
HAL Id: hal-01394666
https://hal.science/hal-01394666

Submitted on 9 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analogical Classification: A Rule-Based View
Myriam Bounhas, Henri Prade, Gilles Richard

To cite this version:
Myriam Bounhas, Henri Prade, Gilles Richard. Analogical Classification: A Rule-Based View. 15th
International Conference on Information Processing and Management (IPMU 2014), Jul 2014, Mont-
pellier, France. pp. 485-495. �hal-01394666�

https://hal.science/hal-01394666
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 15181

The contribution was presented at IPMU 2014:
http://www.ipmu2014.univ-montp2.fr/

To cite this version : Bounhas, Myriam and Prade, Henri and Richard, Gilles
Analogical Classification: A Rule-Based View. (2014) In: 15th International
Conference on Information Processing and Management (IPMU 2014), 15 July
2014 - 19 July 2014 (Montpellier, France).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Analogical Classification: A Rule-Based View

Myriam Bounhas1, Henri Prade2, and Gilles Richard2

1 LARODEC Laboratory, ISG de Tunis, 41 rue de la Liberté, 2000 Le Bardo, Tunisia

& Emirates College of Technology, P.O. Box: 41009, Abu Dhabi, United Arab Emirates
2 IRIT – CNRS, 118, route de Narbonne, Toulouse, France

myriam bounhas@yahoo.fr, {prade,richard}@irit.fr

Abstract. Analogical proportion-based classification methods have been intro-

duced a few years ago. They look in the training set for suitable triples of ex-

amples that are in an analogical proportion with the item to be classified, on a

maximal set of attributes. This can be viewed as a lazy classification technique

since, like k-nn algorithms, there is no static model built from the set of examples.

The amazing results (at least in terms of accuracy) that have been obtained from

such techniques are not easy to justify from a theoretical viewpoint. In this paper,

we show that there exists an alternative method to build analogical proportion-

based learners by statically building a set of inference rules during a preliminary

training step. This gives birth to a new classification algorithm that deals with

pairs rather than with triples of examples. Experiments on classical benchmarks

of the UC Irvine repository are reported, showing that we get comparable results.

Introduction

Comparing objects or situations and identifying in what respects they are identical (or

similar) and in what respects they are different, is a basic type of operations at the core

of many intelligent activities. A more elaborate operation is the comparison between

pairs of objects or situations, where a comparison has already been done inside the

pairs. This corresponds to the idea of analogical proportions, i.e. statements of the form

“A is to B as C is to D”, denoted A : B :: C : D, expressing the fact “A differs from

B as C differs from D”, as well as “B differs from A as D differs from C” [5].

Analogical reasoning has been recognized for a long time as a powerful heuristic tool

for solving problems. In fact, analogical proportions are not explicitly used in general.

Compound situations identified as analogous are rather put in parallel, leading to the

plausible conclusion that what holds in one case should also hold in the other case (up

to suitable transpositions). However, analogical reasoning can also be directly based

on analogical proportions. This requires a formalized view of these proportions. Such

a modeling has been only recently developed in algebraic or logical settings [2,8,5,6].

Then analogical proportions turn to be a powerful tool in classification tasks [4].

We assume that the objects or situations A,B,C,D are represented by vectors of

attribute values, denoted a, b, c,d. The analogical proportion-based approach to classi-

fication relies on the idea that the unknown class x = cl(d) of a new instance d, may

be predicted as the solution x of an equation expressing that the analogical proportion

cl(a) : cl(b) :: cl(c) : x holds between the classes. This is done on the basis of triples

of examples a, b and c of the training set that are such that the analogical proportion

a : b :: c : d holds on vector components for all, or at least on a large number of, the

attributes describing the items. This approach has been tested on benchmarks [4] where

results competitive with the ones of classical machine learning methods have been ob-

tained. These good results have remained largely unexplained since it looks unclear

why this analogical proportion-based approach may be so effective, beyond the general

merits of analogy. In this paper, we investigate a new type of algorithm based on the

induction of particular rules induced from pairs of examples, which can still be related

to analogical proportions, thus providing some light on the underlying learning process.

