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Static-map and Dynamic Object Reconstruction in
Outdoor Scenes using 3D Motion Segmentation

Cansen Jiang, Danda Pani Paudel, Yohan Fougerolle, David Fofi and Cédric Demonceaux

Abstract—This paper aims to build the static-map of a dynamic
scene using a mobile robot equipped with 3D sensors. The sought
static-map consists of only the static scene parts, which has a
vital role in scene understanding and landmark based navigation.
Building static-map requires the categorization of moving and
static objects. In this work, we propose a Sparse Subspace
Clustering-based Motion Segmentation method that categories
the static scene parts and the multiple moving objects using their
3D motion trajectories. Our motion segmentation method uses
the raw trajectory data, allowing the objects to move in direct 3D
space, without any projection model assumption or whatsoever.
We also propose a complete pipeline for static-map building
which estimates the inter-frame motion parameters by exploiting
the minimal 3-point Random Sample Consensus algorithm on
the feature correspondences only from the static scene parts.
The proposed method has been especially designed and tested
for large scene in real outdoor environments. On one hand, our
3D Motion Segmentation approach outperforms its 2D based
counterparts, for extensive experiments on KITTI dataset. On
the other hand, separately reconstructed static-maps and moving
objects for various dynamic scenes are very satisfactory.

Index Terms—Mapping; Motion and Path Planning; SLAM

I. INTRODUCTION

N recent years, visual Simultaneous Localization and Map-

ping (VSLAM) based autonomous robot navigation tech-
niques have achieved great success in static environments. Yet,
in dynamic scenes, the navigation remains very challenging,
mainly because the moving objects contribute to a poor local-
ization accuracy and map artifacts. Under such circumstances,
the localization is usually performed by estimating the camera
motion based on either the features’ motion consensus [1] or
the weighted cost minimization [2]. Dynamic scene parts in
both cases are treated as alien objects or outliers, and thus
discarded. However, when a significant number of features
belong to the dynamic scene parts, it can not only become
difficult to discard them, but also degrade the localization
accuracy [3]. Therefore, robot navigation in dynamic environ-
ments requires the detection and removal of moving objects,
prior to the static-map building. A static-map of the dynamic
scene consists of only the static scene parts, which in itself,
is of primary interest for scene modelling. Furthermore, it
is also an important step towards scene understanding and
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Fig. 1: Static-map and dynamic object building framework.

landmark based navigation. To do so, we propose a complete
pipeline for static-map building, see Fig. 1, which involves
three main stages: a) 3D feature trajectories construction; b)
Motion Segmentation (MS); c¢) 3D scene registration.

For mobile robots capturing dynamic scenes, both static
and dynamic scene parts appear to be moving. Therefore, a
straightforward approach to distinguish the dynamic and static
parts would be to analyze their motion trajectories. In this
regard, the scene parts that reciprocate the robot motion are
considered to be static, whereas the remaining ones belong to
the moving objects or outliers. Note that a common practice for
the detection of the object motion is to segment their features’
trajectories.

When the robot is equipped with 3D sensors, it is obvious
to represent and segment the features’ trajectories directly
in 3D space. In practice, such feature trajectories can be
obtained by detecting and tracking 3D feature points. If both
2D cameras and 3D sensors are available, the 3D feature
tracking can be supported by their 2D feature descriptors,
after projecting onto the image. In this work, a 2D optical-
flow based method has been adopted to acquire the 3D feature
trajectories. However, in many practical scenarios, the trajecto-
ries obtained in this manner yield numerical instabilities due to
their non-uniform distribution on static and dynamic objects.
We tackle this problem by employing a flow-likelihood-based
feature sampling technique so that the feature distribution
of moving and static objects is balanced, making it more
switchable for wide range of dynamic objects coverage. The
flow-likelihood-based sampling technique samples the features
based on their median-flow-suppressed optical flow speed,
under the assumption that median optical flow belongs to the
scene background. A higher speed implies that the feature is
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different from the background flow, hence it is more likely to
belong to a moving object.

