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1. Introduction

Considerable progress with respect to previous works [1]-[4]. has been made in the investigation
of percolation in fracture networks. Determination of the percolation threshold by direct numerical
simulations has been conducted for a very wide range of regular, irregular and random fracture shapes,
in monodisperse networks or in polydisperse networks containing fractures with different shapes and/or
sizes. A greatly improved accuracy is achieved by using much larger domain sizes and extensive statistical
data sets. The results are rationalized and a model involving a new shape factor is proposed, which
accounts for the influence of the fracture shapes with an extremely good accuracy. A heuristic argument
for the prediction of the percolation threshold [5] is revisited, and shown to provide good predictions,
when appropriately adapted and when the fracture shapes do not depart too strongly from circularity.

The networks are composed of randomly located and oriented fractures in 3d space. The fractures
are flat, 2d objects with convex contours. The investigated shapes are illustrated in Fig.1, where an
example of networks of random quadrilateral is also shown. This sample is very small, for readibility.
The samples for the actual computations contain O(106) fractures.

For a given sample size L and network density ρ, the percolation probability Πp(L, ρ) is measured
by checking the percolation status of a set random network realizations (typically 500). This is done
for a range of density values (typically 20) and the density ρc(L) which corresponds to Πp(L) = 1/2 is
determined by fitting the data by an erfc function. This is repeated for cells of increasing sizes, and an
extrapolation to L → ∞ is performed to eliminate the finite size effects, based on the successive ρc(L)
(although the largest cells are so large that the extrapolation only marginally affects the result).

The results are expressed in terms of the dimensionless density ρ′ based on the excluded volume Vex,
or of its generalization by statistical averaging ρ′3 in the case of polydisperse networks,

ρ′ = ρ Vex , Vex =
1

2
AP , ρ′3 = ρ

1

2
〈AP 〉 (1)

where A and P are the fracture area and perimeter. In terms of ρ′c or ρ′3,c, all the data for the percolation
thresholds are believed to be accurate within at most ±0.01.

Figure 1: Illustration of the investigated fracture shapes, and example of a network containing 238 random quadrilaterals.
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Figure 2: The percolation thresholds ρ′3,c for networks of fractures with all the shapes in Fig.1 and for mixtures of such
fractures in various proportions as functions of the shape factor η̃g .

2. Results

Two major trends can be observed. The percolation threshold ρ′3,c decreases from its value 2.30
for monodisperse disks when the fracture shape departs from circularity, whereas it increases with size
polydispersity. The thresholds for networks of fractures with all the shapes in Fig.1 and for mixtures of
such fractures in various proportions are plotted in Fig.2 as functions of η̃g. This shape factor involves
the fracture giration radius Rg, it ranges from 0 for disks to 1 for very elongated shapes, and it should
be taken in RMS statistical average weighted by AP in the case of polydisperse networks,
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Note that both the shapes and sizes of the fractures in the networks of random quadrilaterals are strongly
polydisperse (see Fig.1). All the data are represented within ±0.055 by the model

ρ′c,r = 2.315

[
1− 5

8
η̃4/3g

]
(3)

Hence, the shape factor η̃g and the model (3) capture with a very good accuracy the effect of the
fracture shape and in some respect of the size distribution. The analysis of the influence a strong size
polydispersity is still underway.

Furthermore, a heuristic argument [5] for the prediction of the percolation threshold has been re-
visited and adapted. Its application requires the determination of the mean center-to-center distance
of intersecting fractures, for which an approximate but fairly accurate analytical expression could be
obtained. This argument yields good predictions of ρ′3,c when the fracture shapes do not depart too
strongly from circularity. This result may provide an avenue for other applications in continuum perco-
lation problems.
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