The paper is organized as follows. First a background on analogical proportions is

provided, emphasizing noticeable properties important for application to classification,

before discussing how they can be applied to this task. Then the new rule-based ap-

proach is contrasted with the original triples-based approach. Algorithms are proposed

and their results on machine learning benchmarks are reported and discussed.

A Short Background on Analogical Proportions

Analogical proportions are statements of the form “A is to B as C is to D”, which have

been supposed to continue to hold when the pairs (A,B) and (C,D) are exchanged, or

when the terms B and C are permuted, just like numerical proportions, since Aristotle

time; see, e.g., [7]. Thus, A : B :: C : D is equivalent to C : D :: A : B (symmetry),

and A : B :: C : D is equivalent to A : C :: B : D (central permutation). By combining

symmetry and permutation, this leads to 8 equivalent forms.

In this paper, A,B,C,D are represented by Boolean vectors. Let a denote a com-

ponent of such a vector a. Then an analogical proportion between such vectors can

be expressed componentwise, in a logical manner under various equivalent forms [5].

One remarkable expression of the analogical proportion is given by the expression

a : b :: c : d = (a ∧ ¬b ≡ c ∧ ¬d) ∧ (¬a ∧ b ≡ ¬c ∧ d).
As can be seen, this expression of the analogical proportion uses only dissimilarities

and could be informally read as what is true for a and not for b is exactly what is true

for c and not for d, and vice versa. This logical expression makes clear in an analogical

proportion a : b :: c : d that a differs from b as c differs from d and, conversely, b

differs from a as d differs from c. The 6 cases (among 24 = 16 possible entries) where

the above Boolean expression is true are given in the truth Table 1.

Table 1. When an analogical proportion is true

a b c d a : b :: c : d

0 0 0 0| 1

1 1 1 1| 1

0 0 1 1| 1

1 1 0 0| 1

0 1 0 1| 1

1 0 1 0| 1

It can be easily checked on the above truth Table 1 that the logical expression of

the analogical proportion indeed satisfies symmetry and central permutation. Assuming

that an analogical proportion holds between four binary items, three of them being

known, then one may try to infer the value of the fourth one. The problem can be stated

as follows. Given a triple (a, b, c) of Boolean values, does there exist a Boolean value

x such that a : b :: c : x = 1, and in that case, is this value unique? It is easy to

see that there are cases where the equation has no solution since the triple a, b, c may

take 23 = 8 values, while A is true only for 6 distinct 4-tuples. Indeed, the equations

1 : 0 :: 0 : x = 1 and 0 : 1 :: 1 : x = 1 have no solution. It is easy to prove that the

analogical equation a : b :: c : x = 1 is solvable iff (a ≡ b) ∨ (a ≡ c) holds true. In

that case, the unique solution is given by x = a ≡ (b ≡ c). Note that due to symmetry

and permutation properties, there is no need to consider the equations x : b :: c : d = 1,

a : x :: c : d = 1, and a : b :: x : d = 1 that can be handled in an equivalent way.

Analogical Proportions and Classification

Numerical proportions are closely related to the ideas of extrapolation and of linear

regression, i.e., to the idea of predicting a new value on the ground of existing values,

and to the idea of inducing general laws from data. Analogical proportions may serve

similar purposes. The equation solving property recalled above is at the root of a brute

force method for classification. It is based on a kind of proportional continuity principle:

if the binary-valued attributes of 4 objects are componentwise in analogical proportion,

then this should still be the case for their classes. More precisely, having a 2-class

classification problem, and 4 Boolean objects a, b, c,d over Bn, 3 in the training set

with known classes cl(a), cl(b), cl(c), the 4th being the object to be classified in one of

the 2 classes, i.e. cl(d) ∈ B is unknown, this principle can be stated as:

∀i ∈ [1, n], ai : bi :: ci : di = 1

cl(a) : cl(b) :: cl(c) : cl(d) = 1

Then, if the equation cl(a) : cl(b) :: cl(c) : x = 1 is solvable, we can allocate its

solution to cl(d). This principle can lead to diverse implementations; see next section.