Using the 3D trajectories of sparse feature points, we
propose a Sparse Subspace Clustering based 3D (3D-SSC)
MS algorithm that categorizes multiple moving objects as well
as the static scene parts. Although many MS methods are
available in the context of video surveillance, object tracking
and action recognition [4], they provide some solutions for
objects moving either in 2D space, or in 3D space under the
camera projection model assumption. The proposed method
performs the motion segmentation in 3D space using the raw
motion trajectories, without any projection model assumption
or whatsoever. The 3D-SSC algorithm intends to find the
minimal linear sparse subspaces that best represent the given
motion trajectories. In this work, we show through several
experiments that our 3D-SSC approach outperforms its 2D
based counterparts.

While building the static-map, the dynamic objects must
be segmented and removed from the scene, so that only
the static parts remain in the resulting map. Thanks to MS,
the sparse set of feature points can be divided into multiple
subsets — each subset being assigned to an object with unique
motion trajectory. Later, a dense segmentation of the 3D scene
points (into static and dynamic) is obtained using these feature
subsets, with the help of a Region Growing technique. We
have developed two applications, namely, static-map building
and moving object reconstruction upon the algorithm to detect
the static parts and the moving objects. The static-map is
built by registering multi-frame point clouds using minimal
3-point Random Sample Consensus (RANSAC) algorithm on
the feature correspondences only from the static scene parts.
The minimal 3-point RANSAC uses Cayley representation of
the rotation matrix, which allows to obtain rigid transformation
between two point clouds using linear solvers, similarly to
[15]. The proposed static-map building algorithm performs
very satisfactorily on realistic outdoor environments. The
moving objects are densely reconstructed by registering their
observations from different view-ports.

The main contributions of this paper are two-folded:

e A novel framework for 3D motion segmentation has
been proposed. The proposed method groups the 3D
feature trajectories using the Sparse Subspace Clustering
algorithm which outperforms its 2D-based counterparts.

o A complete pipeline to build the static-map, by taking
the advantage of the proposed MS method, is presented.
Our system not only provides the static-map of a real
outdoor dynamic scene, but also contributes to better 3D
reconstruction of the moving objects.

II. RELATED WORK

For decades, numerous works have been conducted in
image-based motion segmentation [4]. Among the most repre-
sentative approaches, Generalized Principle Component Anal-
ysis (GPCA) [7], RANSAC-based MS [10], Agglomerative
Subspace Clustering (ASC) [6], and Sparse Subspace Cluster-
ing (SSC) [5] have been intensively studied in [4]. Usually,
the problem of MS is addressed by separating the motions

into subspaces such that every motion trajectory belongs to its
corresponding subspace. In this regard, GPCA estimates the
global linear subspaces for motion clustering, while the LSA
does the same locally. Although these methods provide great
insight for subspace-based motions clustering, their practical
usage is limited either because of their high sensitivity towards
noise/outliers or sharp increase in computational complexity
with the increasing number of moving objects. ASC is a
more robust method that combines the techniques of lossy
compression, rank minimization, and sparse representation.
Inspired by ASC, Elhamifar and Vidal [5] proposed an SSC
algorithm that relies on the idea of self-expressive sparse
representation. In fact, SSC is considered to be the leading
MS method in the literature [8].

Apart from 2D-based MS, 2D-3D or 3D-based MS methods
have also been developed. A recent work of Stuckler et
al. [11] performs dense 3D motion segmentation on RGB-D
data using an Expectation Maximization framework. Similarly,
Papon et al. [25] and Koo et al. [26] track and segment
the moving objects in a RGB-D sequences. These methods,
however, are designed under the fixed camera assumptions and
mostly tested in controlled environments. Perera et al. [14] use
Truncated Signed Distance Function to segment the moving
objects using volumetric surfaces representation. This algo-
rithm is supported by the RANSAC-based MS [10] in a
greedy manner, and therefore suffers from the aforementioned
problems. Differently, Sofer et al. [12] performs 3D motion
segmentation using Active Machine Learning (AML) [13]
algorithm. Despite the fact that the AML algorithm provides
high classification accuracy, its application specific training
data requirement makes the method cumbersome.

