of adaptation.
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Thus, fitnesses are not necessarily transitive, i.e. selection can be frequency dependent, and phenomena
such as cyclical dynamics or stable coexistence can occur. Interestingly, non-transitivity of fitnesses has
been documented empirically in asexual populations [39, 28].

In this paper we aim at providing and studying a simple individual based stochastic model taking into
account the wide variety of competitive interactions which can be found in nature. We show that type
dependent competitive interactions are able to generate ecological patterns which are observed but not
explained by conventional models. In particular we relax the classical assumption of transitivity between
the different mutations (see the discussion in Section 2.1) and call into questions some classical preconceived
ideas about clonal interference (see Propositions 2, 4 and 5). To model precisely the interactions between
individuals we extend the model introduced in [7] where the author only considered the occurrence of one
mutation. The population dynamics, described in Section 1, is a multitype birth and death Markov process
with density-dependent competition. We reflect the carrying capacity of the underlying environment by a
scaling parameter K ∈ N and state results in the limit for large K.

Such an eco-evolutionary approach has been introduced by Metz and coauthors [32] and has been made
rigorous in the seminal paper of Fournier and Méléard [20]. Then it has been developed by Champagnat,
Méléard and coauthors (see [7, 9, 8] and references therein) for the haploid asexual case, by Smadi [42] for
the haploid sexual case, and by Collet, Méléard and Metz [10] and Coron and coauthors [12, 11] for the
diploid sexual case.

This work is the first one to study the impact of type dependent competition on clonal interference.
By using couplings with birth and death processes and comparison with deterministic system, we are able
to provide a complete description of the possible population dynamics when two mutations are in compe-
tition. We show that a large variety of behaviours can be observed, but that in all cases, the dynamics
consists in an alternation of long stochastic phases (with a duration of order logK) and short phases
(with a duration of order 1) which can be approximated by deterministic processes. In the case of Rock-
Paper-Scissors dynamics, we can even have a non bounded number of such alternations (see Proposition
6). The deterministic approximations will be either two-dimensional or three-dimensional Lotka-Volterra
competitive systems. Unlike the two-dimensional case where the final state is completely determined by
the signs of the invasion fitnesses (defined in (1.6) and (1.16)), the long time behaviour of a three dimen-
sional competitive Lotka-Volterra system can depend on the initial state. Moreover, the flows of three
dimensional Lotka-Volterra systems do not necessarily converge to a stable equilibrium but can exhibit
cyclical behaviours. We will see that the time of appearance of the second mutation is crucial to determine
the final population state. For example, the dynamics described in Proposition 6 can only be obtained if
the second mutation occurs when the fraction of the wild type-individuals in the population is small.

In Sections 1 and 2 we present the model and the main results of the paper. Sections 3 to 5 are devoted
to the study of the dynamics of stochastic and deterministic phases. Section 6 is dedicated to the proofs
of the main results. Finally in the Appendices we present technical results (A) and provide a complete
description of the possible population dynamics (B).

1 Model

We consider an asexual haploid population and focus on one locus. The individuals may carry three
distinct alleles 0, 1 or 2, and we denote by E := {0, 1, 2} the type space. The population process

NK = (NK(t), t ≥ 0) = ((NK
0 (t), NK

1 (t), NK
2 (t)), t ≥ 0),

where NK
i (t) denotes the number of i-individuals at time t when the carrying capacity is K, is a multitype

birth and death process. The birth rate of i-individuals is

bi(n) = βini, (1.1)

where βi > 0 is the individual birth rate of i-individuals and n = (n0, n1, n2) ∈ Z3
+ denotes the current

state of the population. An i-individual can die either from a natural death (rate δi > 0), or from type-
dependent competition: the parameter Ci,j > 0 models the impact an individual of type j (resp. i) has on
an individual of type i, where (i, j) ∈ E2. The strength of the competition also depends on the carrying
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capacity K ∈ N, which is a measure of the total quantity of food or space available. This results in the
total death rate of individuals carrying the allele i ∈ E :

dKi (n) =

(
δi +

Ci,0
K

n0 +
Ci,1
K

n1 +
Ci,2
K

n2

)
ni. (1.2)

Let us now introduce the notions of invasion, final state and time of invasion that we will use in the
sequel. We say that a type i ∈ E invades if there exist n̄ ∈ Z3

+, β, V > 0 and K ∈ N such that the following
event holds:

I(i,K, n̄, β, V ) := {∀ β logK < t < eV K , NK
i (t) > n̄K}. (1.3)

When K is large, it means that i-individuals represent a non negligible fraction of the population during a
very long time. It is necessary to bound this duration (by eV K) as a birth and death process with density
dependent competition almost surely gets extinct in finite time. To characterize the long time behaviour
of the 0-, 1-, and 2- population sizes, we introduce the following notion of final state set for n̄ ∈ Z3

+,
ε, β, V > 0 and K ∈ N:

{n̄ ∈ FS(ε,K, β, V )} :=
{

sup
β logK<t<eVK

‖NK(t)/K − n̄‖ ≤ ε
}
, (1.4)

where ‖.‖ denotes the L1-Norm on RE . Finally, we introduce the time needed for the rescaled population
process NK/K to hit a vicinity of n̄ ∈ Z3

+ and stay in the latter during an exponential time. For ε, V > 0
and K ∈ N:

T
(ε,K)
FS(V )(n̄) := inf{s > 0,∀s < t < eV K , ‖NK(t)/K − n̄‖ ≤ ε}. (1.5)

As a quantity summarizing the advantage or disadvantage a mutant with allele type i has in a j-
population at equilibrium, we introduce the so-called invasion fitness Sij through

Sij := βi − δi − Ci,j n̄j , (1.6)

where the equilibrium density n̄i is defined by

n̄i :=
βi − δi
Ci,i

.

The role of the invasion fitness Sij and the definition of the equilibrium density n̄i follow from the properties
of the two-dimensional competitive Lotka-Volterra system:{

ṅ
(z)
i = (βi − δi − Ci,in(z)

i − Ci,jn
(z)
j )n

(z)
i , n

(z)
i (0) = zi,

ṅ
(z)
j = (βj − δj − Cj,in(z)

i − Cj,jn
(z)
j )n

(z)
j , n

(z)
j (0) = zj ,

(1.7)

for z = (zi, zj) ∈ R2
+. If we assume

n̄i > 0, n̄j > 0, and Sji < 0 < Sij , (1.8)

then n̄i is the equilibrium size of a monomorphic i-population and the system (1.7) has a unique stable
equilibrium (n̄i, 0) and two unstable steady states (0, n̄j) and (0, 0). Thanks to Theorem 2.1 p. 456 in
[17] we can prove that if NK

i (0) and NK
j (0) are of order K, K is large and NK

k (0) = 0 for k = E \ {i, j},
the process (NK

i /K,N
K
j /K) is close to the solution of (1.7) during any finite time interval (see (A.4)

for a precise statement). The invasion fitness Sij corresponds to the per capita initial growth rate of the
mutant i when it appears in a monomorphic population of individuals j at their equilibrium size bn̄jKc.
Hence the dynamics of the type i is very dependent on the properties of the system (1.7). It is proven in
[7] that under Condition (1.8) one mutant i appearing in a monomorphic j-population at its equilibrium
size bn̄jKc has a positive probability to fix. More precisely, for ε > 0, there exist two finite constants β(ε)
and V (ε) such that

P
(
n̄iei ∈ FS(ε,K, β(ε), V (ε))

∣∣∣NK(0) = ei + bn̄jKcej
)

=
Sij
βi

+OK(ε), (1.9)

3



where (ei, i ∈ E) is the canonical basis of RE and OK(ε) is a function of K and ε satisfying

lim sup
K→∞

|OK(ε)| ≤ cε, (1.10)

for a finite c. Similarly,

lim
K→∞

P
(
n̄jej ∈ FS(ε,K, β(ε), V (ε))

∣∣∣NK(0) = ei + bn̄jKcej
)

= 1− Sij
βi

+OK(ε). (1.11)

Moreover, the invasion time of the mutant i, as defined in (1.5), satisfies for a finite c

P
(

(1− cε) logK

Sij
< T

(ε,K)
FS(V (ε))(n̄iei) < (1 + cε)

logK

Sij

∣∣∣NK(0) = ei + bn̄jKcej
)

=
Sij
βi

+OK(ε). (1.12)

If we assume on the contrary

n̄i > 0, n̄j > 0, Sij > 0, Sji > 0 and Ci,iCj,j 6= Ci,jCj,i, (1.13)

then the system (1.7) has three unstable steady states (n̄i, 0), (0, n̄j) and (0, 0) and a unique stable

equilibrium (n̄
(i)
ij , n̄

(j)
ij ), where

n̄
(i)
ij =

Cj,j(βi − δi)− Ci,j(βj − δj)
Ci,iCj,j − Ci,jCj,i

and n̄
(j)
ij =

Ci,i(βj − δj)− Cj,i(βi − δi)
Ci,iCj,j − Ci,jCj,i

. (1.14)

It is proven in [9] that under Condition (1.13) one mutant i has a positive probability to invade then
coexist with a j-population during a long time. More precisely, for ε > 0, there exist two finite constants
β(ε) and V (ε) such that

P
(
n̄

(i)
ij ei + n̄

(j)
ij ej ∈ FS(ε,K, β(ε), V (ε))

∣∣∣NK(0) = ei + bn̄jKcej
)

=
Sij
βi

+OK(ε),

P
(
n̄jej ∈ FS(ε,K, β(ε), V (ε))

∣∣∣NK(0) = ei + bn̄jKcej
)

= 1− Sij
βi

+OK(ε).

Moreover, the invasion time of the mutant i, as defined in (1.5), satisfies for a finite c

P
(

(1− cε) logK

Sij
< T

(ε,K)
FS(V (ε))(n̄

(i)
ij ei + n̄

(j)
ij ej) < (1 + cε)

logK

Sij

∣∣∣NK(0) = ei + bn̄jKcej
)

=
Sij
βi

+OK(ε).

Analogously, the fate of a mutation of type k occurring when the types i and j coexist in a population
of large carrying capacity K, or the result of the competition between the three types of populations when
they have all a size of order K is very dependent on the properties of the three-dimensional competitive
Lotka-Volterra system:

ṅ
(z)
i = (βi − δi − Ci,in(z)

i − Ci,jn
(z)
j − Ci,kn

(z)
k )n

(z)
i , n

(z)
i (0) = zi,

ṅ
(z)
j = (βj − δj − Cj,in(z)

i − Cj,jn
(z)
j − Cj,kn

(z)
k )n

(z)
j , n

(z)
j (0) = zj ,

ṅ
(z)
k = (βk − δk − Ck,in(z)

i − Ck,jn
(z)
j − Ck,kn

(z)
k )n

(z)
k , n

(z)
k (0) = zk,

(1.15)

where z = (zi, zj , zk) ∈ R3
+. Similarly as in (1.6) we can define the invasion fitness of the type k in a

two-type i/j-population,

Skij = Skji := βk − δk − Ck,in̄(i)
ij − Ck,j n̄

(j)
ij , (1.16)

where we recall Definition (1.14). It corresponds to the initial per capita growth rate of an individual of
type k appearing in a large population in which the individuals of type i and j are at their coexisting

equilibrium, (bn̄(i)
ij Kc, bn̄

(j)
ij Kc).

The class of the three-dimensional competitive Lotka-Volterra sytems has been studied in detail by
Zeeman and coauthors [48, 47, 46]. They exhibit much more variety than the two-dimensional ones, and
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we will recall the long time behaviour of their flows in Section 4.2. The complexity of the three-dimensional
competitive Lotka-Volterra systems entails a broad variety of dynamics in the case of two mutations oc-
curring successively in a population. In particular, depending on the population state when the second
mutation occurs, the new type can be advantageous or not when rare: for example, we can have S20 > 0
and S210 < 0, which implies that if the mutant 2 occurs in a 0-population at equilibrium the 2-population
size has a positive probability to hit a non-negligible fraction of the population, whereas if it appears in a
two-type 0/1-population at its coexisting equilibrium it gets extinct immediately.

In the sequel, we assume that a mutant of type 1 occurs in a population of type 0 (also called wild
type) at equilibrium at time 0, and that the mutants 1 are beneficial when rare. In other words we assume

Assumption 1.
NK(0) = bn̄0Kce0 + e1 and S10 > 0.

Figure 1: The three phases of a mutant invasion. The y-axis corresponds to the two type population sizes
(0 in black, 1 in red), and the x-axis to the time. In this simulation, K = 1000, (β0, β1) = (2, 3), δi =
0.5, Ci,j = 1, (i, j) ∈ {0, 1}2.

Let us describe in few words what happens when there is only the first mutation (we refer to [7] for
the proofs). We can distinguish three phases in the mutant invasion (see Figure 1): an initial phase in
which the fraction of mutant-individuals does not exceed a fixed value ε > 0 and where the dynamics of
the wild-type population is nearly undisturbed by the invading type. A second phase where both types
account for a non-negligible percentage of the population and where the dynamics of the population can
be well approximated by the system (1.7). And finally a third phase where either the roles of the types
are interchanged and the wild-type population is near extinction (when (1.8) holds), or the two types stay
close to their coexisting equilibrium (when (1.13) holds). The duration of the invasion process is of order
logK with a deterministic phase which only lasts an amount of time of order 1. More precisely, during
the first phase, when the population 1 has a size smaller than bεKc, this latter can be approximated by
a supercritical birth and death process, with respective individual birth and death rates

β1 and δ1 +
C1,0

K
n̄0K = β1 − S10 < β1.