The case of attributes on discrete domains and of a number of classes larger than 2

can be handled as easily as the binary case. Indeed, consider a finite attribute domain

{v1, · · · , vm}. Note that the attribute may also be the class itself. This attribute (or

the class), say A, can be straightforwardly binarized by means of the m properties

“having value vi, or not”. Consider the partial description of objects a, b, c, and d

wrt A. Assume, for instance, that objects a and c have value v1, while objects b and

d have value v2. This situation is summarized in Table 2 where the respective truth-

values of the four objects wrt each binary property “having value vi” are indicated. As

can be seen on this table, an analogical proportion holds true between the four objects

for each binary property, and in the example, can be more compactly encoded as an

analogical proportion between the attribute values themselves, namely here: v1 : v2 ::
v1 : v2. More generally, x and y denoting possible values of a considered attribute

A, the analogical proportion between objects a, b, c, and d holds for A iff the 4-

tuple (A(a),A(b),A(c),A(d)) is equal to one 4-tuple having one of the three forms

(s, s, s, s), (s, t, s, t), or (s, s, t, t).

Table 2. Handling non binary attributes

v1 v2 v3 · · · vm
a 1 0 0 · · · 0 | v1
b 0 1 0 · · · 0 | v2
c 1 0 0 · · · 0 | v1
d 0 1 0 · · · 0 | v2

A training set TS of examples xk = (xk
1, ..., x

k
i, ..., x

k
n) together with their class

cl(xk), with k = 1, t may also be read in an analogical proportion style: “x1 is to

cl(x1) as x2 is to cl(x2) as · · · as xt is to cl(xt)”. However note that xk and cl(xt) are

vectors of different dimensions. This may still be written (abusively) as x1 : cl(x1) ::
x2 : cl(x2) :: · · · :: xt : cl(xt). Note that this view exactly fits with the idea that

in a classification problem there exists a classification function that associates a unique

class with each object, which is unknown, but exemplified by the training set. Indeed

xk : cl(xk) :: xk : cl′(xk) with cl(xk) �= cl′(xk) is forbidden, since it cannot hold as

a generalized analogical proportion obeying to a pattern of the form (s, t, s, t) where s
and t belong to different spaces.

Postulating the central permutation property, the informal analogical proportion xi :
cl(xi) :: xj : cl(xj) linking examples xi and xj can also be rewritten as xi : xj ::
cl(xi) : cl(xj) (still informally as we deal with vectors of different dimensions). This

suggests a new reading of the training set, based on pairs. Namely, the ways vectors

xi and xj are similar / dissimilar should be related to the identity or the difference

of classes cl(xi) and cl(xj). Given a pair of vectors xi and xj , one can compute

the set of attributes A(xi,xj) where they agree (i.e. they are equal) and the set of

attributes D(xi,xj) where they disagree (i.e. they are not equal). Suppose, we have in

the training set TS, both the pair (xi,xj), and the example xk which once paired with

x0 has exactly the same disagreement set as D(xi,xj) and moreover with the changes

oriented in the same way. Note that although A(xi,xj) = A(xk,x0), the 4 vectors

are not everywhere equal on this subset of attributes. Then we have a perfect analogical

proportion componentwise, between the 4 vectors (of the form (s, s, s, s) or (s, s, t, t)
on the agreement part of the components, and of the form (s, t, s, t) on the disagreement

set). Indeed, the above view straightforwardly extends from binary-valued attributes to

attributes with finite domains. Thus, working with pairs, we can implicitly reconstitute

4-tuples of vectors that form an analogical proportion as in the triple-based brute force

approach to classification. We now discuss the algorithmic aspects of this approach.

Analogical Classification: The Standard View

Before introducing the analogical classifiers, let us restate the classification problem.

