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Introduction

In the crust, fractures/faults can provide preferential pathways for fluid flow or act as barriers preventing the flow across these structures. In hydrothermal systems (usually found in fractured rock masses), these discontinuities may play a critical role at various scales, controlling fluid flows and heat transfer. The thermal convection is numerically computed in 3D fluid satured isotropically fractured porous media. Fractures are 2D convex polygons randomly located in a porous matrix. The fluid is assumed to satisfy 2D and 3D Darcy's law in the fractures and in the porous medium, respectively.

Flow equations are written in a quasi-steady approximation without phase changes and the density of the fluid is supposed to be constant except in the body force term (the Boussinesq approximation). A mass conservation equation and Darcy law describe the flow in porous matrix and in fractures

∇ • v = 0, v = - 1 μ K (∇P -ρ F g) , ∇ S • q + [v] • n = 0, q = - 1 μ σ f (∇ S P -ρ F g) (1) 
where P is pressure, v seepage velocity, ρ F fluid denisity, μ = 10 3 Pa.s viscosity, g = 9.81 m/s 2 gravity acceleration, K = 10 -11 m 2 bulk permeability, σ f = b 3 /12 = 8.33 • 10 -11 m 3 fracture transmissivity, b = 10 -3 m fracture aperture. ∇ S two-dimensional gradient operator in a fracture plane, q flow rate per unit width, n unit normal vector to the fracture and [f ] jump in f between two sides of the fracture. The energy balance equations in matrix and in fractures read

∂ ∂t (ερ F h * F + (1 -ε) ρ s h * s ) + ∇ • (vρ F h * F ) -∇ • (λ m ∇T ) = 0, h * s = c s T, h * F = c F T (2) ∂ bρ F h * F f ∂t + ∇ S • qρ F h * F f -∇ S • (Λ∇ S T f ) + [vρ F h * F -λ m ∇T ] • n = 0, h * F f = c F T f (3)
where c F = 4.2 • 10 3 and c s = 0.9 • 10 3 J/kg K are specific heat capacities (fluid and solid phase), λ m = 2.9 W/m K effective conductivity of porous medium, T and T f are temperatures of saturated porous medium and of fluid in fractures, respectively, ε = 0.1 porosity, ρ s = 3 • 10 3 kg/m 3 solid matrix density, Λ = bλ F = 0.6 • 10 -3 W/K fracture thermal transmissivity, λ F =0.6 W/m K fluid thermal conductivity. Fluid density varies with temperature

ρ F = ρ 0 [1 -α F (T -T 0 )]. with thermal coefficient of volume expanson α F = 2.07 • 10 4 K -1 , ρ 0 = 10 3 kg/m 3 .
A bounded cubic three-dimensional volume L 3 of porous fractured medium is heated from below. The vertical boundaries are adiabatic and impermeable. The bottom of the box is impermeable while the top could be impermeable or permeable. In open-top cases, a constant pressure P 0 is imposed, while in closed-top cases a no-flow boundary condition is used. A constant temperature T 0 is imposed at the top of the box; temperature at the bottom is fixed at T 0 + ΔT . In most cases the simulations start from a homogeneous temperature field and immobile fluid. The Rayleigh and Nusselt numbers

Ra = α F ρ 2 0 c F gΔT KL μλ m , Nu = Q T λ m LΔT
(4) characterize the system; here Q T is thermal flux in z-direction through the unit cell.

Simulations have been performed with fracture networks made of squares circumscribed by disks of radius R = L/5. Network densities are characterized by ρ = N f V ex /L 3 [START_REF] Huseby | Geometry and topology of fracture systems[END_REF]. Fractures are inserted in the porous matrix according to the procedure detailed by [START_REF] Huseby | Geometry and topology of fracture systems[END_REF]. The finite volume method and unstructured grids with discretization δ m = R/6 are used in order to solve the flow and energy transport equations [START_REF] Bogdanov | Effective permeability of fractured porous media in steay-state flow[END_REF]. A variant of flux-corrected method and a time implicit, first order discretization are applied. The Rayleigh number in the porous matrix is the same in every simulation, Ra m =41.5.

Results

Vertical cross sections in Fig. 1a-c demonstrate the temperature field for various fracture transmissivities. For σ = 0.1 (Fig. 1a) the presence of fractures does not perturb the system. When σ increases, a 3D convective behavior develops. The strength of the convection increases with σ , as it can be seen in Fig. 1d that shows the Nu as a function of σ . The intensity of convection increases also with ρ (Fig. 2). One can observe in Fig. 2a-c a thinning of the upflowing plume when ρ incrases. Nusselt number Nu grows with ρ almost linearly (Fig. 2d). The results of simulations in fractured porous media have been compared with those performed for the porous media with effective transport characteristics. Effective permeability K ef f is evaluated and then substituted as permeability of the medium without fractures. The corresponding effective thermal conductivity is found not to differ significantly from the matrix one and the latter value is used.

It has been observed that when Nu por in corresponding effective porous medium is low (≤ 2), the effective approach gives good results, that is Nu fr in fractured porous medium does not differ significantly from Nu por . However, when Nu por increases, for more and more realizations Nu fr deviates from Nu por by about 25%. The difference between the results of simulations in fractured media and those in effective ones is maximal for densities 2 < ρ < 5, i.e. roughly near the percolation threshold ρ = 2.3. The effective approach is in agreement with the discretely fractured approach for very low and very high densities of fractures.
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 1 Figure 1: Temperature fields at steady state for σ = 0.1 (a), 5 (b) and 10 (c), and Nu as a function of σ (d) for Ram = 41.5. Data are for ρ = 4 in (a-c) and for ρ = 1 (red symbols) and 4 (black symbols), in (d).

Figure 2 :

 2 Figure 2: Temperature fielsd at steady state for ρ = 4 (a), 6 (b) and 10 (c), and Nu as a function of ρ (d) for Ram = 41.5 and σ = 1. Data points in (d) are averages over 15 relizations, error bars correspond to standard deviations.
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