Static-map building is a high interest topic in robotics and
computer vision. Wang et al. [18] proposed methods that
fulfils SLAM and Moving Objects Tracking (SLAM-MOT)
simultaneously, using either map prior or motion consistency
assumptions. However, they fail to handle the cases of slow
motions and temporal stationary objects. Pomerleau et al. [19]
proposed to detect the moving objects using ray-tracing tech-
nique. The spatial changes are measured in the built map which
is obtained after using the motion from odometry sensors
refined with ICP. This method also assumes that the dynamic
parts only have a small scene coverage. Similarly, Ambrus
et al. [20] proposed to maintain and update spatial models
for Meta-room, using the Normal Distribution Transform
Registration. A Meta-room is a reference static structure of
an office to detect and update the dynamic objects. However,
the initial requirement of clean reference model makes this
method unsuitable for unknown dynamic environments.

III. 3D MOTION SEGMENTATION

Motion segmentation aims to determine different distinctive
motions from the features’ motion trajectories. In this context,
we assume that a mobile robot captures a sequence of point
clouds of a dynamic scene consisting of multiple moving
objects. We also refer to the stationary objects or background
as static scene parts. Similarly, the moving objects are called
dynamic scene parts. Let a set of feature points be detected
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and tracked across the points cloud sequence to represent
the features’ motion trajectories. Our objective is to group
these trajectories into multiple subsets such that each subset
represents a unique motion. More specifically, for n objects
following distinct motions, there exist n subsets (or groups)
of distinct trajectories, so called subspaces. All the trajectories
from a subspace are linearly dependent among themselves
under the rigid body motion assumption. In other words, all
the feature trajectories lie in a union of n subspaces.

A. Motion in 3D-space

Considering X and Y as the Cartesian coordinate vectors of
corresponding feature points in two point clouds related by a
rigid body motion — rotation R and translation t, X and Y are
related by:

Y=[R t]{i(y (1)
N—_——
TeR3*4

where T represents the 3D-space rigid transformation matrix.
Let {X}£_, represent a set of points that belong to a single
rigid body in an arbitrary reference coordinate frame. If the
moving coordinate frames { f; le are related to the reference
by transformations {T;}_,, all the feature points Y;; (i.e. j"

feature in 7" frame) can be expressed as:

Y11 Yi2 Yip Ty
Y- Y Y T
21 22 2P 2 Xi Xo - Xp
: = : 1 1 ... 1 | ®
Yr1 Yra Yrp Tr XCRAXP
YEeR3FXP TeR3F x4

where T' and X represent the motion and structure of a
dynamic object, respectively. The columns of matrix Y contain
the motion trajectory of feature points. Since all the entries of
X’s last row are one, the trajectory of feature points (i.e. the
columns of Y) lie in a subspace of IR*" of dimension at most
three. Note that the rank of Y can be at most of 4. In the
case of multiple motions, let {S;}}_, be a collection of n
linear subspaces of IR**" with dimension {d,}7_,. If {Y;}}_,
correspond to n different unknown motions, the measurement
matrix, say Y, containing m measured trajectories can be
denoted as:

Y:[h Yo ym]:[yl Y2 Yn}cv (3)

where Y; € R3*™¢ is a rank-d, matrix of the m, feature
trajectories that lie in Sy, and C € R™*™ is an unknown
permutation matrix. Equation (3) shows that the measured
trajectories {y, }7"; lie in the union of n subspaces.

