
HAL Id: hal-01394362
https://hal.science/hal-01394362v3

Preprint submitted on 14 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Determination and exploration of practical parameters
for the latest Somewhat Homomorphic Encryption

(SHE) Schemes
Vincent Migliore, Guillaume Bonnoron, Caroline Fontaine

To cite this version:
Vincent Migliore, Guillaume Bonnoron, Caroline Fontaine. Determination and exploration of practical
parameters for the latest Somewhat Homomorphic Encryption (SHE) Schemes. 2016. �hal-01394362v3�

https://hal.science/hal-01394362v3
https://hal.archives-ouvertes.fr

Determination and Exploration of Practical
Parameters for the Latest Somewhat

Homomorphic Encryption (SHE) Schemes.

Vincent Migliore1, Guillaume Bonnoron2, Caroline Fontaine3

1 Université Bretagne Sud, Lab-STICC
2 Chair of Naval Cyber Defense

3 CNRS and Telecom Bretagne, Lab-STICC
vincent.migliore@univ-ubs.fr

guillaume.bonnoron@ecole-navale.fr

caroline.fontaine@imt-atlantique.fr

Abstract. Homomorphic encryption gets increasing attention lately,
and for good reasons. A lot of the burdens from the initial proposals have
been overcome and real applications become reachable. In this work, we
propose a study of the current best solutions, providing a deep analysis
of how to setup and size their parameters. Our overall aim is to provide
easy-to-use guidelines for implementation purposes.

1 Introduction

Homomorphic Encryption (HE) is a recent promising tool in modern cryptog-
raphy, that allows to carry out operations on encrypted data. Historically, some
early cryptographic schemes presented partial homomorphic properties, for mul-
tiplication [12] or addition [22]. But it was only with the works from [21] and [13]
that key ideas were introduced to support both operations simultaneously. These
schemes have been followed by many others [4,9,6,5,11,14,7,16]. It is important
to notice that nearly all these post-2009 schemes are built upon lattices, which
makes a great difference when comparing with former partial HE schemes, both
for performance (lattice-based homomorphic schemes lead to more practical con-
straints in terms of efficiency and encrypted data size) and for security considera-
tions (lattice-based schemes security has been less studied, yet seems not affected
by quantum cryptanalysis). In this paper, we will only focus on these post-2009
schemes built upon lattices, which enable both additions and multiplications over
encrypted data. Among HE schemes, Fully Homomorphic Encryption (FHE)
schemes allow the two types of elementary operations, without any restrictions,
thus enabling to process virtually any algorithm over encrypted data. However
the first FHE schemes presented too many drawbacks for a concrete use, as they
had very high complexity and poor flexibility. So, to lighten the overhead of ho-
momorphic capabilities, a more promising rationale has been investigated, the
so-called Somewhat Homomorphic Encryption (SHE) schemes. These allow any

number of additions, but only a limited number of multiplications. By (upper-
)bounding the number of homomorphic operations, SHE schemes considerably
reduce the size of ciphertexts and associated costs. Among the many HE schemes
that have been presented, the most promising ones are based on ideal lattices.
Here, we focus on 2nd and 3rd generation schemes, which are the most efficient.
For many years, the theoretical background of homomorphic encryption schemes
has been evolving. Thus, it has remained a real challenge to draw practical pa-
rameters. Morevover, former publications usually present values for specific use-
cases and do not address a wide range of applications. This issue stands in the
way toward broader implementation and use of homomorphic encryption, there-
fore to address this, we concisely and precisely present here how the extraction
of SHE parameters works. We make specific efforts to offer ready-to-use content
to people from outside the cryptography community, providing pre-computed
tables and simple formulas for a self-determination of parameters. We decided
to focus our study on two of most promising schemes: FV[11] and SHIELD[16].
Usually, implementations target YASHE’[4] instead of FV. However confidence
in this scheme has been recently damaged by the subfield/sublattice attack [1,17].
Making YASHE’ immune to these attacks would lead to oversize its parameters,
far too much for practical use. SEAL [18] moved to FV after these attacks. We
selected SHIELD for comparison because it is a 3rd generation scheme equiva-
lent to FV. With larger costs for the first homomorphic multiplications, 3rd-gen
schemes have a much better asymptotic behavior. Also from this generation,
F-NTRU [9] had to be discarded together with YASHE’. Another interesting
candidate would have been BGV[6], used in HElib [15]. However BGV could not
be fairly compared because of the modulus-switching operations that prevent
efficient hardware implementations. Also we did not include schemes like [10,8]
because they fall out of our discussion on somewhat homomorphic encryption.
The main contributions of the paper are: a concise presentation of the two
schemes with harmonized notation; a review of parameters extraction for both of
them, with several explorations to evaluate parameters for various applications;
numerous tables of parameters under different constraints, in order to cover a
wide range of use cases. It is organized as follows. Section 2 provides notation
and the basic theoretical background. Section 3 presents FV and SHIELD with
harmonized notation and provides a brief state of the art of current implementa-
tion techniques. Section 4 discusses the methodology for parameters extraction.
Section 5 offers ready-to-use tables and compare these schemes according to
different scenarios. Section 6 draws some conclusions.