Hence from well known properties of supercritical birth and death processes (see [1] for example) we
know that with a probability close to S10/β1 the 1-population size hits the value bεKc in a time of
order logK/S10 for large K. The second phase can be approximated by the dynamical system (1.7) with

(i, j) = (0, 1) and the system takes a time of order 1 to get close to (NK
0 , NK

1 ) = (bn̄(0)
01 Kc, bn̄

(1)
01 Kc) (if

S01 > 0) or to (NK
0 , NK

1 ) = (bε2Kc, bn̄1Kc) (if S01 < 0). Finally, if S01 > 0 the populations 0 and 1 stay

close to their coexisting equilibrium (bn̄(0)
01 Kc, bn̄

(1)
01 Kc) during a time of order eV K for a positive V and

if S01 < 0 the 0-population size is comparable to a subcritical birth and death process, with individual
birth and death rates

β0 and δ0 +
C0,1

K
n̄1K = β0 + |S01| > β0.

5



Hence it gets extinct almost surely, in a time close to logK/|S01|.

To summarize, for large K, the first and third phases have a duration of order at least logK and the
second phase has a duration of order 1. Hence if a second mutation appears during the sweep, this occurs
with high probability during the first or the third phase. We denote by α logK the time of occurrence of
the second mutation and we distinguish three cases:

• Either the mutation 2 occurs during the first phase of the mutant 1 invasion and the 1-population
size hits bεKc before the 2-population, which corresponds to the Assumptions 1 and:

Assumption 2.

S20 > 0 and 0 ∨
( 1

S10
− 1

S20

)
< α <

1

S10
.

• Or it occurs during the first phase but the invasion fitness S20 > 0 is large enough for the 2-population
to hit size bεKc before the 1-population, which corresponds to the Assumptions 1 and:

Assumption 3.

S20 > 0 and 0 < α < 1S20>S10

( 1

S10
− 1

S20

)
.

• Or it occurs during the third phase, which corresponds to the Assumptions 1 and:

Assumption 4.

α >
1

S10
and

 S01 > 0
or
S01 < 0 and α < 1/S10 + 1/|S01|.

In Appendix B we give a complete description of the possible population dynamics. We now highlight
the biologically relevant outcomes.

2 Results

2.1 Transitive versus non-transitive fitnesses

Let us say a word about classical models of clonal interference (see [2, 21, 14, 6, 15] for instance). The
population size is constant (or infinite). The fitness si of an i-individual corresponds to its exponential
growth rate (Malthusian parameter) and only depends on its type i. Suppose that in a population of type
0 a beneficial mutation 1 is followed by a second beneficial mutation 2 before the fixation of the type 1
individuals. In population genetics, ”beneficial” means that s1 > 0 and s2 > 0, which implies that the
mutant populations have a positive probability to escape genetic drift and constitute a positive fraction
of the population. Then there are two possibilities:

1. Either s1 > s2: then the 1-population outcompetes the 0- and 2-populations and the mutation 1
becomes fixed.

2. Or s2 > s1: then the 2-population outcompetes the 0- and 1-populations and the mutation 1 becomes
fixed.

If a third mutation (individuals of type 3) occurs with fitness satisfying s3 > s2, then not only the type
3 individuals outcompete the type 2 individuals, but by transitivity of the total order > on R, they also
outcompete the type 1 and type 0 individuals, and so on. In other words, in population genetics of
haploid asexuals, the fitnesses are transitive in the sense that if 1 outcompetes 0 and 2 outcompetes 1,
then necessarily 2 outcompetes 0.

Such a model is natural when competitive interactions between individuals are simple: in an exper-
iment with only one limiting resource, beneficial mutations often correspond to an increase of resource
consumption efficiency. But let us imagine an environment with two resources, A and B. A mutant which
prefers resource A (resp. B) will be favoured in a population of individuals which consume preferentially
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resource B (resp. A). In this example there is no transitivity. Moreover, experiments on cancer and viral
cells have shown the long term coexistence of several mutant strains [25], which cannot be explained by a
model with transitive fitnesses.

More generally, it is known [37] that ecological interactions cause non-transitive phenotypic interactions.
Hence to model complex interactions, we need an other definition of ”fitnesses”, to make appear the
dependency on the population state. This is achieved by the notion of invasion fitnesses (defined in (1.6)
and (1.16)), which naturally follows from the individual based model that we have presented.

The main novelty of our approach is to consider type dependent competitive interactions. Indeed, if
all the competitive interactions (Ci,j , (i, j) ∈ E2) have a same value C, then for three individual’s types i,
j and k, the invasion fitnesses satisfy:

Sij > 0⇐⇒ Sji = βj − δj − Cn̄i = βj − δj − C(βi − δi)/C = −Sij < 0,

and
Sij > 0 and Sjk > 0 =⇒ Sik = Sij + Sjk > 0.

In other words, it boils down to the case of transitive fitnesses. We can have a more precise result on the
form of competitions allowing non transitive relations between several mutants. To state this latter we
introduce the following order for (i, j) ∈ E2:

i ≺ j ⇐⇒ Sij < 0 < Sji,

i = j ⇐⇒ Sij .Sji ≥ 0,

and the notation

C̃i,j =
Ci,j
Cj,j

. (2.1)

Then we can state the following Lemma, which will be proven in Appendix A.

Lemma 2.1. Let C1 ≤ C2 be two positive real numbers and i, j, k ∈ E.

1. If (
C1 ∨

1

C2

)2

> C2 and
( 1

C1
∧ C2

)2

< C1 (2.2)

then if for every m 6= n ∈ {i, j, k}, C1 ≤ C̃m,n ≤ C2,

i ≺ j and j ≺ k =⇒ i ≺ k.

2. If (
C1 ∨

1

C2

)2

> C2 or
( 1

C1
∧ C2

)2

< C1 (2.3)

then if for every m 6= n ∈ {i, j, k}, C1 ≤ C̃m,n ≤ C2,

i ≺ j and j ≺ k =⇒ i � k.

3. If (
C1 ∨

1

C2

)2

< C2 and
( 1

C1
∧ C2

)2

> C1 (2.4)

then there exist some ecological parameters (ρm, C̃m,n,m 6= n ∈ {i, j, k}) such that for every m 6=
n ∈ {i, j, k}, C1 ≤ C̃m,n ≤ C2 and

i ≺ j, j ≺ k and k ≺ i.

Remark 1. By looking at all the possible subcases we can show the following equivalencies:

(2.2)⇐⇒ C2
2 < C1 < C2 < 1 or 1 < C1 < C2 < C2

1 ,

(2.3)⇐⇒ C1 < C2
2 < C2 < 1 or 1 < C1 < C2

1 < C2,

(2.4)⇐⇒ C1 < 1 < C2.

This shows that transitive relations are more likely when the rescaled competitions (C̃i,j , (i, j) ∈ E2) are
close to each other and both smaller of greater than 1.
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By allowing dependency of competitive interactions on the individual’s types, we are able to model
new ecological patterns found in nature and describe them mathematically. In particular, we will show
that it allows us to model coexistence of several mutant populations, and complex dynamics as Rock-
Paper-Scissors cycles.

To present our main results in a simple way, we introduce the following notation,

P(k)(.) = P(.|the mutation(s) k is(are) present), k ∈ {{1}, {2}, {1, 2}},

where we recall that the mutation 1 occurs at time 0 and the mutation 2 at time α logK.

2.2 Does clonal interference speed up or slow down invasion?

In population genetic models of clonal interference, the authors concluded that the presence of other
mutants slowed down the invasion of the fittest mutant as it had to outcompete some individuals fitter
than the wild type individuals [33, 34, 21, 14]. In our individual based model, the result of the competition
between two mutant subpopulations depends on the state of the total population, and the interplay between
different mutations can take various forms. For some values of the parameters, clonal interference does
indeed slow down the invasion of a beneficial mutant. Recall Equations (1.9) to (1.12) about the invasion
of one mutant. Then

Proposition 1. Let Assumptions 1 and 2 be satisfied and suppose:

S01, S02 < 0, S12 < 0 < S21, and S21 < S20, (2.5)

or
S01 > 0, S02 < 0, S12 < 0 < S201 and S201 < S20. (2.6)

Then the presence of the mutation 1does not modify the invasion probability of the mutation 2 and the
final state set of the population: for ε > 0, there exist two finite constants β(ε) and V (ε) such that

P(k)(n̄2e2 ∈ FS(ε,K, β(ε), V (ε))) =
S20

β2
+Oε(K), for k = {1, 2} or {2}.

However the presence of the first mutant slows down the invasion of the second one: there exists a positive
constant c such that for every ε > 0:

P(1,2)
(

(1− cε) logK

S̃20

< T
(ε,K)
FS(V (ε))(n̄2e2)− α logK < (1 + cε)

logK

S̃20

)
=
S20

β2

S10

β1
+OK(ε),

where S̃20 > S20 is defined by

1

S̃20

=
1

S
+
( 1

S10
− α

)(
1− S20

S

)
>

1

S20
,

where S = S21 in case (2.5) and S201 in case (2.6), and

P(1,2)
(

(1− cε) logK

S20
< T

(ε,K)
FS(V (ε))(n̄2e2) < (1 + cε)

logK

S20

)
=
S20

β2

(
1− S10

β1

)
+OK(ε).

But due to the non-transitive phenotypic interactions that our model is able to take into account, the
presence of the first mutant can also speed up the invasion of the second one. More precisely we have the
following result, which is illustrated in Figure 2:

Proposition 2. Let Assumptions 1 and 2 be satisfied and suppose:

S01, S02 < 0, S12 < 0 < S21, and S21 > S20, (2.7)

or
S01 > 0, S02 < 0, S12 < 0 < S201 and S201 > S20. (2.8)

8



Then the presence of the mutation 1does not modify the invasion probability of the mutation 2 and the
final state of the population: for ε > 0, there exist two finite constants β(ε) and V (ε) such that

P(k)(n̄2e2 ∈ FS(ε,K, β(ε), V (ε))) =
S20

β2
+Oε(K), for k = {1, 2} or {2}.

However the presence of the first mutant speeds up the invasion of the second one: there exists a positive
constant c such that for every ε > 0:

P(1,2)
(

(1− cε) logK

S̃20

< T
(ε,K)
FS(V (ε))(n̄2e2) < (1 + cε)

logK

S̃20

)
=
S20

β2

S10

β1
+OK(ε),

where S̃20 > S20 is defined by

1

S̃20

=
1

S
+
( 1

S10
− α

)(
1− S20

S

)
<

1

S20
,

where S = S21 in case (2.7) and S = S201 in case (2.8), and

P(1,2)
(

(1− cε) logK

S20
< T

(ε,K)
FS(V (ε))(n̄2e2) < (1 + cε)

logK

S20

)
=
S20

β2

(
1− S10

β1

)
+OK(ε).

Figure 2: Invasion times of the mutation 2 without and with the first mutation. The y-axis corresponds to
the three type population sizes (0 in black, 1 in red and 2 in green), and the x-axis to the time. In these
simulations, K = 1000, (βi, δi) = (2, 0), i ∈ E , C0,0 = 1.8, C0,1 = 4, C0,2 = 3, C1,0 = 1, C1,1 = 2.3, C1,2 =
3, C2,0 = 1.5, C2,1 = 1, C2,2 = 2.1, and α = 0.5.

2.3 How does clonal interference modify the invasion probability?

Previous models predicted that clonal interference could only decrease the invasion probability of a mutant
[14]. It was a direct consequence of the fact that the fate of a competition between two mutants was
only dependent on the relative values of their fitnesses. Moreover, this implied that individuals with
different phenotypes could not coexist for a long time. In our model, both decrease and increase of
the invasion probability due to clonal interference may occur, depending on the competitive interactions
between individuals and the time of appearance of the second mutation. Moreover, long term coexistence
of several beneficial mutations are allowed when we do not assume that the mutant fitnesses are totally
ordered. Recall the definition of invasion in (1.3). Then we have the following result:

Proposition 3. Let Assumption 1 and one of the following conditions hold: S01 > 0, S201 < 0 and Assumption 2 holds,
S01 < 0, S21 < 0 and Assumption 2 holds
S01 < 0, S21 < 0, S20 > 0 and Assumption 4 holds

9



Then for every n ∈ R3
+ \ {0} and β, V > 0:

lim
K→∞

P(1,2)(I(2,K, n, β, V )) = 0,

whereas there exist n ∈ R3
+ \ {0} and β, V > 0 such that:

lim
K→∞

P(2)(I(2,K, n, β, V )) =
S20

β2
.

Notice that even if we recover here a classical result, saying that a mutant can get extinct because of
the competition with an other mutant, we do not require S10 > S20 > 0, which would be the equivalent
of assumptions done in population genetic models.

Proposition 4. Let Assumptions 1 and 4 hold, and suppose that S20 < 0. Then under one of the following
additional conditions

S01 < 0, S21 > 0 and


0 < α− 1

S10
< 1
|S01| −

1
S21

and

 S12 > 0
or
S12 < 0 and S02 < 0

or
α− 1

S10
> 1
|S01| −

1
S21

,

, (2.9)

or
S01 > 0 and S201 > 0, (2.10)

there exist n ∈ R3
+ \ {0} and β, V > 0 such that:

lim
K→∞

P(1,2)(I(2,K, n, β, V )) =
S

β2

S10

β1
,

where S = S21 in case (2.9) and S = S201 in case (2.10), whereas for every n ∈ R3
+ \ {0} and β, V > 0:

lim
K→∞

P(2)(I(2,K, n, β, V )) = 0.