B. Sparse subspace representation and recovery

Referring to Equation (3), one can observe that the problem
of 3D motion segmentation reduces to that of decomposing
Y into {Yy}}_, and C. This problem is addressed in [5]
by solving a relaxed optimization problem, using the self-
expressiveness property of the data. The solution is obtained
under the assumption that every y, can be represented as
a combination of the columns of Y with y, removed. To
make the representation least ambiguous, the combination

coefficients are kept as sparse as possible. Such solution is
refereed as subspace-sparse representation (SSR). Therefore,
a relaxed optimization problem for SSR can be written as:

min|| C|;, s.t. Y =YC, diag(C) = 0. 4)

Although this optimization problem is solved as in [5], our
formulation includes a noteworthy modification that is critical
to the problem at hand: the entries of C are forced to be
non-negative so that similar motions in opposite directions
are not considered to be the same. This happens especially
(but not limited to) when the observed objects are moving
along the robot’s direction with twice speed. Such objects get
categorized as background (because of the opposite relative
motions), if the non-negativity constraint is not considered. Al-
though the non-negative constrain brings more computational
expense, it helps to avoid an extra step of post-processing. In
the cases when the post-processing are reliable, this constrain
automatically becomes optional. Furthermore, among many
approaches for handling noisy data [5], we have adopted the
most suitable technique based on our empirical evaluation.
Consequently, for a 3F" x 3F' identity matrix |4 and c;; the
entries of C, the final optimization problem is stated below:

min| C [, s.t. Y=[Y |4 ]C, diag(C) =0,¢;; > 0. (5)

Once the sparse representation matrix C is computed, a
weighted graph G with weights W = C+ C7 is built. The seg-
mentation of trajectories into different subspaces is obtained
by applying spectral clustering [9] method on the Laplacian
of graph G. Alternatively, any other clustering method can be
applied on graph G for the same task.

C. Implementation details

The proposed 3D motion segmentation algorithm (3D-SSC)
is an extension of the existing image based SSC (2D-SSC).
The readers are strongly recommended to refer [5] for its
theoretical derivations. For implementation aspects, our system
is designed based on the 2D-SSC toolbox [5], with the
following critical modifications: a) A modified system with 3D
data based-SSC; b) Non-negative constraint in sparse repre-
sentation to distinguish similar motions in opposite directions;
c) Diagonal identity constraint (see Equation (5)) adoption
for corrupted data recovery. The proposed system offers the
following advantages:

« Direct 3D space motion analysis: perspective effects pro-
duced by the affine projection assumption is avoided.

« More precise motion behaviour analysis: object motion
estimation, namely the rotation and translation, can be pre-
cisely recovered from the segmented 3D motion trajectories
for each moving object.

o Better perception of scene structure: the 3D data provide
more meaningful information, e.g. geometric structures,
continuity or discontinuity, for better scene understanding.

IV. STATIC-MAP BUILDING

For controlled environments, one can safely assume that the
static-map can always be built after physically removing the
dynamic object from the scene, or by restricting them to move
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while building the map. However in the real-world outdoor
scenes, it is very often impractical to restrict the objects
not to move, such as driving cars and walking pedestrians,
for the sake of map building. A common practice involves
the selection of most appropriate time frame so that the
number of moving objects can be minimized. Any act of
leveraging from this restriction makes the presence of dynamic
objects unavoidable. In such scenarios, the process of static-
map reconstruction demands the detection and the removal of
dynamic objects while building the map, or preferably before.

To reconstruct the static-map in an outdoor environment, we
suggest to use a mobile robot equipped with both 2D camera
and 3D sensor. Ideally, a 3D sensor alone is sufficient for the
proposed static-map building framework. However in practice,
construction of meaningful trajectories using only 3D data
is undermined by the lack of robust 3D feature descriptors.
Therefore, we also make use of the 2D camera — calibrated
and synchronized with 3D sensor and sharing the same field
of view. Although the RGB-D camera is one good example,
any combination of 2D camera and 3D sensor would suffice
as long as the aforementioned criteria are satisfied. Doing so
allows us to associate 3D points to their 2D descriptors by
projecting them onto the image plane. The process of feature
trajectory construction is followed by our 3D MS method as
proposed in Section III. The point clouds of the static scene
parts are later obtained after performing region growing on the
segmented motion trajectories. Finally, the static-map is built
by registering these point clouds with the help of RANSAC.
The complete pipeline of the proposed static-map building
method is depicted in Fig. 1.