2 Preliminaries

Let Zq[X] = (Z/qZ)[X] be the set of polynomials with integer coefficients mod-
ulo q. The mth cyclotomic polynomial of degree n is noted Φm(X). We define
Rq = Zq[X]/Φm(X) the ring of polynomials with integer coefficients modulo
q, reduced by the cyclotomic polynomial Φm(X). A polynomial is represented
with an uppercase and its coefficients with a lowercase. For polynomial A, ai

represents its ith coefficient. A vector of polynomials is noted in bold. For vector
A, A[i] is the ith polynomial of the vector. For a set R and a polynomial A,
A← UR represents a uniformly sampled polynomial in R, A← BR a uniformly
sampled polynomial in R with binary coefficients and A ← DR,σ a polynomial
of R with coefficients sampled from a discrete Gaussian distribution with width
parameter σ, i.e. proportional to exp(−πx2/σ2). For coefficient ai of polynomial
A, ai,(j..k) corresponds to the binary string extraction of ai between bits j and k.
This notation is extended to polynomial A where A(j..k) is the sub-polynomial
where the binary string extraction is applied to each coefficient. A modular re-
duction by an integer q is noted [·]q. For integer a, bac, dae and bae operators
are respectively the floor, ceil and nearest rounding operations. This notation
is extended to polynomials by applying the operation on each coefficient. For
vectors A and B, 〈A,B〉 represents

∑
A[i]B[i]. To simplify notation, we use

several variables: l = log2 q, N = 2 l and lω,q = dlog2 q/ log2 ωe, for some integer
ω. In the following, all polynomial operations are considered performed in Rq.

We recall here the definition of the Ring-Learning With Errors problem [20].

Definition Let R be a ring of degree n over Z (usually R = Z[x]/(f(x)) for
some cyclotomic polynomial f(x)). Let q be a positive integer, χ a probability
distribution on R of width parameter σ and S a secret random element in Rq.
We denote by LS,χ the probability distribution on Rq ×Rq obtained by choosing
A ∈ Rq uniformly at random, choosing E ∈ R according to χ and considering it
in Rq, and returning (A,C) = (A, [A · S + E]q) ∈ Rq ×Rq.

Decision-Ring-LWE is the problem of deciding whether given pairs (A,C) are
sampled according to LS,χ or the uniform distribution on Rq ×Rq. Search-Ring-
LWE is the problem to recovering S from pairs (A,C) sampled from LS,χ.

The hardness of Ring-LWE problem depends on the three variables n, σ and
q. The reduction presented in the introductory paper stands when σ > 2

√
n.

3 Presentation of the schemes

3.1 FV

FV [11] is a transposition of the scale-invariant Brakerski scheme [5] to the
Ring-LWE problem. Published at the same time as YASHE, it does not suffer
from any security flaw and has been addressed as a very promising scheme in
several recent publications. The public key is a pair (AS + E,A) of a Ring-
LWE instance, and the secret key is the polynomial S. After an homomorphic
multiplication, the ciphertext is composed of 3 terms instead of 2. To recover its
initial form, an additional step called relinearization is required, making use of a
relinearization key. FV also introduces two additional parameters, namely t and
ω. Integer t ∈ {1, . . . , q} corresponds to the upper bound of a message. When
t = 2, messages are binary. ω is a parameter associated with the relinearization,
and determines the size of the relinearization key and the complexity of the
relinearization operation. It is usual to select ω as a 32-bit or 64-bit integer for
computational aspects.