Concerning the interplay of invasion and clonal interference, let us mention recent works which have
taken into account the case where many beneficial mutations occur before any can fix [27, 3, 15, 29, 30].
The authors still assume transitivity of mutant fitnesses, but consider a regime of frequent mutations (high
mutation rate or very large population). New mutations constantly occur in individuals already carrying
other mutations, in their way of invasion, and the fate of a mutation depends on the genetic background
of the individual where it occurs more than on its intrinsic advantage. They argue that this dynamical
equilibrium is a way to preserve genetic diversity despite clonal interference, where the amount of variation
results in a subtle balance between selection, which reduces it, and new mutations, which increase it. This
approach is interesting and relates on experimental data which confirm that populations with so frequent
mutations do exist [30]. However, due to the transitivity assumption, the authors need to assume that
a large number of mutants co-occur in order to explain the possible coexistence of several types in the
population, which is not necessary in our model.

2.4 When beneficial mutations annihilate adaptation?

An other interesting phenomenon can happen in our model: the occurrence of the second mutation can
annihilate the effects of the first one and lead to the final fixation of the wild type population 0 which
would have been outcompeted by the first mutation alone. Such a phenomenon is also impossible in case
of transitive fitnesses, as in this setting S10 > 0 and S21 > 0 necessarily imply S20 > 0. Proposition 5 is
illustrated in Figure 3.
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Proposition 5. Let Assumptions 1 and 4 hold and suppose that

S01 < 0, S12 < 0 < S21, S20 < 0 < S02 and
S02

|S12||S01|
< α− 1

S10
+

1

S21
<

1

|S01|
.

Then for every ε > 0, there exist two finite constants β(ε) and V (ε) such that

P(1,2)(n̄0e0 ∈ FS(ε,K, β(ε), V (ε))) =
S10

β1

S21

β2
+OK(ε).

Figure 3: Illustration of Proposition 5. The y-axis corresponds to the three type populations sizes (0 in
black, 1 in red and 2 in green), and the x-axis to the time. In these simulations, K = 1000, (βi, δi) =
(2, 0), i ∈ {0, 1, 2}, C0,0 = 1.8, C1,0 = C2,1 = 1, C1,1 = 2.3, C1,2 = 2C0,1 = 5, C2,0 = 2C0,2 = 3, C2,2 = 2.1,
and α = 1.9.

2.5 At the origin of the Rock-Paper-Scissors cycles

Rock-Paper-Scissors (RPS) is a children’s game where rock beats scissors, which beat paper, which in
turn beats rock. Such competitive interactions between morphs or species in nature can lead to cyclical
dynamics, and have been documented in various ecological systems [4, 43, 41, 26, 28, 5, 35]. Let us describe
two examples of such cycles. The first one [41] is concerned with pattern of sexual selection on some male
lizards. Males is associated to their throat colours, which have three morphs. Type 0 individuals (orange
throat) are monogamous and very aggressive. They control a large territory. Type 1 individuals (dark-
blue throat) are polygamous and less efficient in defending their territory, which is smaller, having to
split their efforts on several females. Finally type 2 individuals (prominent yellow stripes on the throat,
similar to receptive females) do not engage in female-guarding behavior but roam around in search of
sneaky matings. As a consequence of these different strategies, the type 0 outcompetes the type 1, which
outcompetes the type 2, which in turn outcompetes the type 0. The second example [28] is concerned
with the interactions between three strains of Escherichia coli bacteria. Type 0 individuals release toxic
colicin and produce an immunity protein. Type 1 individuals produce the immunity protein only. Type
2 individuals produce neither toxin nor immunity. Then type 0 is defeated by type 1 (because of the
cost of toxic colicin production), which is defeated by type 2, (because of the cost of immunity protein
production), which in turn is defeated by type 0 (not protected against toxic colicin).

Neumann and Schuster [36] modeled such interactions by a three dimensional competitive Lotka-
Volterra system. In particular they proved that migrations or recurrent mutations were not necessary
ingredients to obtain limit cycles, as it was assumed in previous models (see [13, 40] for example). They
studied the long time behaviour of the system but payed little attention to initial conditions, only assuming
“the presence of all three strains in one homogeneous medium”. But the question of initial conditions is
crucial. Indeed, how to explain the appearance of such cycles whereas when only two strains are present
one of them is outcompeted by the other one and disappears? Our simple model provides a framework
explaining how a cyclical RPS dynamics emerges in an ecological system thanks to the interplay of two
successive mutations. Proposition 6 is illustrated in Figure 4.
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Proposition 6. Let Assumptions 1 and 4 and the following inequalities hold:

S01 < 0 < S10, S12 < 0 < S21, S20 < 0 < S02, (2.11)

and

0 < α− 1

S10
< min

( 1

|S01|
,

S02

|S12||S01|
,

S02S10

|S12||S01||S20|

)
− 1

S21
. (2.12)

Then for every l ∈ N, if we call “cycle” the interval between two local (non null) maxima of the type 1
population between which type 2 and type 0 populations also hit one local (non null) maximum, and N the
number of cycles

lim
K→∞

P(1,2)(N ≥ l) =
S10

β1

S21

β2
.

Moreover, if we denote by Dl the duration of the kth cycle and introduce:

T (α, l,K) :=
(
α− 1

S10
+

1

S21

)(
1 +
|S01|
S02

+
|S01||S12|
S02S10

)( |S01||S12||S20|
S02S21S10

)l−1

logK,

then Dk satifies for a finite c

P(1,2)
(
{N ≥ l}, (1− cε)T (α, l,K) < Dk < (1 + cε)T (α, l,K)

)
=
S10

β1

S21

β2
+OK(ε).

Figure 4: RPS cycles. The y-axis corresponds to the three type population sizes (0 in black, 1 in red
and 2 in green), and the x-axis to the time. In this simulation, K = 1000, (βi, δi) = (2, 0), i ∈ {0, 1, 2},
C0,0 = C1,1 = C2,2 = 2, C0,1 = 2.5, C0,2 = C1,0 = C2,1 = 1, C1,2 = C2,0 = 3, and α = 1.1.

Remark 2. We say that System (1.15) is permanent if there exists a compact attractor B ⊂ int(R3
+) of

its solutions, whose basin of attraction is int(R3
+). Under Condition (2.11), Theorem 2 in [36] states that

(1.15) is permanent if and only if
|S01||S12||S20| < S02S21S10.

This condition is satisfied under the assumptions of Proposition 6. Hence if one of the types gets extinct,
this is due to the demographic stochasticity and not to the behaviour of the approximating dynamical
system.

Moreover, we are not able to know in general if the interior fixed point is globally attracting of if there
exist stable periodic orbits for the flows of the three dimensional deterministic Lotka-Volterra system. In
Appendix A we give two examples of systems satisfying the conditions of Proposition 6 but with distinct
long time behaviours.

12



3 First phase

In Sections 3 to 5 we describe the dynamics of the successive phases. For sake of readability, we do not
indicate anymore the superscript (k) of the probabilities. The context will make clear the mutations which
occur. The first phase is rigorously defined as follows:

Phase 1 := {t ≥ 0, NK
1 (t) +NK

2 (t) ≥ 1, sup
i∈{1,2}

NK
i (t) < bεKc}.

Under Assumption 4 the second mutation occurs during the third phase. This corresponds to the case
already studied in [7] and we will recall the outcomes in this case in Section 3.3. Under Assumption 2 or
3 the second mutation occurs during the first phase and we have to study the resulting dynamics during
the first phase.

3.1 Assumption 2

Let i, j and k be distinct in {0, 1, 2}, ε > 0 and K ∈ N. We introduce a finite subset of N containing the
equilibrium size of a monomorphic i-population,

I(K,i)
ε :=

[
K
(
n̄i − 2ε

Ci,j + Ci,k
Ci,i

)
,K
(
n̄i + 2ε

Ci,j + Ci,k
Ci,i

)]
∩ N, (3.1)

and the stopping times T
(K,i)
a , T

(K,ij)
a and T̃

(K,i)
ε , which denote respectively the hitting time of size bac

for a ∈ R+ by the population of type i and by the total population of types i and j, and the exit time of

I
(K,i)
ε by the population of type i,

T (K,i)
a := inf

{
t ≥ 0, NK

i (t) = bac
}
, (3.2)

T (K,ij)
a := inf

{
t ≥ 0, NK

i (t) +NK
j (t) = bac

}
, (3.3)

T̃ (K,i)
ε := inf

{
t ≥ 0, NK

i (t) /∈ I(K,i)
ε

}
. (3.4)

Finally, we introduce a finite subset of N which may contain the type 2 population size at the end of
the first phase.

J (K,2)
ε :=

[
KS20( 1

S10
−α−ε),KS20( 1

S10
−α+ε)

]
∩ N, (3.5)

where we recall that α logK is the time of occurrence of the second mutation, and the invasion fitnesses
have been defined in (1.6). Then we have the following possible states with positive probability at the end
of the first phase.

Lemma 3.1. Under Assumptions 1 and 2, there exists a positive constant M1 such that

(a) P(T
(K,i)
0 < T

(K,i)
εK < T̃ (K,0)

ε ,∀i ∈ {1, 2}) =
(

1− S10

β1

)(
1− S20

β2

)
+OK(ε),

(b) P(T
(K,i)
εK < T

(K,i)
0 < T̃ (K,0)

ε , T
(K,j)
0 < T

(K,j)
εK < T̃ (K,0)

ε ) =
Si0
βi

(
1− Sj0

βj

)
+OK(ε), i 6= j ∈ {1, 2},

(c) P
(
T

(K,1)
εK < T̃ (K,0)

ε , NK
2 (T

(K,1)
εK ) ∈ J (K,2)

M1ε

)
=
S10

β1

S20

β2
+OK(ε).

Proof. In the vein of Fournier and Méléard [20] we represent the population process in terms of Poisson
measures. Let Q0(ds, dθ), Q1(ds, dθ) and Q2(ds, dθ) be three independent Poisson random measures on
R2

+ with intensity dsdθ, and recall that (ei, i ∈ {0, 1, 2}) is the canonical basis of R3. Then the process
NK can be written as follows:

NK(t) = NK(0) +

1∑
i=0

∫ t

0

∫
R+

ei

[
1θ≤βiNKi (s−) − 10<θ−βiNKi (s−)≤dKi (NK(s−))

]
Qi(ds, dθ)

+ e21t≥α logK

(
1 +

∫ t

α logK

[
1θ≤β2NK2 (s−) − 10<θ−β2NK2 (s−)≤dK2 (NK(s−))

]
Q2(ds, dθ)

)
, (3.6)
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where (dKi , i ∈ {0, 1, 2}) have been defined in (1.2). The idea is to couple the population process with
birth and death processes to get bounds on the different hitting times. To this aim, let us introduce
approximations of the so called rescaled invasion fitnesses Sij/βi, for i ∈ {1, 2} and ε > 0 small enough:

s
(ε,−)
i0 :=

1

βi

(
βi − δi − Ci,0

(
n̄0 + 2ε

C0,1 + C0,2

C0,0

)
− (Ci,1 + Ci,2)ε

)
(3.7)

s
(ε,+)
i0 :=

1

βi

(
βi − δi − Ci,0

(
n̄0 − 2ε

C0,1 + C0,2

C0,0

))
. (3.8)

These real numbers satisfy for ε small enough

0 < s
(ε,−)
i0 ≤ Si0

βi
≤ s(ε,+)

i0 < 1, and
∣∣∣s(ε,+)
i0 − s(ε,+)

i0

∣∣∣ ≤ 1

βi

(
4
C0,1 + C0,2

C0,0
+ Ci,1 + Ci,2

)
ε. (3.9)

Thanks to these definitions we can introduce, for ∗ ∈ {−,+} the processes

N
(ε,∗)
0 (t) = bn̄0Kc+

∫ t

0

∫
R+

[
1
θ≤β0N

(ε,∗)
0 (s−)

−

1
0<θ−β0N

(ε,∗)
0 (s−)≤(δ0+C0,0N

(ε,∗)
0 (s−)+1{∗=−}ε(C0,1+C0,2))N

(ε,∗)
0 (s−)

]
Q0(ds, dθ),

and the supercritical birth and death processes

N
(ε,∗)
1 (t) = 1 +

∫ t

0

∫
R+

[
1
θ≤β1N

(ε,∗)
1 (s−)

− 1
0<θ−β1N

(ε,∗)
1 (s−)≤(1−s(ε,∗)10 )β1N

(ε,∗)
1 (s−)

]
Q1(ds, dθ), (3.10)

and

N
(ε,∗)
2 (t) = 1t≥α logK

(
1+

∫ t

α logK

∫
R+

[
1
θ≤β2N

(ε,∗)
2 (s−)

−1
0<θ−β2N

(ε,∗)
2 (s−)≤(1−s(ε,∗)20 )β2N

(ε,∗)
2 (s−)

]
Q2(ds, dθ)

)
.

(3.11)
Then recalling Definition (3.2) we get

N
(ε,−)
0 (t) ≤ NK

0 (t) ≤ N (ε,+)
0 (t) a.s. ∀ t < T

(K,1)
εK ∧ T (K,2)

εK (3.12)

and for i ∈ {1, 2},

N
(ε,−)
i (t) ≤ NK

i (t) ≤ N (ε,+)
i (t) a.s. ∀ t < T

(K,1)
εK ∧ T (K,2)

εK ∧ T̃ (K,0)
ε . (3.13)

Moreover by construction for every (∗1, ∗2) ∈ {−,+}2 the processes N
(ε,∗1)
1 and N

(ε,∗2)
2 are independent.