A. Feature trajectory construction and segmentation

The feature trajectories are constructed using both 2D and
3D measurements. First, we project all the 3D scene points
of the reference frame onto its image. These projections are
considered as 2D feature points and tracked across the image
sequence using a dense optical flow method. To cover a wide
speed range, coarse-to-fine dense Optical Flow [16] tracking
algorithm has been adopted. The 3D feature trajectories are
then retrieved from 2D feature trajectories after establishing
2D-to-3D correspondences similar to [22]. We define dynamic
coverage as the area that the dynamic objects cover in an
image. Our primary interest is to perform robust MS, while
addressing a wide range of dynamic coverages and speeds.
For example, if the dynamic object covers a small part of the
image or quickly changes its appearance because of a high
speed, only a small fraction of the tracked features belong to
this object. This makes the data highly imbalanced, causing
numerical instability during subspace-sparse representation. To
address this problem, we introduce a flow-likelihood-based
sampling of the trajectories. Let {v;}7" , be the measured
speeds corresponding to the trajectories {y, }, (refer Equa-
tion (3)). If {cx}}", are the binary classes (dynamic=1, and
static = 0) assigned to each trajectory, the likelihood function
is defined as

Lley = 1|2) = V=¥, ©)

where v and o are the median speed and standard deviation
respectively. A subset of the feature trajectories for MS is
selected based on the likelihood measure of Equation (6).
This sampling method avoids the problem of having too many
samples from the background, hence balancing the data for the
optimization problem of Equation (5). During this process, we
also reject all the trajectories that do not follow the smooth
motion, categorizing them as outliers. Fig. 2 demonstrates the
effectiveness of the proposed flow-likelihood-based sampling
approach, in which more features on moving objects (such as
vans, train, cyclist and pedestrians) are sub-sampled using the
flow-likelihood-based sampling method (last column in Fig. 2).

Inlier Trajectories Uniform Sampling Proposed Sampling
- = o g M

Fig. 2: Results of uniform sampling vs. the proposed flow-
likelihood-based sampling: the green lines show the tracked
features from the first frame to the last frame. The last column
shows that more features are sampled from moving objects.

Once the segmented feature trajectories are obtained, a
multi-seeded Region Growing [17] technique is applied on
the point clouds to densely segment the moving objects. After
segmenting all the dynamic objects, the remaining point clouds
represent the static scene parts.

B. 3-point RANSAC registration

Given the segmented point clouds, the static-map is built
by registering multiple point clouds of the static parts. The
registration is performed using 3-point RANSAC on rigid
transformation parameters. In fact, the segmented motion
trajectories also allow us to obtain the dense reconstruction
of dynamic objects in a very similar manner. Recall the
rigid transformation of Equation (1). Let g be the Gibbs
representation of a rotation matrix R. G = [g]« and |3 are
3 x 3 skew-symmetric and identity matrices, respectively.
Using Cayley Transform [21], R can be expressed as:

R=(I5+6)""(Is = G). (7
Using Equation (7), Equation (1) can be rewritten as:
(I3 +G)Y = (I3 = G)X + (I3 + G)t. 3

If the second term on right hand side of Equation (8) is
replaced by a new vector t, it can be written as

(Y =X)=—(Y+X)G +t. )

Note that the Equation (9) is linear in the entries of g and
t. Each pair of corresponding points provides 2 independent
equations, for a system of 6 unknowns. Therefore, only 3
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correspondences are required to solve this system linearly. It
is straightforward to recover R and t from its solution.
Cayley transform based rotation matrix representation is
well known in geometry, however, its usage in robotics is
shadowed due to its inability to represent the rotation of
180°. In fact, the Gibbs vector for rotation angle ¢ and axis
g is expressed as: g = tan(6/2)g. The entries of g start
behaving badly from 6 > 90°, due to the tangent nature. For
6 < 90°, it can be safely used to estimate the rigid motion.
On the positive side, this representation offers a linear solution
using minimal 3-point correspondences. More importantly, the
over-determined system constructed from all inliers, at the
refinement stage of RANSAC, can be solved using linear least-
square method on exact 6 rigid motion parameters. Note that
the drawback of Cayley representation is not really a problem
for our application, because the angle between two consecutive
views in any practical scenario is always smaller than 90°.