– FV.PowersOfw,q(A) :

A ∈ Rlw,q
q

for i = 0 to lw,q − 1
A[i] =

[
Awi

]
q

end for
return A

– FV.WordDecompw,q(A) :

A ∈ Rlw,q
q

for i = 0 to lw,q − 1
l0 = i× log2 ω
l1 = (i+ 1)× log2 ω − 1
A[i] = A(l0..l1)

end for
return A〈

FV.PowersOfw,q(A),FV.WordDecompw,q(B)
〉

=
[
A×B

]
q
.

– FV.GenKeys(λ) :
S ← DRq,σkey

, A← URq , E ← DRq,σerr

Pkey = (−AS + E,A)
Skey = S
return (Pkey, Skey)

– FV.GenRelinKeys(Pkey, Skey) :

A← U
lw,q

Rq
, E← D

lw,q

Rq,σerr

γ =

([
FV.PowersOfw,q

(
S2
key

)
−
(
ASkey + E

)]
q
,A

)
return γ

– FV.Encrypt(m,Pkey) :

U ← D
lw,q

Rq,σkey
, (E1, E2)← D2

Rq,σerr

C =

([
q
tm+ Pkey[0]U + E1

]
q
,
[
Pkey[1]U + E2

]
q

)
return C

– FV.Decrypt(C, Skey) :

M̃ =
[
C[0] + C[1]Skey

]
q

m =
⌊
t
qM̃ [0]

⌉
return m

– FV.Add(CA, CB) :

C+ =

([
CA[0] + CB [0]

]
q
,
[
CA[1] + CB [1]

]
q

)
return C+

– FV.Mult(CA, CB , γ) :

C̃0 =
[⌊

t
qCA[0]× CB [0]

⌉]
q

C̃1 =
[⌊

t
q (CA[0]× CB [1] + CA[1]× CB [0])

⌉]
q

C̃2 =
[⌊

t
qCA[1]× CB [1]

⌉]
q

C× = FV.Relin(C̃0, C̃1, C̃2, γ)
return C×

– FV.Relin(C̃0, C̃1, C̃2, γ) :
CR = (CR,0, CR,1)

CR,0 =

[
C̃0 +

〈
FV.WordDecompw,q (C̃2), γ[0]

〉]
q

CR,1 =

[
C̃1 +

〈
FV.WordDecompw,q (C̃2), γ[1]

〉]
q

return CR

3.2 SHIELD

SHIELD [16] is a transposition of the GSW scheme [14] to the Ring-LWE prob-
lem. It is a so called 3rd generation HE schemes, and does not require any
relinearization, but requires much more polynomials per ciphertext (namely
2 × N = 4 · log2 q for SHIELD, instead of 2 for FV). To counterbalance, the
inner noise grows more slowly than in 2nd generation HE schemes, reducing the
size of the modulus q and the cyclotomic polynomial degree n. By carefully ex-
amining SHIELD, one can notice strong similarities with FV, especially for the
key generation, the encryption and the decryption. Because no relinearization is
required, the homomorphic multiplication is much more natural than in FV.

– SHIELD.BD(A) :
(A ∈ RN×2q)

B ∈ BN×NRq

for i = 0 to N − 1

for j = 0 to log2 q − 1
B[i][j] = A[i][0](j)
B[i][j + log2 q] = A[i][1](j)

end for

end for
return B

– SHIELD.BDI(A) :
(A ∈ BN×NRq

)

B ∈ RN×2q

for i = 0 to N − 1

B[i][0] =
log2 q−1∑
j=0

A[i][j]2j

B[i][1] =
N−1∑

j=log2 q

A[i][j]2j

end for
return B

– SHIELD.GenKeys(λ) :
T ← DRq,σkey

, A← URq
, E ← DRq,σerr

B = A · T + E

Pkey =
[
B A

]
Skey =

[
1

−T

]
return (Pkey,Skey)