To prove Lemma 3.1 we first need to show that with a probability close to one, Couplings (3.12) and
(3.13) hold during the whole first phase; to this aim we first prove the following asymptotical result:

lim inf
K→∞

P(AKε ) ≥ 1− cε (3.14)

for a finite c and ε small enough, where

AKε := {T (K,1)
εK ∧ T (K,2)

εK ∧ T (K,12)
0 ≤ T̃ (K,0)

ε }. (3.15)

First applying (A.5) we get the existence of a positive V such that for ∗ ∈ {−,+}

lim
K→∞

P(T̃ (K,∗)
ε > eV K) = 1, (3.16)

where
T̃ (K,∗)
ε := inf

{
t ≥ 0, N

(ε,∗)
0 (t) /∈ I(K,0)

ε

}
. (3.17)
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We divide the probability in (3.14) into two parts according to the position of T̃
(K,0)
ε with respect to

eV K :

1− P(AKε ) = P(T̃ (K,0)
ε < T

(K,1)
εK ∧ T (K,2)

εK ∧ T (K,12)
0 ) (3.18)

= P(T̃ (K,0)
ε ≤ eV K , T̃ (K,0)

ε < T
(K,1)
εK ∧ T (K,2)

εK ∧ T (K,12)
0 )

+P(eV K < T̃ (K,0)
ε < T

(K,1)
εK ∧ T (K,2)

εK ∧ T (K,12)
0 ).

Thanks to (3.12) and (3.16) we get

lim
K→∞

P(T̃ (K,0)
ε ≤ eV K , T̃ (K,0)

ε < T
(K,1)
εK ∧ T (K,2)

εK ∧ T (K,12)
0 ) = 0.

Consider now the second probability in (3.18). The event {eV K < T̃
(K,0)
ε } means that Couplings (3.13)

hold at least until time eV K ∧ T (K,1)
εK ∧ T (K,2)

εK . Hence

{eV K < T̃ (K,0)
ε < T

(K,1)
εK ∧ T (K,2)

εK ∧ T (K,12)
0 } ⊂ {eV K < (T

(1,−)
0 ∨ T (2,−)

0 ) ∧ T (1,+)
εK ∧ T (2,+)

εK }

⊂ {eV K < T
(1,−)
0 ∧ T (1,+)

εK } ∪ {eV K < T
(2,−)
0 ∧ T (2,+)

εK }.

But thanks to Equations (A.2) and (A.3) we know that for i ∈ {1, 2},

lim
K→∞

P({eV K < T
(i,−)
0 } 4 {T (i,−)

0 =∞}) = lim
K→∞

P({eV K < T
(i,+)
εK } 4 {T (i,+)

0 <∞}) = 0,

where 4 denotes the symmetric difference: for two sets B and C, B 4 C = (B ∩ Cc) ∪ (C ∩ Bc). This
implies that

P(eV K < T̃ (K,0)
ε < T

(K,1)
εK ∧ T (K,2)

εK ∧ T (K,12)
0 ) ≤

2∑
i=1

P(T
(i,−)
0 =∞, T (i,+)

0 <∞) +OK(ε).

But Definitions (3.10) and (3.11) imply that for i ∈ {1, 2} the event {T (i,+)
0 < ∞, T (i,−)

0 = ∞} is empty.
This ends the proof of (3.14).

We are now able to prove Lemma 3.1. We assume that AKε holds, which is true with a prob-
ability close to one according to (3.14), and implies that Coupling (3.13) holds on the time interval

[0, T
(K,1)
εK ∧ T (K,2)

εK ∧ T (K,12)
0 ].

(a): Let us recall Definitions (3.7) and (3.8). Thanks to the independence of the processes N
(ε,+)
1 and

N
(ε,+)
2 we get by applying (A.1)

P(T
(1,+)
0 < T

(1,+)
εK , T

(2,+)
0 < T

(2,+)
εK ) =

(
1− s

(ε,+)
1

1− (1− s(ε,+)
1 )bεKc

)(
1− s

(ε,+)
2

1− (1− s(ε,+)
2 )bεKc

)

≥
(

1− S10

β1

)(
1− S20

β2

)
− cε

for a finite c, K large enough and ε small enough. Moreover we have the following inclusion:

{AKε , T
(1,+)
0 < T

(1,+)
εK , T

(2,+)
0 < T

(2,+)
εK } ⊂ {AKε , T

(K,1)
0 < T

(K,1)
εK , T

(K,2)
0 < T

(K,2)
εK }.

We then get

P(T
(K,1)
0 < T

(K,1)
εK , T

(K,2)
0 < T

(K,2)
εK |AKε ) ≥ P(AKε , T

(1,+)
0 < T

(1,+)
εK , T

(2,+)
0 < T

(2,+)
εK )

≥ P(T
(1,+)
0 < T

(1,+)
εK , T

(2,+)
0 < T

(2,+)
εK )− P((AKε )c)

≥
(

1− S10

β1

)(
1− S20

β2

)
− cε, (3.19)
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for a finite c, K large enough and ε small enough, where we used (3.14) and (A.1).

(b): The independence of the processes N
(ε,+)
1 and N

(ε,+)
2 again yields

P(T
(1,−)
εK < T

(1,−)
0 , T

(2,+)
0 < T

(2,+)
εK ) =

s
(ε,−)
1

1− (1− s(ε,−)
1 )bεKc

(
1− s

(ε,+)
2

1− (1− s(ε,+)
2 )bεKc

)
≥ S10

β1

(
1− S20

β2

)
− cε

for a finite c, K large enough and ε small enough. Moreover, thanks to Coupling (3.13) we get

{AKε , T
(1,−)
εK < T

(1,−)
0 , T

(2,+)
0 < T

(2,+)
εK , T

(2,+)
0 < T

(1,−)
εK }

⊂ {AKε , T
(K,1)
εK < T

(K,1)
0 , T

(K,2)
0 < T

(K,2)
εK , T

(K,2)
0 < T

(K,1)
εK }.

But according to Lemma A.1, on the event {T (1,−)
εK < T

(1,−)
0 , T

(2,+)
0 < T

(2,+)
εK } we can find a finite constant

M such that for K large enough with a probability close to one T
(2,+)
0 ≤ α logK +M , and T

(1,−)
εK is close

to logK/S
(ε,−)
10 . We finally get:

P(T
(K,1)
εK < T

(K,1)
0 , T

(K,2)
0 < T

(K,2)
εK ) ≥ P(T

(K,1)
εK < T

(K,1)
0 , T

(K,2)
0 < T

(K,2)
εK , T

(K,2)
0 < T

(K,1)
εK , AKε )

≥ P(T
(1,−)
εK < T

(1,−)
0 , T

(2,+)
0 < T

(2,+)
εK , T

(2,+)
0 < T

(1,−)
εK )− P((AKε )c)

≥ S10

β1

(
1− S20

β2

)
− cε (3.20)

for a finite c, K large enough and ε small enough, where we used (3.14) and (A.1). By interchanging the
roles of 1 and 2 we derive a lower bound for (b).

(c): Let us now focus on the last inequality. First using again independence between N
(ε,−)
1 and N

(ε,−)
2 ,

and (A.1) we get

P(T
(1,−)
εK < T

(1,−)
0 , T

(2,−)
εK < T

(2,−)
0 ) ≥ S10

β1

S20

β2
− cε.

But as Coupling (3.13) only holds before time T
(K,1)
εK ∧ T (K,2)

εK we have to determine which process, NK
2

or NK
1 hits bεKc first. For i ∈ {1, 2}, from (A.2) and (A.3),

P(T
(i,−)
εK < T

(i,−)
0 , T

(i,−)
0 <∞) ≤ cε.

Using again (A.3) we get the existence of a finite constant c such that:

P
(
T

(i,−)
0 =∞, i ∈ {1, 2}

)
≥ S10

β1

S20

β2
+OK(ε)

and

P
((

1{i=2}α+
1− cε
Si0

)
logK ≤ T (i,+)

εK ≤ T (i,−)
εK ≤

(
1{i=2}α+

1 + cε

Si0

)
logK,T

(i,−)
0 =∞, i ∈ {1, 2}

)
≥ S10

β1

S20

β2
+OK(ε). (3.21)

Hence, as under Assumption 2, 1/S10 < 1/S20+α, processes (N
(ε,∗)
1 , ∗ ∈ {+,−}) hit bεKc before processes

(N
(ε,∗)
2 , ∗ ∈ {+,−}) on the event {T (i,−)

0 = ∞, i ∈ {1, 2}} with a probability close to one. The last step

consists in determining the values of (N
(ε,∗)
2 , ∗ ∈ {+,−}) on the time interval [(1 − cε)logK/S10, (1 +

cε)logK/S10]. First we notice that (A.3) implies for ∗ ∈ {+,−}:

T
(2,∗)

K
S20( 1

S10
−α∗2cε)

logK
→ α+

S20

β2s
(ε,∗)
20

( 1

S10
− α ∗ 2cε

)
, a.s. on {T (2,∗)

0 =∞}.
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Moreover, we get from (A.1)

P
(
T

(2,−)

K
S20( 1

S10
−α−3cε)

< T
(2,−)

K
S20( 1

S10
−α−cε)

∣∣∣N (2,−)(0) = KS20( 1
S10
−α−2cε)

)
=

(1− s(ε,−)
20 )K

S20( 1
S10
−α−cε)

− (1− s(ε,−)
20 )K

S20( 1
S10
−α−2cε)

(1− s(ε,−)
20 )K

S20( 1
S10
−α−cε)

− (1− s(ε,−)
20 )K

S20( 1
S10
−α−3cε)

→ 0, K →∞.

This completes the proof of the lower bound for (c). Adding (3.19) and (3.20) ends the proof of Lemma
3.1.

We end the study of the first phase dynamics under Assumptions 1 and 2 by an approximation of the
duration of this phase in the case we are interested in:

Lemma 3.2. Recall the definition of M1 in Lemma 3.1. Under Assumptions 1 and 2,

P
(

(1− cε) logK

S10
< T

(K,1)
εK < (1 + cε)

logK

S10

∣∣∣T (K,1)
εK < T̃ (K,0)

ε , NK
2 (T

(K,1)
εK ) ∈ J (K,2)

M1ε

)
≥ 1 +OK(ε).

We do not detail the proof of this Lemma. It is a direct consequence of Couplings (3.13) and Equation
(3.21).

3.2 Assumption 3

Under Assumptions 1 and 3, the type 2 population size has a positive probability to become larger than
the type 1 population size during the first phase. Let us introduce a finite subset of N which may contain
the type 1 population size at the end of the first phase.

J (K,1)
ε :=

[
KS10( 1

S20
+α−ε),KS10( 1

S20
+α+ε)

]
∩ N. (3.22)

Then we have the following possible states at the end of the first phase.

Lemma 3.3. Under Assumptions 1 and 3, there exists a positive constant M2 such that

(a) P
(
T

(K,i)
0 < T

(K,i)
εK < T̃ (K,0)

ε ,∀i ∈ {1, 2}
)

=
(

1− S10

β1

)(
1− S20

β2

)
+OK(ε)

(b) P
(
T

(K,i)
εK < T

(K,i)
0 < T̃ (K,0)

ε , T
(K,j)
0 < T

(K,j)
εK < T̃ (K,0)

ε

)
=
Si0
βi

(
1− Sj0

βj

)
+OK(ε), i 6= j ∈ {1, 2}

(c) P
(
T

(K,2)
εK < T̃ (K,0)

ε , NK
1 (T

(K,2)
εK ) ∈ J (K,1)

M2ε

)
=
S10

β1

S20

β2
+OK(ε).

We do not prove this result as it is very similar to Lemma 3.1. The idea is that when the 2-population
survives the first phase, it takes a time of order logK/S20 to hit the value bεKc, whereas the 1-population
size needs a time of order logK/S10 to hit such a value. As under Assumption 3 α+ 1/S20 < 1/S10, the
2-population size is the first to represent a positive fraction of the total population size. The value of the
1-population size at the end of the first phase is obtained thanks to Coupling (3.13) and Equation (A.3).
We have also an equivalent of Lemma 3.2:

Lemma 3.4. Recall the definition of M2 in Lemma 3.3. Under Assumptions 1 and 3,

P
(

(1−cε)
(
α+

logK

S20

)
< T

(K,2)
εK < (1+cε)

(
α+

logK

S20

)∣∣∣T (K,2)
εK < T̃ (K,0)

ε , NK
1 (T

(K,2)
εK ) ∈ J (K,1)

M2ε

)
= 1+OK(ε).

3.3 Assumption 4

This case has already been studied in [7] and we said a few words about it just after the definition of
Assumption 1. We here present rigorously the results of [7] with our notations:
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Lemma 3.5. Under Assumptions 1 and 4,

P
(
T

(K,1)
0 < T̃ (K,0)

ε

)
=
(

1− S10

β1

)
+OK(ε), P

(
T

(K,1)
εK < T̃ (K,0)

ε

)
=
S10

β1
+OK(ε),

and

P
(

(1− cε) logK

S10
< T

(K,1)
εK < (1 + cε)

logK

S10

∣∣∣T (K,1)
εK < T̃ (K,0)

ε

)
= 1 +OK(ε).