V. EXPERIMENT

We conducted several experiments with both synthetic and
real data. Two kinds of real data, one acquired using Microsoft
Kinect RGB-D camera, and another from benchmark KITTI
dataset [23] were used. Our experiments show the feasibility
of the proposed 3D-SSC in segmenting the 3D trajectories.
Furthermore, both quantitative and qualitative results of recon-
structed static-maps using the proposed method are discussed
in details. All the experiments are conducted in a computer
with Intel Quad Core i7-2.7GHz, 32GB Memory.

A. 3D-SSC motion segmentation simulation

We build a system that contains multiple moving objects
under different noise conditions to verify the robustness of
the algorithm. More specifically, a set of synthetic data is
generated with n moving cubes with different sizes, positions,
orientations, and motions. The motion feature trajectories
are randomly selected to generalize the algorithm evaluation.
To quantify the robustness of the algorithm under different
nois¢ leve;ls, the miss-classification rate is defined as n =
# m;;s'f;f;f‘fgifurf:stures. To test the performance of the algorithm
under different noise levels and multiple motions, various
levels of white Gaussian noise (from 0%, 4%, ---, 16%) are
introduced to feature locations. Fig. 3 shows that the 3D-SSC
behaves very robustly under 12% of noise for at least up to
10 moving objects.

0.4 - SSC Miss-Classification Rate Evaluation
Noise Level

—6—0%

L 4%
—*%—8%
—A—12%

|| —B—16%

o
w

o

Miss-Classification Rate
o
n

Number of Moving Objects

Fig. 3: Averaged 3D-SSC MS performances on 50 tests.

B. Evaluation using Kinect data

To evaluate the performance of the algorithm on real 3D
data, a set of RGB-D sequences using Microsoft Kinect is
recorded, see Fig. 4. In the experiment, 5 moving objects
with different shapes are involved, namely the book, bottle,
mug, lamp, and box. All the moving objects are attached
with a chessboard pattern for the ease of feature selection and
annotation. The details of the experiments are summarized in
Table I, where the columns represent the frame length, the
number of features, and the segmentation accuracy (1 — 7),
respectively. As can be seen from Table I, the trajectories’
length for different objects are different, thus representing the
incomplete trajectory cases. These results show that the 3D-
SSC algorithm is able to correctly and precisely segment the
3D feature trajectories in a controlled indoor environment.

[ Objects [ Len. [ Feat [ Acc.(%) ]
Mug 15 18 100
Bottle 32 12 100
Lamp 24 18 100
Box 22 18 100
Book 20 16 93.75

TABLE I: Kinect MS results.

Fig. 4: Kinect data.

C. Evaluation on KITTI dataset

To evaluate our system with realistic outdoor scenes, we
conduct extensive experiments on the KITTI dataset [23]. The
experiments are conducted with four different datasets, namely
Highway, Junction, Station, and Market. These datasets have
been selected with different frame lengths, number of moving
objects, and number of feature trajectories. The details of all
four datasets are provided in Table III. In this table, the speed
indicates the relative speed of the moving objects with respect
to the camera. Note that the dynamic objects cover a wide
range of speeds, representing both fast and slow motions.

1) MS Evaluation: The feature trajectories are constructed
using the dense optical flow tracking approach and sub-
sampled based on the flow-likelihood sampling technique. As
can be observed in Fig. 5a, a significant number of features
belong to the dynamic parts, although they cover relatively
small region. Such feature distribution helps to balance the
data for the sparse representation, thanks to the likelihood-
based sampling. Fig. 5b shows the 3D feature trajectories.
Fig. 5c¢ and Fig. 5d show segmentation results obtained by
2D-SSC [5] and 3D-SSC, respectively. Note that the 2D-SSC
MS fails to categorize the road sign as a static scene part.