– SHIELD.Encrypt(m,Pkey) :
rN×1 ← BN×1Rq

, EN×2 ← DN×2
Rq,σerr

C = CN×2 = m · BDI(IN×N) + rN×1 ·Pkey + EN×2
return C

– SHIELD.Decrypt(C,Skey) :
M = C · Skey = m · BDI(IN×N) · Skey + error

m =
⌊
2
q ·M[0][0]

⌉
return m

– SHIELD.Add(C1,C2) :
C+ = C1 + C2

return C+

– SHIELD.Mult(C1,C2) :
C× = BD(C1) ·C2

return C×

3.3 Batching

For each scheme above, the cleartext is a polynomial in Rq. For convenience, mes-
sages are commonly chosen to be integers. However, this integer representation
turns out to be limited when considering interesting homomorphic operations.
More evolved algorithms, e.g. calling comparison operators, require dealing with
binary messages. This latter representation brings two important issues. First,
to perform an integer addition or multiplication with the binary representation,
one must reconstruct the binary circuit of the operators. Second, the size of ci-
phertexts is strongly impacted. To balance the ciphertext expansion issue, the
batching technique is a good solution. Introduced in [24], the batching allows
to ”pack” several messages into one single ciphertext. To do so, the associated
cyclotomic polynomial must be reducible modulo 2, and have only simple root
factors. Then, a polynomial CRT is applied to pack the messages, with one
message per factor.

3.4 Current implementation techniques and their impacts

Since the chosen polynomial multiplication algorithm impacts the parameters,
we briefly introduce the Number Theoretic Transform (NTT) algorithm and its

NWC variant. To be efficient, NTT must be generated by a polynomial with
irreducible factors of very small degree. This is why xn − 1 and xn + 1 are of-
ten chosen to be completely factorized with degree-1 factors. When performing
a polynomial multiplication using the NTT algorithm, the output polynomial
is reduced by the polynomial that generates the NTT, so it implies to double
the size of the NTT w.r.t. the input polynomials. Also, xn + 1 is a cyclotomic
polynomial, and selecting this polynomial to generate the NTT provides a solu-
tion where the polynomial reduction is directly integrated into the computation.
This special NTT is called Negative Wrapped Convolution (NWC) and requires
a NTT of size n instead of 2n in the standard case. However, this cyclotomic
property has an important issue. When factoring xn + 1 modulo 2, the resulting
polynomial is (x+1)n, which has a unique factor, namely (x+1). This is incom-
patible with the batching technique presented in Section 3.3. Thus, the NWC is
optimized for performance but incompatible with batching techniques.

4 Parameters extraction

As described in Section 3.3, SHE proposes two types of evaluations: an operation
on integer messages and binary messages. The following section focuses on the
binary approach including also an exploration of the impact of the NWC NTT
and the batching technique.

4.1 Noise management

4.1.1 Notation We briefly introduce additional notation for the noise ex-
traction. For polynomials A and B, we define ‖A‖∞ = max

0≤i<n
| ai |. When

A ← DRq,σkey
and B ← DRq,σerr

, we note ‖A‖∞ = Bkey and ‖B‖∞ = Berr.
B0 refers to the upper bound of the noise for a fresh ciphertext, BL denotes the
noise bound after a multiplicative depth of L. We also introduce the expansion
factor δ, which bounds the product of two polynomials. For two polynomials A
and B, the expansion can be expressed as δ = sup{‖A ·B‖∞/‖A‖∞‖B‖∞} = n.

4.1.2 FV The noise bound has been thoroughly studied in [19], thus we only
recall some key information below.
Initial noise. To determine the initial noise, we apply the decryption procedure
on a fresh ciphertext, focusing on the encryption of a 0:

C[0] + C[1] · Skey = (AS + E)U + E1 + (AU + E2)Skey = EU + E1 + E2S

Thus, the initial noise is B0 = Berr(1 + 2nBkey).
Multiplicative noise. Following the approach in [19], to ensure concreteness of
FV, we must have CL1 B0 +LCL−11 C2 < (∆− rt(q))/2 where C1 = δt(4 + δBkey),
C2 = δ2Bkey(Bkey + t2) + δωlω,qBerr, ∆ = bq/tc and rt(q) = q −∆t.