Let T be a data set where each vector x = (x1, ..., xi, ..., xn) ∈ T is a set of n feature

values representing a piece of data. Each vector x is assumed to belong to a unique

class cl(x) ∈ C = {c1, ..., cl}, where C is finite and covered through the data set (in

the binary class case, l = 2). If we suppose that cl is known on a subset TS ⊂ T ,

given a new vector y = (y1, ..., yi, ..., yn) /∈ TS, the classification problem amounts to

assign a plausible value cl(y) on the basis of the examples stored in TS.

Learning by analogy, as developed in [1], is a lazy learning technique which uses a

measure of analogical dissimilarity between 4 objects. It estimates how far 4 situations

are from being in analogical proportion. Roughly speaking, the analogical dissimilarity

ad between 4 Boolean values is the minimum number of bits that have to be switched to

get a proper analogy. Thus ad(1, 0, 1, 0) = 0,ad(1, 0, 1, 1) = 1 and ad(1, 0, 0, 1) = 2.

Thus, A(a, b, c, d) holds if and only if ad(a, b, c, d) = 0. Moreover ad differentiates

two types of cases where analogy does not hold, namely the 8 cases with an odd number

of 0 and an odd number of 1 among the 4 Boolean values, such as ad(0, 0, 0, 1) = 1
or ad(0, 1, 1, 1) = 1, and the two cases ad(0, 1, 1, 0) = ad(1, 0, 0, 1) = 2. When,

instead of having 4 Boolean values, we deal with 4 Boolean vectors in B
n, we add the

ad evaluations componentwise to get the analogical dissimilarity between the 4 vectors,

which leads to an integer belonging to the interval [0, 2n]. This number estimates how

far the 4 vectors are from building, componentwise, a complete analogy. It is used in

[1] in the implementation of a classification algorithm where the input is a set S of

classified items, a new item d to be classified, and an integer k. It proceeds as follows:

Step 1: Compute the analogical dissimilarity ad between d and all the triples in S3

that produce a solution for the class of d.

Step 2: Sort these n triples by the increasing value of ad wrt with d.

Step 3: Let p be the value of ad for the k-th triple, then find k′ as being the greatest

integer such that the k′-th triple has the value p.

Step 4: Solve the k′ analogical equations on the label of the class. Take the winner

of the k′ votes and allocate this winner as the class of d.

This approach provides remarkable results and, in several cases, outperforms the best

known algorithms [4]. Another equivalent approach [6] does not use a dissimilarity

measure but just applies the previous continuity principle, adding flexibility by allow-

ing to have some components where analogy does not hold. A majority vote is still

applied among the candidate voters. Any triple a, b, c, such that the cardinal of the set

{i ∈ [1, n]|A(ai, bi, ci, di) holds and A(cl(a), cl(b), cl(c), cl(d)) is solvable} is maxi-

mal, belongs to the candidate voters.

Analogical Classification: A Rule-Based View

We claim here that analogical classifiers behave as if a set of rules was build inductively

during a pre-processing stage. To support intuition, we use an example inspired from the

Golf data set (UCI repository [3]). This data set involves 4 multiple-valued attributes:

1: Outlook: sunny or overcast or rainy. ; 2: Temperature: hot or mild or cool ;

3: Humidity: high or normal. ; 4: Windy: true or false.

Two labels are available: ‘Yes’ (play) or ‘No’ (don’t play).

Main Assumptions. Starting from a finite set of examples, 2 main assumptions are

made regarding the behavior of the function cl:

– Since the target relation cl is assumed to be a function, when 2 distinct vectors x,

y have different labels (cl(x) �= cl(y)), the cause of the label switch is to be found

in the switches of the attributes that differ. Take x and y in the Golf data set, as:

x = (overcast,mild, high, false) and cl(x) = Y es
y = (overcast, cool, normal, false) and cl(y) = No
then the switch in attributes 2 and 3 is viewed as the cause of the ‘Yes’-‘No’ switch.

– When 2 distinct x and y are such that cl(x) = cl(y), this means that cl does not

preserve distinctness, i.e. cl is not injective. We may then consider that the label

stability is linked to the particular value arrangement of the attributes that differ.