4 Phases 2 and 2n

In this section, we describe the dynamics of ”deterministic phases”, when some of the population sizes are
well approximated by the solution of a two- or three-dimensional competitive Lotka-Volterra system.

4.1 Two-dimensional case

Let us denote by φK1 the end of the first phase, when at least one of the mutant population survives:

φK1 := T
(K,1)
εK ∧ T (K,2)

εK ,

by i(φK1 ) the label of the first mutant population which hits the value bεKc, and by j(φK1 ) the label of
the other mutant population. We will focus on the most interesting case, when the population j(φK1 ) does
not get extinct, as the other ones have already been studied in [7] and [9], and introduce the event:

BKε :=
{
T

(K,i(φK1 ))
εK < T̃ (K,0)

ε , NK
j(φK1 )

(
T

(K,i(φK1 ))
εK

)
∈ J (K,j(φK1 ))

Miε

}
. (4.1)

We will now consider the second phase of the sweep. It corresponds to the interval between the time

T
(K,i(φK1 ))
εK when the mutant population i(φK1 ) hits the value bεKc and the time when the rescaled pop-

ulation process (NK
0 , NK

i(φK1 )
)/K is close enough to the stable equilibrium of the dynamical system (1.7)

with labels 0 and i(φK1 ). To define rigorously the duration of the second phase we need to introduce a

deterministic time t
(z)
ε (i, j) (see (4.3)) after which the solution of the dynamical system (1.7) with initial

condition z = (zi, zj) ∈ R2
+ is close to the stable equilibrium. To do that in a simple way we introduce a

notation for the stable equilibrium of (1.7) independent of conditions (1.8) and (1.13):

n
(eq)
ij = n

(eq)
ji :=

{
n̄jej , if (1.8) holds,

n̄
(i)
ij ei + n̄

(j)
ij ej , if (1.13) holds,

(4.2)

where we recall Definition (1.14). Hence for ε > 0, t
(z)
ε (i, j) can be defined by

t(z)ε (i, j) := inf{s ≥ 0,∀t ≥ s, ‖n(z)
i (t)ei + n

(z)
j (t)ej − n(eq)

ij ‖ ≤ ε
2}, (4.3)

where ‖.‖ denotes the L1-norm on R2. As we do not know precisely the initial value of the rescaled
process (NK

0 , NK
i(φK1 )

)/K at the beginning of the second phase, we consider the supremum over the possible

t
(z)
ε (0, i(φK1 )):

BKε := {(z0, zi(φK1 )), |z0 − n̄0| ≤ 3ε(C0,1 + C0,2)/C0,0, ε/2 ≤ zi(φK1 ) ≤ ε},

and
tε(0, i(φ

K
1 )) := sup{t(z)ε (0, i(φK1 )), z ∈ BKε }, (4.4)

which is finite. We are now able to define rigorously the second phase:

Phase 2 :=
{
t, T

(K,i(φK1 ))
εK ≤ t ≤ T (K,i(φK1 ))

εK + tε(0, i(φ
K
1 ))
}
.

During the second phase two populations have a size of order K, the wild type population and the
mutant population of type i(φK1 ). We will prove that the dynamics of these two population sizes are well
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approximated by the deterministic two-dimensional competitive Lotka-Volterra system (1.7), which stays
in a neighbourhood of its stable equilibrium after the time tε(0, i(φ

K
1 )). The duration of the second phase,

tε(0, i(φ
K
1 )), does not tend to infinity with the carrying capacity K, unlike the durations of the first and

third phases. As a consequence, the size of the j(φK1 )-population stays negligible with respect to K during
the second phase. Recall Definition (4.1). Then we have the following result:

Lemma 4.1. Recall the definitions of the M1 and M2 in Lemmas 3.1 and 3.3, respectively. Then for
every ε > 0,

lim
K→∞

P
(
NK
j(φK1 )(φ

K
1 + s) ∈ JK2M

j(φK1 )
ε,∀s ≤ tε(0, i(φK1 )),∥∥∥ 1

K
(NK

0 e0 +NK
i(φK1 )ei)(φ

K
1 + tε(0, i(φ

K
1 )))− n(eq)

0i(φK1 )

∥∥∥ ≤ ε2 ∧ inf
z∈BKε

n
(z)
0 (tε(0, i(φ

K
1 )))

2

∣∣∣BKε ) = 1.

Remark 3. Here we cannot apply directly (A.5) because it requires positive lower bounds for the jump
rates of each population divided by K. Indeed in our case, the jump rate of the population 2 is of order

K
S
j(φK1 )0

(1/S
i(φK1 )0

+α(1{j(φK1 )=1}−1{j(φK1 )=2}))

which is negligible with respect to K. Hence we will couple the process NK
j(φK1 )

and the process (NK
0 , NK

i(φK1 )
)

with well known processes to get bounds on their dynamics.

Proof of Lemma 4.1. For sake of simplicity we will write (i, j) instead of (i(φK1 ), j(φK1 )) along the proof.
Let us first prove that during the second phase the process NK

j does not evolve a lot. First, notice that

the processes NK
0 and NK

i are bigger than if they were evolving alone. Hence if we introduce the event

CKε :=
{

sup
s≤tε(0,i)

{NK
0 (s) +NK

i (s)} > 2(n̄0 + n̄i)K
}
, (4.5)

we deduce from (A.4) that,

lim
K→∞

sup
N0∈I(K,0)ε ,Ni∈[εK−1,εK]

P(N0,Ni)(C
K
ε ) = 0, (4.6)

where we used the convention

P(Ni,Nj)(.) := P(.|(NK
i , N

K
j )(0) = (Ni, Nj)), (i, j) ∈ E2.

To control the number of j-individuals during the second phase, we introduce two birth and death processes,

N
(K,2,−)
j and N

(K,2,+)
j constructed with the same Poisson random measure Qj as NK

j (see representation
(3.6))

N
(K,2,−)
j (t) := K

Sj0( 1
Si0

+α(1{j=1}−1{j=2})−Mjε) −
∫ t

0

∫
R+

1
θ≤(δj+2(n̄0+n̄i)(Cj,0+Cj,i))N

(2,−)
j (s−)

Qj(ds, dθ),

N
(K,2,+)
j (t) := K

Sj0( 1
Si0

+α(1{j=1}−1{j=2})+Mjε) +

∫ t

0

∫
R+

1
θ≤βjN(2,+)

j (s−)
Qj(ds, dθ).

Recall Definitions (4.1) and (4.5). We see that on the event BKε ∩ CKε ,

N
(K,2,−)
j (t) ≤ NK

j (φK1 + t) ≤ N (K,2,+)
j (t), a.s. ∀t ≤ tε(0, i).

Let us first focus on the process N
(K,2,−)
j . It is a pure death process with individual death rate:

δ := δj + 2(n̄0 + n̄i)(Cj,0 + Cj,i),

and we can construct the following martingale associated with this process:

MK
j (t) := N

(K,2,−)
j (t)eδt −N (K,2,−)

j (0) = −
∫ t

0

∫
R+

1
θ≤δN(K,2,−)

j (s−)
eδsQ̃j(ds, dθ),
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where Q̃j is the compensated Poisson measure Q̃j(ds, dθ) := Qj(ds, dθ) − dsdθ. Moreover, its quadratic
variation can be expressed as

〈MK
j 〉t =

∫ t

0

∫
R+

1
θ≤δN(K,2,−)

j (s)
e2δsdsdθ =

∫ t

0

δN
(K,2,−)
j (s)e2δsds =

∫ t

0

δMK
j (s)eδsds.

Then Markov Inequality leads to

P
(
N

(K,2,−)
j (tε(0, i)) < e−2δtε(0,i)N

(K,2,−)
j (0)

)
= P

(
MK
j (tε(0, i)) <

(
e−δtε(0,i) − 1

)
N

(K,2,−)
j (0)

)
≤ P

((
MK
j (tε(0, i))

)2

>
(

1− e−δ(tε(0,i)
)2(

N
(K,2,−)
j (0)

)2)
≤

E
[
〈MK

j 〉tε(0,i)
]

(
1− e−δtε(0,i)

)2(
N

(K,2,−)
j (0)

)2 =

(
eδtε(0,i) − 1

)
N

(K,2,−)
j (0)(

1− e−δtε(0,i)
)2(

N
(K,2,−)
j (0)

)2 ,

which implies that

lim
K→∞

P
(

inf
s≤tε(0,i)

{N (K,2,−)
j (s)} < e−2δtε(0,i)N

(K,2,−)
j (0)

)
= 0,

as a death process is non increasing. In the same way we prove that

lim
K→∞

P
(

sup
s≤tε(0,i)

{N (K,2,+)
j (s)} > e2βjtε(0,i)N

(K,2,+)
j (0)

)
= 0. (4.7)

From (4.6) to (4.7) we deduce that:

lim
K→∞

P
(
NK
j (φK1 + s) ∈ JK2Mjε,∀s ≤ tε(0, i)

∣∣∣BKε ) = 1. (4.8)

Now we want to control the dynamics of populations 0 and i during the second phase. We introduce

two pairs of processes, (N
(K,2,−)
0 , N

(K,2,+)
i ) and (N

(K,2,+)
0 , N

(K,2,−)
i ) whose dynamics are well know and

such that with high probability,

N
(K,2,−)
k ≤ NK

k ≤ N
(K,2,+)
k , k ∈ {0, i},

during the second phase. These processes are defined as follows for t ≥ 0 and (a, b) = (i, 0) or (0, i):

N
(K,2,−)
a (t) := NK

a (φK1 ) +
∫ t

0

∫
R+
Qa(ds, dθ)

[
1
θ≤βaN(K,2,−)

a (s−)
−

1
0<θ−βaN(K,2,−)

a (s−)≤(δa+Ca,aN
(K,2,−)
a (s−)+Ca,bN

(K,2,+)
b (s−)+Ca,jK

Sj0( 1
Si0

+α(1{j=1}−1{j=2})+2Mjε))N
(K,2,−)
a (s−)

]
,

N
(K,2,+)
b (t) := NK

b (φK1 ) +
∫ t

0

∫
R+
Qb(ds, dθ)

[
1
θ≤βbN(K,2,+)

b (s−)
−

1
0<θ−βbN(K,2,+)

b (s−)≤(δb+Cb,aN
(K,2,−)
a (s−)+Cb,bN

(K,2,+)
b (s−))N

(K,2,+)
b (s−)

]
,

Notice that conditionally on the initial condition of the second phase, NK(φK1 ), the processes (N
(K,2,∗)
k , k ∈

{0, i}, ∗ ∈ {−,+}) are independent of the process NK
j , and that on the event

{φK1 <∞} ∩ {NK
j (φK1 + s) ∈ JK2Mjε,∀s ≤ tε(0, i)},

we have
N

(K,2,−)
k (s) ≤ NK

k (φK1 + s) ≤ N (K,2,+)
k (t), a.s. ∀t ≤ tε(0, i) and k ∈ {0, i}.

Moreover, a direct application of (A.4) leads to

lim
K→∞

sup
(z0,zi)∈I(K,0)ε /K×[ε/2,ε]

P( sup
0≤t≤tε(0,i)

‖(N (K,2,∗)
0 , N

(K,2,∗̄)
i )(t)/K − (n

(z)
0 (t), n

(z)
i (t))‖ > δ) = 0,

for ε and δ > 0, where ∗̄ denotes the complement of ∗ in {−,+}, I(K,0)
ε has been defined in (3.1) and

tε(0, i) in (4.4). Adding (4.8) completes the proof of Lemma 4.1.
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The dynamics of the population process is a succession of phases where at least two types of populations
have a size of order K (2nth phases, n ∈ N) and of phases were at most one population type has a size of
order K ((2n+ 1)th phases, n ∈ Z+). The following lemma completes the description of the dynamics of
phases 2n, in the case where two populations have a size of order K. It is a generalization of Lemma 4.1
and we do not give the proof. Recall Definition (4.4). Then

Lemma 4.2. Let {i, j, k} = {0, 1, 2}, ε > 0, n, ci > 0, γ ∈ (0, 1) and assume that

(NK
i (0), NK

j (0), NK
k (0)) = (bnKc, bεKc, bKγc), with |n− n̄i| ≤ ciε.

Then

lim
K→∞

P
(
NK
k (s) ∈ [Kγ−ε,Kγ+ε],∀s ≤ tε(i, j),∥∥∥ 1

K
(NK

i ei +NK
j ej)(tε(i, j))− n

(eq)
ij

∥∥∥ ≤ ε2 ∧ inf
z∈BKε

n
(z)
i (tε(i, j))

2

)
= 1.

4.2 Three-dimensional case

From a probabilistic point of view, the case where the three types of populations have a size of order K
is simpler, as we can approximate the rescaled population process by the three-dimensional deterministic
Lotka-Volterra system (1.15) according to Equation (A.4). But the behaviour of the solutions of the three-
dimensional Lotka-Volterra systems are much more various than these of the two-dimensional systems.
They have been studied in detail by Zeeman and coauthors [48, 47, 46] and we will now present some of
their findings.

As in the case of two dimensional systems, the invasion fitnesses

(Sij , Sijk, i, j, and k distinct in {0, 1, 2})

will determine the overall behaviour of the flows. In the two dimensional case for interacting populations
of types i and j, there are three possibilities:

• Either Sij < 0 < Sji; then the only stable fixed point is n̄jej

• Or Sij , Sji > 0; then the only stable fixed point is n̄
(i)
ij ei + n̄

(j)
ij ej

• Or Sij , Sji < 0; then there are two stable fixed points, n̄iei and n̄jej .