4.1.3 SHIELD The authors of [16] only provided an asymptotic evaluation
of SHIELD’s noise growth. We develop below a more precise calculation, provid-
ing the constant terms. In this section, BD and BDI refer to SHIELD.BD and
SHIELD.BDI respectively.
Initial noise. To determine the initial noise, we apply the decryption procedure
on a fresh ciphertext, focusing on the encryption of a 0:

C · Skey = (m · BDI(IN×N) + rN×1 ·Pkey + EN×2) · Skey

= rN×1 ·Pkey · Skey + EN×2 · Skey = rN×1 · E + EN×2 · Skey

We set E = rN×1 · E + EN×2 · Skey and we have

‖E [i]‖∞ < nBerr +Berr + n ·Berr ·Bkey = Berr(1 + n(1 +Bkey))

Thus, the initial noise can be bounded by B0 = Berr(1 + n(1 +Bkey)).
Multiplicative noise. To determine the noise after an homomorphic multipli-
cation in SHIELD, we apply the decryption procedure after the multiplication
step. Recall that SHIELD.Mult(C1,C2) = BD(C1) ·C2

BD(C1) ·C2 · Skey = BD(C1)(m2 BDI(IN×N) · Skey + E2)

= m2 · BD(C1) · BDI(IN×N) · Skey + BD(C1) · E2
= m2 ·C1 · Skey + BD(C1) · E2
= m1 ·m2 · BDI(IN×N) · Skey +m2 · E1 + BD(C1) · E2

We set E× = m2 · E1 + BD(C1) · E2. To bound E×, which is a vector, one must
bound each elements. BD(C1) is always a N ×N -matrix of binary polynomials.
Thus, each row of BD(C1) · E2 is a product/accumulation of N = 2 log2 q binary
polynomials with polynomials bounded by ‖E2[i]‖∞. After one homomorphic
multiplication, the noise can be bounded by

‖E×[i]‖∞ < m2 ·B(1)
0 + (2n log2 q)B

(2)
0 < B0(1 + 2n log2 q) (1)

Then, by an immediate induction, the noise after L homomorphic multiplications
can be expressed as BL = B0(1+2n log2 q)

L. To be able to decrypt without error
after L homomorphic multiplications, the final noise must be lower than q/2. We
must have q/2 > B0(1 + 2n log2 q)

L.
Better noise for multiplication. Unlike in FV, noise in SHIELD grows slowly
if a ciphertext is multiplied by a fresh one. By carefully examining Equation 1,
one can deduce that the noise of each ciphertext is independent. Thus, the
multiplicative noise growth can be more finely managed. When a ciphertext
is multiplied by L other fresh ciphertexts, the noise growth can be expressed as
BL = B0 + L(2n log2 q)B0 = B0(1 + L(2n log 2q)).
With batching. Earlier, we extracted noise parameters when m = 1. However,
if one wants to use batch operations, the message is a polynomial with coefficients
in {0, 1}. In that case, noise equation of the optimized circuit becomes Bi+1 =
n ·Bi + (2n log2 q)B0.
It is an arithmetico-geometric sequence of the form Bi+1 = a · Bi + b, where
a = n and b = 2n log2 qB0. So BL = aL(B0 − r) + r, with r = b

1−a .

Table 1: Maximum log2 q for a given dimension n, where λ is the security level.
σerr = 2

√
n.

n 1024 2048 4096 8192

λ = 80 bits 46 bits 88 bits 174 bits 348 bits

λ = 128 bits 30 bits 58 bits 112 bits 222 bits

4.2 Security

4.2.1 Attacks As expected in cryptography, all the schemes presented here
come with hardness results, provided by reductions to the Ring-LWE problem.
Yet, beyond these asymptotic reductions, we need concrete hardness results to
choose the scheme parameters according to a security level objective, e.g. 80
bits or 128 bits. Albrecht et al. [3] summarize the state-of-the-art of the attacks
against LWE. All of them apply against ring instances which are particular cases.
Another line of algebraic attacks exists also against Ring-LWE [23].

In this work, we rely on Albrecht’s estimator (available on BitBucket4) to
estimate attacks performances. It turned out that the recent attack described in
[2] was not the best against our instances. For a brief overview we put in Table 1
the maximal allowed log q for several dimensions at 80 and 128 bits of security.