Patterns. Let us now formalize these ideas. Given 2 distinct vectorsx and y, they define

a partition of [1, n] as A(x,y) = {i ∈ [1, n]|xi = yi} andD(x,y) = [1, n]\A(x,y) =
{i ∈ [1, n]|xi �= yi}. Given J ⊆ [1, n], let us denote x|J the subvector of x made of

the xj , j ∈ J . Obviously, x|A(x,y) = y|A(x,y) and, in the binary case, when we know

x|D(x,y), we can compute y|D(x,y). In the binary case, the pair (x,y) allows us to

build up a disagreement pattern Dis(x,y) as a list of pairs (value, index) where the

2 vectors differ. with n = 6,x = (1, 0, 1, 1, 0, 0),y = (1, 1, 1, 0, 1, 0), Dis(x,y) =
(02, 14, 05). It is obvious that having a disagreement pattern Dis(x,y) and a vector x

(resp. y), we can get y (resp. x). In the same way, the disagreement pattern Dis(y,x)
is deducible from Dis(x,y). For the previous example, Dis(y,x) = (12, 04, 15).

In the categorical case, the disagreement pattern is a bit more sophisticated as we

have to store the changing values. Then the disagreement pattern Dis(x,y) becomes a

list of triple (value1, value2, index) where the 2 vectors differ, with value1 being the

attribute value for x and value2 being the attribute value for y. For instance, with the

previously described Golf dataset, for the pair of given examples x and y, Dis(x,y) is

{(mild, cool)2, (high, normal)3}. Then we have two situations:

1. x and y have different labels, i.e. cl(x) �= cl(y). Their disagreement pattern

Dis(x,y) is called a change pattern. Then Dis(y,x) is also a change pattern.

2. x and y have the same label cl(x) = cl(y). Their disagreement pattern Dis(x,y)
is called a no-change pattern. Then Dis(y,x) is also a no-change pattern.

To build up a change (resp. no-change) pattern, we have to consider all the pairs (x,y)
such that cl(x) �= cl(y) (resp. such that cl(x) = cl(y)). We then build 2 sets of patterns

Pch and Pnoch, each time keeping only one of the 2 patterns Dis(x,y) and Dis(y,x)
to avoid redundancy. As exemplified below, these 2 sets are not disjoint in general. Take

n = 6, and assume we have the 4 binary vectors x,y, z, t in TS:

- x = (1, 0, 1, 1, 0, 0),y = (1, 1, 1, 0, 1, 0) with cl(x) = 1 and cl(y) = 0. Then, for

(x,y), the disagreement pattern is a change pattern, i.e., (02, 14, 05) ∈ Pch.

- z=(0, 0, 1, 1, 0, 1), t=(0, 1, 1, 0, 1, 1) with cl(z)=cl(t). They have the same dis-

agreement pattern as x and y, which is now a no-change pattern (02, 14, 05) ∈ Pnoch.

Now, given an elementx in TS whose label is known, and a new element to be classified

y, if the disagreement pattern Dis(x, y) belongs to Pch ∩Pnoch, we do not get any hint

regarding the label of y. Then we remove the patterns in Pch ∩ Pnoch: the remaining

patterns are the valid patterns (still keeping the same notations for the resulting sets).

Rules. Thanks to the concept of pattern, it is an easy game to provide a formal definition

of the 2 above principles. We get 2 general classification rules, corresponding to dual

situations, for a new element y to be classified:

Change Rule:
∃x ∈ TS, ∃D ∈ Pch|(Dis(x,y) = D) ∨ (Dis(y,x) = D)

cl(y) �= cl(x)

NoChange Rule:
∃x ∈ TS, ∃D ∈ Pnoch|(Dis(x,y) = D) ∨ (Dis(y,x) = D)

cl(y) = cl(x)

NoChange rules tell us when a new item y to be classified should get the class of its

associated example x, and Change rules tell the opposite. Let us note that if there is no

valid pattern, then we cannot build up any rule, then we cannot predict anything! This

has never been the case for the considered benchmarks.

