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1. Introduction

The cerebral microvascular system is key to a large variety of cerebral processes, including oxygen
and nutrient delivery to brain cells as well as blood flow regulation as a function of neural activity.
It plays a central role in numerous pathologies ranging from strokes to neurodegenerative diseases. In
spite of these important implications, most of the brain microvascular system still remains unexplored.
However, recent anatomical functional in vivo imaging techniques, such as two photon laser scanning
microscopy together with optical manipulation of blood flow, have permitted significant breakthroughs
[1]. These methods generate massive amounts of data that are difficult to interpret without proper
theoretical and numerical frameworks. Our goal is, therefore, to develop models for both momentum
and mass transport in the brain microcirculation.

2. Methods and models

2.1. Blood flow

We consider the blood as a monophasic, non-Newtonian fluid which rheology strongly depends on the
vessel diameter and discharge hematocrit. Blood flow splitting at bifurcations is also non-linear because
of the inequal repartition of red blood cells between branches [5]. In this context, a simple linear pore
network model does not provide an accurate representation of momentum transport. To overcome this
issue, we use an algorithm based on a non-linear iterative solver, which was previously developed by our
group [3], [4] and tested for large anatomical networks as shown in figure 1.

2.2. Mass transfers

The complexity of anatomical networks, which can include thousands of vessels, makes it difficult to
use classic direct numerical simulation methods such as finite elements (FEM) or finite differences. Here,
we develop mesh reduction methods to model mass transport and transfer phenomena. Homogenization
methods [6, 7] are first used to reduce the 3D transport equation inside the vessel to a 1D axial equation
with exchange terms with the surrounding tissues. As for the transport in tissues surrounding the
vessel, taking advantage of the linearity of the diffusion equation, we use a boundary element method
(BEM) inspired by Hsu et Secomb [2]. This approach significantly reduces the number of unknowns
from hundred of thousands to barely a thousand for a single vessel geometry. Initially developed for
the stationary diffusion equation the model has been extended to the instationary domain for simple
geometries.

3. Results and perspectives

First simulations of mass transfer have been performed for a single vessel and show very good
agreement with classic direct numerical simulation using finite element methods as shown in figures 2
and 3. The results of our model suggest, for stationary simulation, an improvement when compared to
those obtained with the original model of Hsu and Secomb, as shown in figure 2. The equations solved
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Figure 1: Stationnary flow rate distribution (logarith-
mic scale) in a human brain microvascular network (10
000 segments), from Ref [1].
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Figure 2: Comparison of normalized tracer concen-
tration field along the vessel axis between stationary
BEM (blue curves), FEM (green curves) and the origi-
nal model of Hsu and Secomb (red curves) for a Péclet
number of 50 (plain cruves) and 20 (dashed curves).
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Figure 3: Comparison of normalized tracer concentra-
tion field along the vessel axis between time depen-
dent BEM (lines) and FEM (symbols) methods with
a unit concentration square function of 5ms as the in-
let boundary condition

Figure 4: Plane cut concentration field in the tissue for a
bifurcation geometry using the stationary BEM model with
imposed concentration at the inlet and zero concentration at
infinity. The white parts symbolize the vessel in which blood
flow carries the concentration function from left to right.

in figure 2 correspond to the stationary transport of a passive tracer convected by a flat velocity profile
in a single vessel embeds in an infinite volume of tissue for different Péclet numbers, while figure 3
refers to the time dependant version of the equation. Since these preliminary results were encouraging,
we started to extend our stationary model to bifurcations, as shown in figure 4. In future work we
plan to adapt the mass transport model to deal with pressure driven velocity profiles and transport of
reactive molecule such as oxygen, using the homogenization methods. In addition, we will extend the
mass transport model to larger networks and couple it with the non linear flow solver described above
and study the impact of targeted occlusions of particular vessels on both mass transfer and blood flow.
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