In the three-dimensional case, Zeeman [48] numbered 33 equivalence classes. An “equivalence class”
is a given combination of invasion fitnesses signs modulo permutation of the indices. Flows of systems
belonging to the same class have the same type of long time behaviour, which is well determined in the
25 first classes and more complex in the 8 remaining classes. These behaviours are represented in Figure
5 and we will now explain their meaning. By an application of Hirsch’s Theorem [23] Zeeman proved
that there exists an invariant hypersurface of R3

+, denoted Σ, such that every non zero trajectory of a
three-dimensional competitive Lotka-Volterra system is asymptotic to one in Σ for large times. Σ is called
the carrying simplex, beeing a balance between the growth of small populations and the competition of
large populations. A locally attracting fixed point is represented by a close dot •, a locally repelling one
by an open dot ◦, and a saddle by the intersection of its hyperbolic manifolds.

The classes 1 to 25 have no interior fixed points, and their dynamics are well known: the system
converges to one of the stable fixed points with at most two positive coordinates. The solutions of systems
in class 32 converge to one of the monomorphic equilibrium density n̄i for i ∈ {0, 1, 2}. The solutions
of systems in class 33 converge to the unique interior fixed points (see [47] for the two last assertions).
In these classes 26 to 31 the system can have periodic orbits depending on the value of the parameters
(see Figure 6). More precisely Zeeman proved that there exists systems with and without periodic orbits
in each of these classes. We have no general criteria to discriminate between cyclical and converging (or
diverging) behaviours of the flows in these classes. Note however that Hofbauer and Sigmund (Theorem
15.3.1 in [24]) and Zeeman and Zeeman (Theorem 6.7 in [46]) provided sufficient conditions to have a
global attractor (or repellor).

21



Figure 5: The phase portraits on Σ. A fixed point is represented by a close dot • if it attracts on Σ; by
an open dot ◦ if it repels on Σ, and by the intersection of its hyperbolic manifolds if it is a saddle on Σ.
(figures found in [48] and modified to include results of [47] about classes 32 and 33)

Figure 6: Phase portraits in classes 26 to 31 in absence of periodic orbits. (figures found in [48])

5 Phases 3 and 2n+ 1

At the beginning of the third phase there are two possible cases: either there are already individuals of
type 2 in the population; this corresponds to Assumptions 2 or 3. Then two types of individuals have

sizes close to n̄
(eq)
ij K (defined in (4.2)), and the last type has a size of order Kγ for some γ ∈ (0, 1). Or

the second mutation has not occurred yet (Assumption 4) and there are only individuals of type 0 and
1. Let us first focus on Assumptions 2 and 3. Then at the beginning of the third phase we have, with a
probability close to S10S20/(β1β2), two kinds of initial conditions:

• Either S0i(φK1 ) < 0 < Si(φK1 )0; then NK
i(φK1 )

is close to n̄i(φK1 )K, NK
0 equals bnKc for some

n ∈ [infz∈BKε n
(z)
0 (tε(0, i(φ

K
1 ))), supz∈BKε n

(z)
0 (tε(0, i(φ

K
1 )))] and Nj(φK1 ) belongs to J2M

j(φK1 )
ε,

• Or S0i(φK1 ), Si(φK1 )0 > 0; then (NK
0 , NK

i(φK1 )
) is close to (n̄

(0)

0i(φK1 )
K, n̄

(i(φK1 ))

0i(φK1 )
K) and Nj(φK1 ) belongs to

J2M
j(φK1 )

ε.

In fact such initial conditions will also be found in phases 2n+ 1, with n ≥ 2. Indeed we will see that
in some cases there will still be two populations with sizes of order K and one population with a size
of a smaller order after the two first alternations of stochastic and deterministic phases (see Figure 4 for
instance). Lemma 5.1 describes the dynamics of a stochastic phase with such initial conditions. Before
stating this lemma, we introduce a finite subset of N2 and a stopping time:

I(K,ij)
ε :=

[
(Ni, Nj),

∥∥∥ 1

K
(Niei +Njej)− (n̄

(i)
ij ei + n̄

(j)
ij ej)

∥∥∥ ≤ 2ε
|CijCjk − CikCjj |+ |CjiCik − CjkCii|

|CiiCjj − CijCji|

]
,
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T̃ (K,ij)
ε := inf

{
t ≥ 0, (NK

i (t), NK
j (t)) /∈ I(K,ij)

ε

}
.

Lemma 5.1. Let us take i, j and k distinct in {0, 1, 2}. Assume that Sij > 0 and NK
k (0) = bKγc for

some 0 < γ < 1.

• If Sji < 0, Ski > 0, NK
i (0) ∈ [(n̄i − ε2)K, (n̄i + ε2)K] and NK

j (0) = bδKc for some 0 < δ < ε2,

P
(
T

(K,j)
0 < T

(K,k)
εK < T̃ (K,i)

ε

)
= 1 +OK(ε), for

1

|Sji|
<

1− γ
Ski

,

P
(
T

(K,k)
εK < T̃ (K,i)

ε ∧T (K,j)
0 , NK

j (T
(K,k)
εK ) ∈

[
K

1−
(1−γ+ε)|Sji|

Ski ,K
1−

(1−γ−ε)|Sji|
Ski

])
= 1+OK(ε), for

1

|Sji|
>

1− γ
Ski

.

• If Sji > 0, Skij > 0, NK
l (0) ∈ [(n̄

(l)
ij − ε2)K, (n̄

(l)
ij + ε2)K] for l ∈ {i, j},

P
(
T

(K,k)
εK < T̃ (K,ij)

ε

)
= 1 +OK(ε),

• If Sji < 0, Ski < 0, NK
i (0) ∈ [(n̄i − ε2)K, (n̄i + ε2)K] and NK

j (0) = bδKc for some 0 < δ < ε2,

P
(
T

(K,j)
0 ∨ T (K,k)

0 < T̃ (K,i)
ε

)
= 1 +OK(ε),

• If Sji > 0, Skij < 0, NK
l (0) ∈ [(n̄

(l)
ij − ε2)K, (n̄

(l)
ij + ε2)K] for l ∈ {i, j},

P
(
T

(K,k)
0 < T̃ (K,ij)

ε

)
= 1 +OK(ε).

The proof of this Lemma is very similar to the proof of Lemma 3.1. It consists in comparing the
population process with birth and death processes, which can be subcritical in this case, and to show that

the equilibrium sizes bn̄iKc or (bn̄(i)
ij Kb, cn̄

(j)
ij Kc) are not modified much by population(s) with size(s)

smaller than bεKc. Hence we do not detail the proof. We are also able to get approximation of the
stochastic phase duration:

Lemma 5.2. Let us take i, j and k distinct in {0, 1, 2}. Assume that Sij > 0 and NK
k (0) = bKγc for

some 0 < γ < 1. Then there exists a finite constant c such that,

• If Sji < 0, Ski > 0, NK
i (0) ∈ [(n̄i − ε2)K, (n̄i + ε2)K] and NK

j (0) = bδKc for some 0 < δ < ε2,

P
(

(1− cε)1− γ
Ski

logK < T
(K,k)
εK < (1 + cε)

1− γ
Ski

logK
∣∣∣T (K,k)
εK < T̃ (K,i)

ε

)
= 1 +OK(ε).

• If Sji > 0, Skij > 0, NK
l (0) ∈ [(n̄

(l)
ij − ε2)K, (n̄

(l)
ij + ε2)K], l ∈ {i, j},

P
(

(1− cε)1− γ
Skij

logK < T
(K,k)
εK < (1 + cε)

1− γ
Skij

logK
∣∣∣T (K,k)
εK < T̃ (K,ij)

ε

)
= 1 +OK(ε).

• If Sji < 0, Ski < 0, NK
i (0) ∈ [(n̄i − ε2)K, (n̄i + ε2)K] and NK

j (0) = bδKc for some 0 < δ < ε2,

P
(

(1−cε)
( 1

|Sji|
∨ γ

|Ski|

)
logK < T

(K,j)
0 ∨T (K,k)

0 < (1+cε)
( 1

|Sji|
∨ γ

|Ski|

)
logK

∣∣∣T (K,j)
0 ∨T (K,k)

0 < T̃ (K,i)
ε

)
= 1 +OK(ε).

• If Sji > 0, Skij < 0, NK
l (0) ∈ [(n̄

(l)
ij − ε2)K, (n̄

(l)
ij + ε2)K] for l ∈ {i, j},

P
(

(1− cε) 1

|Skij |
logK < T

(K,k)
0 < (1 + cε)

1

|Skij |
logK

∣∣∣T (K,k)
0 < T̃ (K,ij)

ε

)
= 1 +OK(ε).
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Let us now describe the dynamics of the third phase when Assumption 4 holds. As in Lemma 5.1
there are five possibilities, depending on the signs of the invasion fitnesses and of the value of α. To take
into account the state of the population at the end of the first phase, we introduce the following notation
under Assumption 4:

Pφ1(N0,N1)(.) := P(.|(NK
0 , NK

1 )(0) = (N0, N1)

and the second mutant appears at time (α− 1/S10) logK)

Recall that on the event {φK1 <∞}, Lemma 3.5 ensures that φK1 is of order logK/S10 with a probability
close to 1. Then we can state the following properties for the population dynamics during the third phase:

Lemma 5.3. Under Assumptions 1 and 4,

• If S01 < 0, S21 > 0 and 1/|S01| < α− 1/S10 + 1/S21,

inf
N0≤ε2K,N1∈I(K,1)ε

Pφ1(N0,N1)

(
T

(K,0)
0 < T

(K,2)
εK < T̃ (K,1)

ε

)
=
S21

β2
+OK(ε),

• If S01 < 0, S21 > 0 and 1/|S01| > α− 1/S10 + 1/S21,

inf
infz∈BKε

n
(z)
0 (tε(0,1))/2≤N0/K≤ε2,N1∈I(K,1)ε

Pφ1(N0,N1)

(
T

(K,2)
εK < T̃

(K,1)
εK ∧ T (K,0)

0 , NK
0 (T (K,k)

ε )

∈
[
K1−|S01|(α− 1

S10
+ 1
S21

+ε),K1−|S01|(α− 1
S10

+ 1
S21
−ε)
])

=
S21

β2
+OK(ε),

• If S01 > 0, S201 > 0,

inf
‖(N0,N1)/K−(n̄

(0)
01 ,n̄

(1)
01 )‖≤ε

Pφ1(N0,N1)

(
T

(K,2)
εK < T̃ (K,01)

ε

)
=
S201

β2
+OK(ε),

• If S01 < 0, S21 > 0,

inf
N0≤ε2K,N1∈I(K,1)ε

Pφ1(N0,N1)

(
T

(K,0)
0 ∨ T (K,2)

0 < T̃ (K,1)
ε

)
= 1− S21

β2
+OK(ε), ∀α <∞,

• If S01 > 0, S201 > 0,

inf
‖(N0,N1)/K−(n̄

(0)
01 ,n̄

(1)
01 )‖≤ε

Pφ1(N0,N1)

(
T

(K,2)
0 < T̃ (K,01)

ε

)
= 1− S201

β2
+OK(ε), ∀α <∞.

Once again the proof is very similar to the proof of Lemma 3.1, and we can also derive approximations
for the total duration of the three third phases:

Lemma 5.4. Under Assumptions 1 and 4, there exists a finite constant c such that,

• If S01 < 0, S21 > 0 and 1/|S01| < α− 1/S10 + 1/S21,

P
(

(1−cε)
( 1

S10
+

1

|S01|

)
logK < T

(K,0)
0 < (1+cε)

( 1

S10
+

1

|S01|

)
logK

∣∣∣T (K,0)
0 < T̃ (K,1)

ε ∧T (K,2)
ε

)
= 1+OK(ε).

• If S01 < 0, S21 > 0 and 1/|S01| > α− 1/S10 + 1/S21,

P
(

(1−cε)
(
α+

1

S21

)
logK < T

(K,2)
εK < (1+cε)

(
α+

1

S21

)
logK

∣∣∣T (K,2)
εK < T̃ (K,1)

ε ∧T (K,0)
0

)
= 1+OK(ε).

• If S01 > 0, S201 > 0,

P
(

(1− cε)
(
α+

1

S201

)
logK < T

(K,2)
εK < (1 + cε)

(
α+

1

S201

)
logK

∣∣∣T (K,2)
εK < T̃ (K,01)

ε

)
= 1 +OK(ε).
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6 Proofs of Propositions 1 to 6

We now prove the main results of this paper. The proofs are direct consequences of Lemmas stated in
Sections 3, 4 and 5. As the proofs of Propositions 1 and 2 are very similar, we only prove the second one.

Proof of Proposition 2. Let us first consider that Assumptions 1 and 2, and Condition (2.7) are satisfied.

(1− S10/β1)S20/β2: According to Lemma 3.1, with a probability close to (1 − S10/β1)S20/β2 only the
2-population survives the first phase and hits the size bεKc. Then it ’deterministically’ competes with the
0-population and outcompetes it as S02 < 0. In this case the duration of the invasion, logK/S20, is not
modified by the presence of the mutant 1.

S10S20/(β1β2): According to Lemma 3.1 and 3.2, with a probability close to S10S20/(β1β2) both 1- and
2-populations survive the first phase, which has a duration close to

logK

S10
.