Implementation

It is straightforward to implement the previous ideas.

1. Construct from TS the sets Pch and Pnoch of all disagreement patterns.

2. Remove from Pch and from Pnoch the patterns belonging to Pch ∩Pnoch to get the

set of valid patterns.

The remaining change patterns in Pch and no-change patterns in Pnoch are used to

build up respectively the Change Rule Set Rch and No-Change Rule Set Rnoch. In

this context, we have implemented two different classifiers: the Change Rule based

Classifier (CRC) and the No Change Rule based Classifier (NCRC), which have the

same principles in all respect. The only difference is in the classification phase where

the CRC only uses the set Pch of pattern and applies the Change rules, whereas the

second classifier NCRC uses the no-change patterns Pnoch and applies the No-Change

rules to classify new items.

Classification. The classification process for CRC and NCRC are detailed in the

following algorithms 1 and 2, where the Boolean function Analogy(x, x′, y) is true

if and only if card({cl(x), cl(x′), cl(y)}) ≤ 2. For the NCRC, the Analogy(x, x′, y)
always has a solution since classes associated to any No-Change rule r in Rnoch are

homogeneous. In terms of complexity, the algorithms are still cubic in the size of TS
since the disagreement pattern sets have a maximum of n2 elements and we still have

to check every element of TS to build up a relevant pair with y.

With our approach, contrary to k-nn approaches, we always deal with pairs of ex-

amples: i) to build up the rules, ii) to classify a new item, we just associate to this item

another one to build a pair in order to trigger a rule. Moreover, the two pairs of items in-

volved in an analogical proportion are not necessarily much similar as pairs, beyond the

fact they should exhibit the same dissimilarity. An analogical view of the nearest neigh-

bor principle could be “close/far instances are likely to have the same/possibly different

class”, making an assumption that the similarity of the classes is related to the similar-

ity of the instances. This does not fit, e.g., our No-Change rules where the similarity

of the classes is associated with dissimilarities of the instances. More generally, while

Algorithm 1. Change Rule Classifier

Given a new instance y′ /∈ TS to be classified.

CandidateRules(cj) = 0, for each j ∈ [1, l] (in the binary class case, l = 2).

for each y in TS do

Construct the disagreement patterns D(y,y′) and D(y′,y)
for each change rule r ∈ Rch // r has a pattern D(x,x′) do

if Analogy(x,x′, y) AND (D(y,y′) = D(x,x′) OR D(y′,y) = D(x,x′)) then

if (cl(x) = cl(y)) then c∗ = cl(x′) else c∗ = cl(x) end if

CandidateRules(c∗) + +.

end if

end for

end for

cl(y′) = argmaxcj CandidateRules(cj)

Algorithm 2. No Change Rule Classifier

Given a new instance y′ /∈ TS to be classified.

CandidateRules(cj) = 0, for each j ∈ Dom(cj).
for each y in TS do

Construct the disagreement patterns D(y,y′) and D(y′,y)
for each no change rule r ∈ Rnoch // r has a pattern D(x,x′) do

if Analogy(x,x′, y) AND (D(y,y′) = D(x,x′) OR D(y′,y) = D(x,x′)) then

c∗ = cl(y)
CandidateRules(c∗) + +.

end if

end for

end for

cl(y′) = argmaxcj CandidateRules(cj)

k-nn-like classifiers focus on the neighborhood of the target item, analogical classifiers

“take inspiration” of information possibly far from the immediate neighborhood.

Example. Let’s continue with the previous Golf example to show the classification

process in Algorithm1. Given three change rules r1, r2 and r3:

r1(Y es−No) = {(sunny, overcast)1, (false, true)4}
r2(No−Y es) = {(cool,mild)2, (high, normal)3}
r3(No−Y es) = {(rainy, overcast)1, (false, true)4},

and a new instance y′ to be classified: y′ : overcast,mild, normal, true,→?
Assume that there are three training examples y1, y2 and y3 in Ts:

y1 : sunny,mild, normal, false,→ Y es
y2 : overcast, cool, high, true,→ No
y3 : rainy,mild, normal, false,→ No

We note that disagreement patterns p1, p2 and p3 corresponding respectively to the

pairs (y1, y
′), (y2, y

′) and (y3, y
′) match respectively the change rules r1, r2 and r3.