4.2.2 Determining security parameters Real use-cases of homomorphic
cryptography define requirements for the multiplicative depth L and a security
level λ to achieve, then one needs to choose the corresponding security parame-
ters.

Upper bound on q. First, one sets an arbitrary (tentative) n, the cyclotomic
polynomial degree, as low as possible. Then, with the attack models of the esti-
mator, one can determine an upper-bound of q.

Lower bound on q. The next step is to evaluate if such a modulus q is com-
patible with the required multiplicative depth L. This depends of the scheme,
unlike the upper bound. If it does not, i.e. the security requires a q smaller than
what is needed by the multiplicative depth, one must increase n and go back to
the previous step in order to attempt to solve again the two inequalities on q.

We summarize the approach in Algorithm 1, which we used to compute the
tables presented below.

5 Practical parameters

In this section, we explore different settings: arbitrary circuit, optimized circuit,
NWC, batching, and report concrete parameters for scheme comparison.

4 https://bitbucket.org/malb/lwe-estimator, commit eb45a74

Algorithm 1 Determine (n, σ and q) parameters from (L, λ) for a given scheme

1: function ChooseParam(scheme, L, λ)
2: q ← 0
3: n← 1
4: repeat
5: σ ← 2

√
n

6: Mq ← Max-modulus(n, λ)
7: mq ← Min-modulus(n,L, scheme)
8: if mq < Mq then
9: q ← mq

10: else
11: n← n+ 1
12: end if
13: until q 6= 0
14: return n, σ, q
15: end function

5.1 Multiplicative depth for an arbitrary binary circuit

Table 2 provides parameters for FV and SHIELD for 80 and 128 bits of security.
They are extracted in the proved-hardness regime, that is to say σerr = 2

√
n for

each scheme
Values for SHIELD seem the best in the tables. However the number of sub-
polynomials for a given ciphertext explodes because it is proportional to log2 q
for SHIELD. For example, with L = 5, a ciphertext in SHIELD contains 2 ×
N = 4× log2 q = 480 sub-polynomials of degree-2793 with 120 bits coefficients,
whereas FV only requires two sub-polynomials of degree-3731 with 159 bits
coefficients.
Consequently, in the case of an arbitrary binary circuit, FV is best.

5.2 Multiplicative depth for an optimized circuit

As stated in the previous section, SHIELD seems inefficient for arbitrary circuits.
However, they have a really interesting feature: when a ciphertext is multiplied
by a fresh ciphertext, the noise growth is additive instead of multiplicative for
binary messages. Table 3 provides parameters for SHIELD for this optimized
circuit. FV is omitted here, because it presents no particular optimization.
Results are very impressive, SHIELD scale to large multiplicative degree with
nearly no impact on n and q. For SHIELD and for 80 bits of security, the mod-
ulus only increases by 5 bits between a multiplicative depth of 1 and 20 when
the degree of the associated cyclotomic polynomial remains under 1024. As a
reminder from Table 2, FV requires at least n = 14347 and log2 q = 611 bits for
a multiplicative depth of 20.

SHIELD is clearly better than FV in this setting, which is not about evalu-
ating circuit of depth L for all inputs, yet still a degree-L function.

Table 2: Parameters for FV, SHIELD and F-NTRU, where λ is the security level
and L the multiplicative depth. Arbitrary circuit.

(a) Selection of parameters for FV. Binary key, σerr = 2
√
n.

L

λ = 80 bits λ = 128 bits

ω = 32 bits ω = 64 bits ω = 32 bits ω = 64 bits

log2 q n log2 q n log2 q n log2 q n

1 54 1214 87 2008 55 1940 88 3156

5 159 3731 193 4540 166 6060 200 7321

10 303 7134 337 7964 317 11675 351 12844

15 454 10719 488 11458 475 17452 509 18722

20 611 14347 645 15127 639 23417 673 24709

(b) Selection of parameters for SHIELD. Binary error, σkey = 2
√
n.