The 1-population size is the first to hit bεKc, whereas the 2-population size belongs to J
(K,2)
M1ε

(defined in
(3.5)) at the end of the first phase. Lemma 4.1 and Markov Property imply that with a probability close
to one, the 2-population size stays of the same order during the second phase, and the 0- and 1-population
sizes become close to (aK, n̄1K), with 0 < a < ε2 depending on ecological parameters but not on K, at
the end of the second phase. As S21 > 0, the 2-population size grows during the third phase and takes a
time close to

1

S21

(
1− S20

( 1

S10
− α

))
logK

to hit the size bεKc (Lemma 5.2). Furthermore at the end of the third phase the 0-population has a size
negligible with respect to K (which can be 0, see Lemma 5.1). During the fourth phase the 2-population
’deterministically’ outcompetes the 1-population, as S12 < 0 < S21 (Lemma 4.2). Then the 0- and 1-
populations get extinct, as S02 and S12 < 0 (Lemma 5.1). Such a trajectory is illustrated in the second
simulation of Figure 2. In this case the total duration of the mutant invasion is( 1

S10
+

1

S21

(
1− S20

( 1

S10
− α

))
− α

)
logK,

(the −α logK is due to the time of the second mutation occurrence) which has to be compared with the
duration of the invasion in the absence of the first mutation, logK/S20. The resolution of a quadratic
equation leads to the condition S20 ∈]S10/(1− αS10), S21[. More precisely, the inequality( 1

S10
+

1

S21

(
1− S20

( 1

S10
− α

))
− α

)
logK <

logK

S20

is equivalent to

S2
20

1

S21

( 1

S10
− α

)
− S20

( 1

S10
+

1

S21
− α

)
+ 1 > 0,

whose solutions are S20 = S21 and S20 = S10/(1− αS10). As under Assumptions 1 and 2,

1

S20
>

1

S10
− α⇐⇒ S20 <

S10

1− αS10
,

this ends the proof of this case.

1− S20/β2: Finally with a probability close to 1 − S20/β2 the 2-population gets extinct during the first
phase (Lemma 3.1).

The proof of the second case follows the same ideas. The only difference is that when the 1-population
survives the first phase, the 0- and 1-populations coexist during the third phase, as S10 and S01 > 0. This
ends the proof of Proposition 2.
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Again the proofs of Propositions 3 and 4 are very similar, and we only prove the second one.

Proof of Proposition 4. Let us first suppose that Assumptions 1 and 4 hold, and that S20 < 0, S01 > 0,
S201 > 0.

1− S10/β1: According to Lemma 3.5, with a probability close to 1−S10/β1 the mutants 1 do not survive
the first phase. Then following (A.5) we get that the 0-population size stays close to its equilibrium n̄0K
during a time of order eV K where V is a positive constant independent of K. Hence it is still close to
this value when the second mutant appears (time α logK). The latter one has a negligible probability to
survive as the invasion fitness S20 is negative. After the 2-population extinction, using again (A.5), we get
that the 0-population size stays close to its equilibrium value n̄0K during a time larger than eV K where
V is a positive constant independent of K.

S10/β1(1− S201/β2): According to Lemma 3.5, with a probability close to S10/β1 the mutants 1 survive the

first phase, and the 0- and 1-population sizes get close to their coexisting equilibrium (bn̄(0)
01 Kc, bn̄

(1)
01 Kc)

during the second phase. Then we get from (A.5) that the 0- and 1-population sizes stay close to this
coexisting equilibrium during a time larger than eV K for large K where V is a positive constant indepen-
dent of K. Hence they are still close to this state when the second mutant appears (time α logK). The
latter one has a probability close to 1 − S201/β2 to get extinct before hitting bεKc (Lemma 5.3). After

the 2-population extinction, the 0- and 1-population sizes stay close to their equilibrium value bn̄(0)
01 Kc

and bn̄(1)
01 Kc during a time larger than eV K where V is a positive constant independent of K (Equation

(A.5)).

S10S201/(β1β2): Applying again Lemma 3.5 and Equation (A.5), we get that with a probability close to

S10/β1 the 0- and 1-population sizes get close to (n̄
(0)
01 K, n̄

(1)
01 K) and are still in this configuration when

the second mutant occurs. The latter one has a probability close to S201/β2 to hit a size of order K

(Lemma 5.3) whereas (N0, N1) still belongs to I
(K,01)
ε . Then the final state depends on the signs of the

other invasion fitnesses. The approximating deterministic Lotka-Volterra system after the third phase can

belong to 7-12, 29, 31 or 33ird class described by Zeeman (see Figures 5 and 2 case
�� ��B ). In all the cases

the density of 2-type individuals does not tend to 0 during a time larger than eV K where V is a positive
constant independent of K.

The proof of the second case follows the same ideas. We just have to take into account the value of
α logK compared to some invasion time to know whether the 0-population gets extinct before the hitting
of bεKc by the 2-population. We detail this kind of comparison in the proof of Proposition 6 and end here
the proof of Proposition 3.

Let us conclude this section with the proof of Proposition 6. The proof of Proposition 5 follows the
same outline and is simpler; hence we leave it to the reader.

Proof of Proposition 6. Suppose that Assumptions 1, 4 and Conditions (2.11) and (2.12) hold.

1− S10/β1: See the beginning of the proof of Proposition 3.

(S10/β1)(1− S21/β2): Lemma 3.5 and Equation (A.4) imply that with a probability close to S10/β1, the
1-population survives the first phase and the population state at the end of the second phase satisfies
(N0, N1)(φK1 ) = (bn0Kc, bn1Kc) with

inf
z∈BKε

n
(z)
0 (tε(0, 1))

2
< n0 < ε2 and |n1 − n̄1| ≤ ε,

where tε(0, 1) has been defined in (4.4). Then with a probability close to 1−S21/β2 the 2-population does
not survive, and the 0-population size, which can be compared to a subcritical birth and death process
as S01 < 0, also hits 0 while the 1-population size is still close to bn̄1Kc (Lemma 5.3). In this case, the
1-population size stays close to its equilibrium value bn̄1Kc during a time larger than eV K where V is a
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positive constant independent of K (Equation (A.5)).

S10S21/(β1β2): First applying again Lemma 3.5 and Equation (A.4) we get that with a probability close
to S10/β1, the 1-population survives the first phase and the population state at the end of the second
phase satisfies (N0, N1)(φK1 ) = (bn0Kc, bn1Kc) with

inf
z∈BKε

n
(z)
0 (tε(0, 1))

2
< n0 < ε2 and |n1 − n̄1| ≤ ε.

Then Lemma 5.3 implies that with a probability close to S21/β2, the 2-population size hits the value bεKc
before the extinction of the 0-population, because( 1

S10
+

1

|S01|

)
logK,

which is the approximate extinction time of the 0-population (Lemma 5.4), is bigger than(
α+

1

S21

)
logK,

which is the approximate hitting time of bεKc by the 2-population size (again Lemma 5.4). Combining
Lemmas 3.5, 5.3 and 5.4 we even get that at the end of the third phase, the 0-population size is of order

K1−|S01|(α− 1
S10

+ 1
S21

),

and that the duration of the third phase is(
α− 1

S10
+

1

S21

)
logK. (6.1)

During the fourth phase we can approximate the dynamics of the 1- and 2-populations, which have a
size of order K, by the system (1.7) with (i, j) = (1, 2) (Lemma 4.2). As S12 < 0 < S21, the 1- and
2-population states at the end of the fourth phase are (bn1Kc, bn2Kc) with

inf
z∈BKε

n
(z)
1 (tε(1, 2))

2
< n1 < ε2 and |n2 − n̄2| ≤ ε.

During the fifth phase, the 0-population size has an evolution comparable to this of a supercritical birth
and death process (S02 > 0) and takes a time

|S01|
S02

(
α− 1

S10
+

1

S21

)
logK (6.2)

to hit bεKc (Lemmas 5.1 and 5.2). The 1-population size has an evolution comparable to this of a
subcritical birth and death process (S12 < 0) and takes a time

logK

|S12|
(6.3)

to get extinct. As according to Condition (2.12)

|S01|
S02

(
α− 1

S10
+

1

S21

)
<

1

|S12|
,

(6.2) and (6.3) imply that the 0-population size hits bεKc before the extinction of the 1-population, the
fifth phase has a duration of order

|S01|
S02

(
α− 1

S10
+

1

S21

)
logK, (6.4)
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and at the end of the fifth phase, the 1-population size is of order

K1− |S12||S01|S02
(α− 1

S10
+ 1
S21

).

We then again apply the same reasoning: during the sixth phase, the 0-population outcompetes the
2-population. During the seventh phase, which has a duration of order

|S12||S01|
S10S02

(
α− 1

S10
+

1

S21

)
logK, (6.5)

the 1-population size hits the value bεKc and the 2-population sizes ends at a value of order

K1− |S20||S12||S01|S10S02
(α− 1

S10
+ 1
S21

),

where we used Condition (2.12) which implies that

|S12||S01|
S10S02

(
α− 1

S10
+

1

S21

)
<

1

|S20|
.

Adding the durations of the third, fifth and seventh phases in (6.1), (6.4) and (6.5), we get the duration
of the first cycle, (

α− 1

S10
+

1

S21

)(
1 +
|S01|
S02

+
|S01||S12|
S02S10

)
logK.

Then by induction we prove that at the end of the phase 3 + l, l ∈ N, the 0-population size is of order

K1−|S01|(α− 1
S10

+ 1
S21

)(
|S12||S01||S20|
S10S02S21

)l ,

at the end of the phase 5 + l, l ∈ N, the 1-population size is of order

K1− |S12||S01|S02
(α− 1

S10
+ 1
S21

)(
|S12||S01||S20|
S10S02S21

)l ,

and at the end of the phase 7 + l, l ∈ N, the 2-population size is of order

K1− |S20||S12||S01|S10S02
(α− 1

S10
+ 1
S21

)(
|S12||S01||S20|
S10S02S21

)l .

We also prove that the 3 + lth phase, l ∈ N, has a duration close to( |S12||S01||S20|
S10S02S21

)l(
α− 1

S10
+

1

S21

)
logK,

the 5 + lth phase, l ∈ N, has a duration close to( |S12||S01||S20|
S10S02S21

)l |S01|
S02

(
α− 1

S10
+

1

S21

)
logK,

and the 7 + lth phase, l ∈ N, has a duration close to( |S12||S01||S20|
S10S02S21

)l |S12||S01|
S10S02

(
α− 1

S10
+

1

S21

)
logK.

This completes the proof of Proposition 6.

A Technical results

This section is dedicated to technical results needed in the proofs. We first recall some facts about birth
and death processes. They are used in Sections 3 to 5 and can be found in [1]:
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Lemma A.1. Let Z = (Zt)t≥0 be a birth and death process with individual birth and death rates b and
d. For a ∈ R+, Ta = inf{t ≥ 0, Zt = bac} and Pi (resp. Ei) is the law (resp. expectation) of Z when
Z0 = i ∈ N. Then

• For (i, j, k) ∈ Z3
+ such that j ∈ (i, k),

Pj(Tk < Ti) =
1− (d/b)j−i

1− (d/b)k−i
. (A.1)

• If 0 < d 6= b, for every i ∈ Z+ and t ≥ 0,

Pi(T0 ≤ t) =
(d(1− e(d−b)t)

b− de(d−b)t

)i
. (A.2)

• If 0 < d < b, on the non-extinction event of Z, which has a probability 1 − (d/b)Z0 , the following
convergence holds:

TN/ logN →
N→∞

(b− d)−1, a.s. (A.3)

We also need large deviation results to quantify the difference between the rescaled population process
NK/K and the approximating deterministic Lotka-Volterra processes (1.7) and (1.15). The following
statements can be found in [7] Theorem 3 (b) and (c) and in [9] Proposition A.2. They follow from Dupuis
and Ellis [16] (Theorem 10.2.6 in Chapter 10):

Lemma A.2. Let C be a compact of (R∗+)2 × {0} or (R∗+)3, and T a finite positive constant. Then for
every positive δ,

lim
K→∞

sup
z∈C

P
(

sup
t≤T
‖NK(t)/K − n(z)(t)‖ > δ

∣∣∣NK
0 (0) = bzKc

)
= 0, (A.4)

where bzKc = (bz0Kc, bz1Kc, bz2Kc), and n(z) is the solution of (1.15) with initial condition z.
Let n̄ denote a stable equilibrium of a competitive Lotka-Volterra system in dimension one, two or three,

with all coordinates positive. Let ε > 0 and NK denote the population process with the same ecological
parameters as the considered Lotka-Volterra system and carrying capacity K. Then there exists a positive
constant V such that

lim
K→∞

P
(

sup
t≤eVK

∥∥∥NK(t)

K
− n̄

∥∥∥ ≤ 2ε
∣∣∣ ∥∥∥NK(0)

K
− n̄

∥∥∥ ≤ ε) = 1. (A.5)

Let us now prove Lemma 2.1 which precises the conditions needed to have transitive interactions
between several types of individuals:

Proof of Lemma 2.1. Let i, j, k be in E and recall notation (2.1). The relations

i ≺ j and j ≺ k

are equivalent to
ρi
ρj
− C̃ij < 0 <

ρj
ρi
− C̃ji and

ρj
ρk
− C̃jk < 0 <

ρk
ρj
− C̃kj ,

or in other terms
ρi
ρj

< C̃ij ∧
1

C̃ji
and

ρj
ρk

< C̃jk ∧
1

C̃kj
.