The results obtained using 2D-SSC MS as well as 3D-
SSC MS for all four datasets are summarized in Table III.
The segmentation performances are assessed by the popular
Sensitivity and Specificity metrics [24]. We also report another
measurement, reported as Seg. > 50%, counting the number
of objects with more than half of the feature points correctly
classified. Finally, the eigenvalue ratios are computed by
p= %77:71?, where n and m are the number of motions and
the totaJll_lnu]mber of trajectories, respectively. A higher value
of p denotes a better representation of the motion subspaces.
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. Dyn. Stc. Time
’ Seq. ‘ # Objs. ‘ Corr. Incorr. Ace %) | Acc(%) (min.) ‘
Highway 1 1 0 97.55 100 6.00
Junction 2 2 0 91.02 100 13.40
Station 5 5 1 91.60 92.47 3.16

TABLE II: Static-map quantification.

Table III also reports the computation time for both methods
(for the software developed in MATLAB).

Three main observations should be noted: a) 2D-SSC
has very high sensitivity with less motions, while its
performance decreases significantly as the motion number
increases. In contrast, the proposed 3D-SSC algorithm
remains robust against abundant motions. b) The 3D-SSC
results are more meaningful in the sense that even when
the algorithm cannot perfectly classify all the trajectories,
the motions can still be correctly categorized based on the
trajectories’ voting. ¢) The 3D-SSC performs superior to
2D-SSC due to the fact that the subspace representation
on direct 3D space is more compact than that of 2D-SSC.
This can be observed from the eigen ratio column of Table III.

2) Static-map Evaluation: Thanks to the effectiveness of
the proposed MS method, the static-maps of three dynamic
scenes are reconstructed, namely the Junction, Highway, and
Train station, see Fig. 6, 7, 8. To illustrate the quality of
the reconstructed static-maps, the full scene reconstructions
using state-of-the-art method [22] are also shown sidewise.
Few 2D frames from the sequence are displayed for the
motion visualization. In details, the Fig. 6 (Junction) shows the
reconstructed static-scene in a long sequence, the moving car
and the cyclist are detected and segmented correctly. Though
there are few frames rejected due to the loss of tracked
features, the proposed system is robust enough to reconstruct a
long sequence with significantly changing lighting conditions.

In the Highway sequence, the qualitative analysis between
Fig. 7a and Fig. 7b show that the static scene part of our map
is significantly better than that of [22]. For instance, the red
rectangle region in Fig. 7a highlights the tree shadow which
is barely recognized. On the contrary, the same shadow in
Fig. 7b has been recovered more realistically. In the close-up
view of all the built maps, similar differences are abundant.
A more challenging dataset shown in Fig. 8 (Train Station)
contains fast moving car and slowly moving pedestrians, with
intermittently occluded train by moving objects. Interestingly,
all moving objects: pedestrians, fast driving car, and occluded
train are detected and removed correctly in the reconstructed
static-map (see Fig. 8c). Recall that the objects moving in
the same direction with similar speed share the same motion
subspace. Therefore, the car and the train are grouped together
(blue objects in Fig. 8b), so as the two pedestrians (yellow
objects in Fig. 8b). In fact, such motion grouping simplifies
the complexity of scene understanding based on the motion
behaviours.

Table II summarizes the quantification results of the static-
map reconstruction. Starting from the second column, they
represent the number of moving objects, the number of
correctly and incorrectly removed objects, and accuracies

in removing the dynamic objects and maintaining the static

scene parts. The metric Dynamic Accuracy is defined by
Dun. Acc. = # of Points Segmented from Dynamic Objects

yn. T Total # of Points from Dynamic Objects °
and the Static Accuracy is defined in a similar manner. Note

that these measurements are made on the densely segmented
point clouds, unlike in Table III. A higher dynamic accuracy
(Dyn. Acc.) means a better removal of dynamic objects.
Similarly, the higher static accuracy (Stc. Acc.) stands for
a better maintenance of the static scene parts. Results show
that the dynamic objects are removed correctly with very high
accuracy, meanwhile, the static scene parts are maintained very
well. The reported computation time includes the time for both
MS and static-map reconstruction.