Inferring the first rule predict a first candidate class “No” for y′. In the same manner

the second rule predict a class “Y es” and the third one also predict “Y es”. The rule-

based inference produces the following set of candidate classes for y′: Candidate =
{No, Y es, Y es}. So the most plausible class for y′ is “Y es”.

Experimental Results and Comparison

This section provides experimental results for the two analogical proportion-based clas-

sifiers. The experimental study is based on several data sets selected from the U.C.I.

machine learning repository [3]. A brief description of these data sets is given in Ta-

ble 3. We note that for all classification results given in the following, only half of the

Table 3. Description of datasets

Datasets Instances Attributes Classes

Breast cancer 286 9 2

Balance 625 4 3

Tic tac toe 958 9 2

Car 743 7 4

Monk1 432 6 2

Monk 2 432 6 2

Monk3 432 6 2

training set is used to extract patterns. We ensured that all class labels are represented

in this data set. The classification results for the CRC or NCRC are summarized in the

first and second columns of Table 4. We also tested a hybrid version of these classifiers

called Hybrid Analogical Classifier (HAC) based on the following process. Given an

instance y′ to classify,

1. Merge the two rule subsets Rch and Rnoch into a single rule set Rchnoch.

2. Assign to y′ the class label with the highest number of candidate rules in Rchnoch.

Classification results for HAC are given in Table 4, where we also give the mean number

of Change (MeanCh) and No-Change rules (MeanNoCh) generated for each data set.

In order to compare analogical classifiers with other classification approaches, Table

5 includes classification results of some machine learning algorithms (the SVM, k-

nearest neighbors IBK with k=10 and the propositional rule learner JRip) obtained by

using the Weka software. By analyzing classification performance in Table 4 we can

see that:

• Overall, the analogical classifiers show good performance to classify test examples

(at least for one of CRC and NCRC), especially NCRC.

• If we compare classification results for the two analogical classifiers, CRC and NCRC,

we see that NCRC seems to be more efficient than CRC for almost all data sets, except

the case of “Tic tac toe” where the two classifiers have the same accuracy.

Table 4. Classification accuracies: mean and standard deviation of 10 cross-validations

Datasets CRC NCRC HAC MeanCh MeanNoCh

Breast cancer 50.03 ± 8.03 74.03±7.48 73.39±8.44 6243.4 8738.5

Balance 82.82 ±5.8 91.02±4.44 90.51 ± 4.27 31736.2 20805.4

Tic tac toe 98.3±5.11 98.3±5.11 98.3±5.11 74391.9 86394.2

Car 79.54±4.23 95.02± 2.16 92.6 ±2.69 36526.6 20706.1

Monk1 90.52±6.16 100±0 99.54 ±1.4 9001.2 8644.6

Monk2 78.02 ±4.71 100±0 94.68 ± 4.38 7245.9 10607.8

Monk3 91.93±7.04 97.93±1.91 97.93±1.91 10588.0 10131.7

Table 5. Classification results of some known machine learning algorithms

Datasets SVM IBK(k=10) JRip

Breast cancer 69.58 73.07 70.97

Balance 90.24 83.84 71.68

Tic tac 98.32 98.64 97.80

Car 91.65 91.92 87.88

Monk1 75.0 95.60 94.44

Monk2 67.12 62.96 66.43

Monk3 100 98.37 98.61

• HAC shows good performance if compared to CRC and very close accuracies to

NCRC for “Balance, Tic tac toe, Monk1 and Monk3”. For the remaining datasets, the

lower classification accuracy of Change rules may affect the efficiency of HAC.

• In general, analogical classifiers (especially NCRC) show very good performance

when compared to some of existing algorithms. NCRC significantly outperforms all

other classifiers for all tested data sets (bold results in Table 5) except to some extent

for “Monk3” and SVM. We see that NCRC is largely better than other classifiers, in

particular for data sets “Monk1”, “Monk2” and “Car”.