1. If (2.2) holds, then

Sik = ρk

( ρi
ρk
− C̃ik

)
= ρk

( ρi
ρj

ρj
ρk
− C̃ik

)
< ρk

((
C̃ij ∧

1

C̃ji

)(
C̃jk ∧

1

C̃kj

)
− C̃ik

)
≤ ρk

((
C2 ∧

1

C1

)2

− C1

)
≤ 0,
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and

Ski = ρi

(ρk
ρi
− C̃ki

)
= ρi

(ρk
ρj

ρj
ρi
− C̃ki

)
> ρi

((
C̃kj ∨

1

C̃jk

)(
C̃ji ∨

1

C̃ij

)
− C̃ki

)
≥ ρk

((
C1 ∨

1

C2

)2

− C2

)
≥ 0,

which implies that
i ≺ k.

2. If (2.3) holds, then one of the two previous inequalities is not satisfied. Hence either i ≺ k or i = k.

3. Let us now assume that (2.3) holds. We can choose η > 0 such that[(
C2 ∧

1

C1

)
− η
]2
> C1 and

[(
C2 ∧

1

C1

)
− η
]−2

< C2.

Assume now that
ρi
ρj

=
ρj
ρk

=
(
C2 ∧

1

C1

)
− η.

Then

ρi
ρj
− C2 < 0 <

ρj
ρi
− C1,

ρj
ρk
− C2 < 0 <

ρk
ρj
− C1 and

ρi
ρk
− C1 > 0 >

ρk
ρi
− C2.

This ends the proof of Lemma 2.1.

We now present two examples of three dimensional Lotka-Volterra systems satisfying conditions of
Proposition 6 and exhibiting different long time behaviours. In the first one, the solutions converge to a
limit cycle with constant period whereas in the second one they converge to the unique globally attracting
fixed point of the system. Before these two examples, we need to give a definition and recall a result of
Hofbauer and Sigmund.

Definition A.1. A matrix A = (aij)0≤i,j≤2 ∈ M3(R) is called Volterra-Lyapunov stable if there exist
positive numbers d0, d1, d2 such that ∑

0≤i,j≤2

diaijninj < 0, ∀n 6= 0.

Let us introduce the matrix

A =

 C0,0 C0,1 C0,2

C1,0 C1,1 C1,2

C2,0 C2,1 C2,2

 .

Then we have:

Theorem 1 (Theorem 15.3.1 in [24]). If −A is Volterra-Lyapunov stable then the Lotka-Volterra system
(1.15) has one globally stable fixed point.

This theorem is needed to construct the second example in the following illustration:

Illustration of Remark 2. 1. In [36], the authors model the RPS interactions of escherichia coli strains
by the following system:  ṅ0 = (δ − κ1n0 − µn1 − µn2)n0,

ṅ1 = (η − µn0 − κ3n1 − µn2)n1,
ṅ2 = (β − (µ+ γ)n0 − µn1 − µn2)n2,

where all the parameters belong to R∗+. They give an example for which the solutions converge to a
limit cycle with constant period. It corresponds to the following values of the parameters:

η = µ = 1, κ1 = β = 2, κ2 = 1, 75, γ = 2, 84, κ3 = 0, 844.. and δ = 1, 156...
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For these values of the parameters we have:

S10 = 0, 422..., S01 = −0, 0288...

S21 = 0, 816..., S12 = −0, 0143

S02 = 0, 0131..., S20 = −0, 220....

These invasion fitnesses satisfy (2.11) and

S21 > |S01|, S02S21 > |S01||S12| and S02S10S21 > |S01||S12||S20|.

Hence we can choose α such that (2.12) holds.

2. Recalling the definition of invasion fitnesses in (1.6) we get that −A is Volterra-Lyapunov stable if
there exist positive constants d0, d1, d2 such that for every n 6= 0,∑

0≤i,j≤2

(βi − δi)di
Ci,i

(βi − δi − Sij)
Ci,ini
βi − δi

Cj,jnj
βj − δj

> 0,

which amounts to the existence of positive constants d0, d1, d2 such that for every n 6= 0,∑
0≤i,j≤2

di(βi − δi − Sij)ninj > 0.

Expanding the sum and using the notation ρi = βi − δi for i ∈ E we get the condition

d0ρ0n
2
0 + d1ρ1n

2
1 + d2ρ2n

2
2 +

[
d0(ρ0 + |S01|) + d1(ρ1 − S10)

]
n0n1+[

d0(ρ0 − S02) + d2(ρ2 + |S20|)
]
n0n2 +

[
d1(ρ1 + |S12|) + d2(ρ2 − S21)

]
n1n2 > 0.

Let us now make the following choice:

ρidi = 1, i ∈ E , ρ0 − S02

ρ0
=
ρ1 − S10

ρ1
=
ρ2 − S21

ρ1
= η,

|S01|
ρ0

=
|S12|
ρ1

=
|S20|
ρ2

= η, (A.6)

where 0 < η < 1/2. The condition to satisfy becomes

n2
0+n2

1+n2
2+

1 + 2η

2
(2n0n1+2n0n2+2n1n2) =

1− 2η

2
(n2

0+n2
1+n2

2)+
1 + 2η

2
(n0+n1+n2)2 > 0,

which holds for every non null n ∈ R3. The end of the proof consists in noticing that we can indeed
choose the parameters as in (A.6). Assume for example that the ρi’s and the Ci,i’s are given. Then
it is enough to take

Ci+1,i = η
ρi+1

ρi
Ci,i, Ci,i+1 = (1 + η)

ρi
ρi+1

Ci+1,i+1, where i is modulo 2.

Finally it is easy to check that the conditions of Proposition 6 are satisfied. Applying 1 we get that
the Lotka-Volterra system (1.15) has one globally stable fixed point. This ends the construction of
the second example.

B Complete description of possible dynamics

We now give a complete description of the possible population dynamics. Sections B.1 and B.3 are
dedicated to Assumptions 2 and 4, respectively. In Section B.2 we explain how the dynamics under
Assumptions 1 and 3 can be deduced from the dynamics of the process under Assumptions 1 and 2.
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Case Duration of the sweep: logK. Final state�� ��A 1
S10

(n̄
(0)
01 ,n̄

(1)
01 ,0)

�� ��B 1
S10

+ 1
S201

(
1−S20

(
1
S10
−α
))

S21<0,S12<0,S02<0, (0,0,n̄2) (8)

S21>0,S12<0,S02<0, 012 (29)

S21>0,S12<0,S02>0,S102>0 012 (31)

S21>0,S12<0,S02>0,S102<0 (n̄
(0)
02 ,0,n̄

(2)
02 ) (10)

S21>0,S12>0,S02<0,S012<0 (0,n̄
(1)
12 ,n̄

(2)
12 ) (9)

S12>0,S02<0,

 S21<0 or

S21>0,S012>0
012 (29 or 31)

S21>0,S12>0,S02>0, (n̄
(0)
012,n̄

(1)
012,n̄

(2)
012) (33)�� ��C 1

S10
+ 1
S21

(
1
S10
−α
)

(0,n̄
(1)
12 ,n̄

(2)
12 )�� ��D 1

S10
+ 1
S21

(
1+
|S01|
S012

)(
1
S10
−α
)

S102<0, (n̄
(0)
02 ,0,n̄

(2)
02 ) (10)

S102>0, 012 (31)�� ��E 1
S10

+ 1
S21

(
1−S20

(
1
S10
−α
))

(0,0,n̄2)�� ��F 1
S10

+ 1
S21

(
1+
|S01|
S02

)(
1
S10
−α
)

(n̄
(0)
02 ,0,n̄

(2)
02 )�� ��G 1

S10
+ 1
S21

(
1+
|S01|
S02

+
|S01|S|12|
S02S102

)(
1
S10
−α
)

012 (29)�� ��H 1
S10

+ 1
S21

(
1+
|S01|
S02

)(
1
S10
−α
)

(n̄
(0)
02 ,0,n̄

(2)
02 )�� ��I 1

S10
+ 1
S21

(
1−S20

(
1
S10
−α
))

(0,0,n̄2)�� ��J 1
S10

+ 1
S21

(
1
S10
−α
)

(0,n̄
(1)
12 ,n̄

(2)
12 )�� ��K 1

S10
(0,n̄1,0)

Table 1: Possible dynamics under Assumption 2. Encircled letters correspond to these in Figure 7. See
Section B.1 for the caption.

B.1 Assumption 2

In Figure 7 and Table 1, we assume that the 1- and 2-populations survive the first phase. This happens
with a probability close to S10S20/(β1β2) (Lemma 3.2) and is the case we are interested in, as otherwise
there is no clonal interference and we are brought back to the invasion of one mutant already studied
in [7] and [9]. The behaviour of the population process after the first phase depends on the relations
between the ecological parameters of the different individual types. We describe the different conditions
which discriminate between different scenari in Figure 7, and list them in their chronological order of
appearance. We also indicate the phase during which the conditions have an impact on the population
process behaviour.

In Table 1 we describe the ”final state” of the population processes under the conditions
�� ��A to

�� ��K .
For sake of simplicity we call ”final state” in this setting the element of R3

+

FS :=
⋂
ε>0

{n ∈ R3
+,∃β(ε), V (ε) > 0, lim inf

K→∞
P(1,2)(n ∈ FS(ε,K, β(ε), V (ε))) > 0}, (B.1)

when this intersection is non empty, otherwise we call ”final state” the long time behaviour of the three
dimensional Lotka-Volterra system close to the rescaled population process once the three population
types have a size of order K. In this case we indicate the corresponding class of the dynamical system in
the Zeeman representation (Figure 5) and we write ”012” when the invasion fitness signs do not allow to
discriminate between a cyclical or stable coexistence of the three types of populations.

We have also indicated in Table 1 the durations of the sweep. They have to be understood in the
sense of Lemma 3.2 for instance, when the final state FS described in (B.1) is non empty. They are good
approximations of the durations with a probability one up to a constant times ε. When FS is empty,
these durations correspond to the time needed for the three populations to hit a size of order K.
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Figure 7: Different dynamics under Assumption 2. See Section B.1 for the caption

B.2 Assumption 3

Let us now explain how we deduce the possible dynamics under Assumption 3 from the possible dynamics
under Assumption 2. Applying Lemmas 3.1 to 3.4 we get the dynamics represented in Figure 8 with a
probability close to S10S20/(β1β2) under Assumptions (1 and) 2 and 3, respectively. We deduce that to
obtain an equivalent of Figure 1 it is enough to:

1. Interchange the roles of the 1- and 2-populations,

2. Replace α by −α in the conditions of Figure 7 and in the duration of the sweep

3. Add α logK to the duration of the sweep.

We see that we do not get new long time behaviours by comparison with Assumptions 1 and 2. This is
why we did not detail this case.

B.3 Assumption 4

Figure 9 and Table 2 are the analogues of Figure 7 and Table 1 for Assumption 4. Here we only assume
that the 1-population survives the first phase (probability close to S10/β1 according to Lemma 3.1), as the
second mutation occurs during the third phase. The captions are the same, except that we add in Table
2 a final state ”cycles Rock-Paper-Scissors” which corresponds to the class 27 in Zeeman’s classification
(Proposition 6).

33



Figure 8: From Assumption 2 to Assumption 3 (see Section B.2)
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Figure 9: Different dynamics under Assumption 4. Same legend as in Figure 7
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Case Duration of the sweep: logK. Final state�� ��A 1
S10

(n̄
(0)
01 ,n̄

(1)
01 ,0)

�� ��B α+ 1
S201

S12<0,S02<0,S20>0, (0,0,n̄2) (7 or 8)

S21>0,S12>0,S012<0, (0,n̄
(1)
12 ,n̄

(2)
12 ) (9 to 12)

S20>0,S02>0,S102<0, (n̄
(0)
02 ,0,n̄

(2)
02 ) (9 to 12)

S12>0,S02<0,S20>0, 012 (29 or 31)

Sij>0,∀(i,j)∈{0,1,2}2, (n̄
(0)
012,n̄

(1)
012,n̄

(2)
012) (33)�� ��C α+ 1

S201
(0,n̄

(1)
12 ,n̄

(2)
12 )�� ��D α+ 1

S21
+
|S01|
S012

(
α− 1

S10
+ 1
S21

) S20>0,S102<0, (n̄
(0)
02 ,0,n̄

(2)
02 ) (10)

S20>0,S102>0, 012 (31)

S20<0, 012 (29)�� ��E α+ 1
S201

(0,0,n̄2)�� ��F α+ 1
S21

+
|S01|
S02

(
α− 1

S10
+ 1
S21

)
S20>0, (n̄

(0)
02 ,0,n̄

(2)
02 )

S20<0, (n̄0,0,0)�� ��G α+ 1
S21

+
|S01|
S02

(
α− 1

S10
+ 1
S21

)
(n̄

(0)
02 ,0,n̄

(2)
02 )�� ��H α+ 1

S21
+
|S01|
S02

(
1+
|S12|
S102

)(
α− 1

S10
+ 1
S21

)
012 (29)�� ��I α+ 1

S21
+
|S01|
S02

(
1+
|S12|
S10

)(
α− 1

S10
+ 1
S21

)
cycles Rock-Paper-Scissors�� ��J α+ 1

S201
(0,0,n̄2)�� ��K α+ 1

S201
(0,n̄

(1)
12 ,n̄

(2)
12 )�� ��L 1

S10
(0,n̄1,0)

Table 2: Possible dynamics under Assumption 4. Encircled letters correspond to these in Figure 9. See
Section B.3 for the caption.
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