As offered by our static-map building framework, dense
reconstructions of the dynamic objects are recovered using
multiple frame measurements, as shown in Fig. 9. Firstly,
Fig. 9a-9d show two views of the denser reconstruction of a car
along with their single frame representations. Secondly, Fig. 9e
shows the multi-frame grouping of the truck’s point clouds
in a common coordinate frame, obtained using [22]. It goes
without saying that this representation can hardly be identified
as a truck. On the contrary, the reconstructed truck using our
method has very high quality, see Fig. 9f-9g. Thirdly, the full
reconstruction of the moving train is shown in Fig. 9i obtained
from its partial measurements due to dynamic occlusions.

(h) Train in crowded scene.

(i) Reconstructed train.

Fig. 9: Reconstructed moving objects. (a) and (c) show the
left and right side view of the car in one frame, respectively.
(b) and (d) show the denser reconstruction of left and right
side view of the car, respectively. (e) shows the trajectory
of the moving truck. (f) and (g) show the side view and
top view of the reconstructed truck, respectively. (h) shows
the train in a crowded environment, occluded by foreground
moving objects. (i) shows the reconstructed running train from
9 frames.

VI. CONCLUSION AND FUTURE WORK

We have proposed a novel framework for 3D motion
segmentation using Sparse Subspace Clustering algorithm
that categories the static scene parts and multiple moving
objects. The proposed method has been tested with extensive
experiments and outperforms its 2D based counterpart, espe-
cially when rich moving objects are involved. Our approach
of sampling sparse feature trajectories based on their flow
likelihood, and the proposed motion segmentation approach
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. [ Speed (m/s) | Sensitivity [ Specificity [ Seg. >50% [ Eigen. Ratio p | Time(min.) |

’ Seq. ‘ # Frames | # Objs. | # Feat. [ Min. | Max. 20 | 3D | 20 [ 30 [ 20 | 3 | 20 [ 30 | 20 [ 3D |
Highway 15 2 122 1387 722 1.0 0.95 1.0 1.0 2 2 0.0250 | 0.0264 | 3.54 133
Junction 70 3 33 0.50 515 1.0 0.98 0.77 0.99 3 3 0.0398 | 0.0399 | 9.6 12.85
Station 9 6 77 035 712 0.62 0.95 031 0.66 3 6 0.0789 | 0.0979 | 1.39 1.68
Market 3 9 50 0.39 134 0.88 1.0 0.68 0.98 6 9 0.0666 | 0.1907 | 1.6 2.0

TABLE III: 2D-SSC vs. 3]2-SSC in MS on KITTI dataset:

correctly classified. p = gziﬁ
e

)
1>‘J

Seg. > 50% counts the objects with more than 50% feature points
where n and m are the number of motions and the total number of trajectories, respectively.

(c) 3D Region growing segmentation based on 2D MS [5].

(d) 3D Region growing segmentation based on our method.

Fig. 5: 2D vs. 3D MS results: (a) and (b) show the 2D and 3D feature trajectories for 10 frames, respectively. Arrows in (a)
represent the direction of the feature motions. (c) and (d) show the 3D region growing segmentation based on the segmented
feature trajectories using 2D-SSC and our 3D-SSC algorithm, respectively. Must view in color.

Fig. 6: Junction sequence results: (a) shows the full scene 3D reconstruction using 80 frames. (b) shows the reconstructed
static-map without moving objects. Last row images show the corresponding image sequence for every 15 frames.

can handle wide range of motions, both in terms of magnitude,
speed and coverage. Furthermore, the proposed static-map
building pipeline reconstructs photo-realistic maps, both for
static and dynamic scene parts in an uncontrolled outdoor
environment. The proposed framework was tested with off-
line data, yet, it can be adapted to build a SLAM-like on-line
system, where data are acquired and processed piece by piece.
In the future, more robust feature tracking algorithm, such as
cross-frame optical flow, will be implemented to handle short-
term occlusion problem. Also, multi-object trackers initialized
with the detected moving objects should be developed to better
understand the motions.
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