• The classification success of NCRC for “Monks” datasets with noisy data and “Bal-

ance” and “Car” (which have multiple classes) demonstrates its ability to deal with

noisy and multiple class data sets.

• The analogy-based classifiers seem to be very efficient when classifying data sets with

a limited number of attribute values and seems to have more difficulties for classifying

data sets with a large number of attribute values. In order to evaluate analogical classi-

fiers such a dataset, we tested CRC and NCRC on “Cancer” (9 attributes, each of them

having 10 different labels). From this additional test, we note that analogical classifiers

are significantly less efficient on “Cancer” when compared to the state of the art algo-

rithms. By contrast, if we look at the 3 “Monks” and ”Balance” data sets, we note that

these data sets have a smaller number of attributes and more importantly all attributes

have a reduced number of possible values (the maximum number of possible attribute

values in “Balance” and “Monks” is 5, and most of attributes have only 3 possible la-

bels). This clearly departs from the “Cancer” situation. So we may say that this latter

dataset is closer to a data set with numerical rather than categorical data. The proposed

classifiers are basically designed for handling categorical attributes. We plan to extend

analogical rule-based classifiers in order to support numerical data in future.

• In Table 4 we see that a huge number of rules of the two kinds are generated. We

may wonder if a reduced subset of rules could lead to the same accuracy. This would

mean that there are some redundancy among each subset of rules, raising the question

of how to detect it. We might even wonder if all the rules have the same “relevance”,

which may also mean that some rules have little value in terms of prediction, and should

be identified and removed. This might also contribute to explain why CRC has results

poorer than NCRC in most cases.

• In the case of NCRC, we come apparently close to the principle of a k-nn classifier,

since we use nearest neighbors for voting, but here some nearest neighbors are disqual-

ified because there is no NoChange rule (having the same disagreement pattern) that

supports them.

Concluding Remarks

This paper has shown that analogical classification can rely on a rule-based technique,

which contrasts with the existing implementations which are mainly lazy techniques.

In the proposed approach, the rules are built at compile time, offline with respect to the

classification process itself, where this set of rules is applied to new unclassified items

in order to predict their class. This view brings new highlights in the understanding of

analogical classification and may make this kind of learner more amenable to be mixed

with logical ones like the ones coming from Inductive Logic Programming.

References

1. Bayoudh, S., Miclet, L., Delhay, A.: Learning by analogy: A classification rule for binary and

nominal data. In: Proc. Inter. Conf. on Artificial Intelligence, IJCAI 2007, pp. 678–683 (2007)

2. Lepage, Y.: Analogy and formal languages. Electr. Notes Theor. Comput. Sci. 53 (2001)

3. Mertz, J., Murphy, P.: Uci repository of machine learning databases,

ftp://ftp.ics.uci.edu/pub/machine-learning-databases

4. Miclet, L., Bayoudh, S., Delhay, A.: Analogical dissimilarity: definition, algorithms and two

experiments in machine learning. JAIR 32, 793–824 (2008)

5. Miclet, L., Prade, H.: Handling analogical proportions in classical logic and fuzzy logics set-

tings. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS, vol. 5590, pp. 638–650.

Springer, Heidelberg (2009)

6. Prade, H., Richard, G.: Reasoning with logical proportions. In: Lin, F.Z., Sattler, U.,

Truszczynski, M. (eds.) Proc. 12th Int. Conf. on Principles of Knowledge Representation and

Reasoning, KR 2010, Toronto, May 9-13, pp. 545–555. AAAI Press (2010)

7. Prade, H., Richard, G.: From analogical proportion to logical proportions. Logica Univer-

salis 7(4), 441–505 (2013)

8. Stroppa, N., Yvon, F.: Du quatrième de proportion comme principe inductif: une propo-

sition et son application à l’apprentissage de la morphologie. Traitement Automatique des

Langues 47(2), 1–27 (2006)