L
λ = 80 bits λ = 128 bits

log2 q n log2 q n

1 36 784 38 1306

5 120 2793 124 4496

10 238 5595 247 9021

15 364 8582 376 13820

20 495 11609 511 18799

5.3 The case of the Negative Wrapped Convolution

Attracted by its performance, a majority of polynomial multiplication implemen-
tations use the NWC NTT. We provide in Table 4 the associated parameters
for FV. For SHIELD, parameters seem quite independent of the multiplicative
depth. Because the polynomial degree is oversized due to NWC, a security of
λ = 80 bits requires n = 1024, cf Table 3, and we can then go to very high L.
Similarly, n = 2048 is required for λ = 128 bits. For the same use case as FV
for λ = 80 bits, the polynomial degree is always 1024, with log2 q = 39 bits for a
multiplicative degree of 5, 40 bits for a multiplicative degree of 10, and 41 bits for
a multiplicative depth of 20. As a reminder, NWC uses the cyclotomic polyno-
mial xn+ 1 and the NTT computations are performed in the ring Z[x]/(xn+ 1).
Hence the polynomial reduction is directly integrated into NTT computations.
This performance tweak comes at the cost of disabling the packing of several
messages into one ciphertext, no batching possible. Parameters are selected to
maximize the multiplicative depth for a given n, which is necessarily a power of
2, because the NWC NTT set the cyclotomic polynomial to xn + 1. When com-
pared to the previous case, this slightly increases the size of the modulus, for a
given multiplicative depth. For example with FV, for a multiplicative depth of 4,
optimized parameters are n = 3084 and log2 q = 132. In a NWC NTT scenario,

Table 3: Parameters for SHIELD and F-NTRU, where λ is the security level and
L the multiplicative degree. Optimized circuit. Binary message (No batching).

(a) Selection of parameters for SHIELD. Binary error, σkey = 2
√
n.

L
λ = 80 bits λ = 128 bits

log2 q n log2 q n

1 36 784 38 1306

5 39 857 41 1411

10 40 879 42 1447

15 40 879 42 1448

20 41 901 43 1492

Table 4: Parameters for FV for the NWC NTT, where λ is the security level and
L the multiplicative depth. Binary key, σerr = 2

√
n. Warning: no batching with

the NWC NTT.

n

λ = 80 bits λ = 128 bits

ω = 32 bits ω = 64 bits ω = 32 bits ω = 64 bits

log2 q L log2 q L log2 q L log2 q L

1024 × × × × × × × ×
2048 80 2 87 1 55 1 × ×
4096 161 5 166 4 109 3 89 1

8192 334 11 338 10 198 6 202 5

16384 677 22 679 21 443 14 445 13

new parameters are n = 4096 and log2 q = 135 bits. Thus, the ciphertexts are
slightly larger when compared to optimized ones, but the computation time is
still better than for standard multiplication which requires a 2n-NTT with zero
padding.

5.4 The impact of batching

As stated in Section 3.3, the batching technique is very useful to reduce the ci-
phertext expansion. Table 5 provides parameters for FV and SHIELD when the
batching technique is used, in an optimized circuit as described in Section 5.2.
Unlike when the messages are binary, SHIELD parameters becomes sensitive to
the multiplicative depth.
As early as a depth of 2, the dimension goes over 1024 and implies an associated
NTT of size 2048. Moreover, the modulus q grows significantly with the depth,
on average 12 more bits per level. which leads to more and more sub-polynomials
for a given ciphertext. For a multiplicative depth of 10, SHIELD with batching
requires 596 sub-polynomials of degree 3487 with coefficients of 149 bits, while
without batching it only requires 160 sub-polynomials of degree 879 with coef-
ficients of 40 bits.

2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3
·104

Multiplicative depth

D
a
ta

si
ze

(k
B

)

λ = 80 bits

λ = 128 bits

FV ω = 32

FV ω = 64

SHIELD

Fig. 1: Data size for an homomorphic scenario with 8 encryptions.

As we see here, batching in FV has no significant impact on the parameters,
whereas it is the opposite for SHIELD.

5.5 Keys and ciphertexts sizes

Figure 6 provides the volume of data for FV and SHIELD in a scenario requiring
8 bits of information. For SHIELD, it is only the size of 8 ciphertexts. For FV,
the size of relinearization keys are also included because they are required during
the homomorphic multiplication. For small multiplicative depths, namely under
8, FV requires a lower amount of data than SHIELD. But for larger depths, the
improved noise management of SHIELD is highly beneficial. The main issue for
FV is the size of the relinearization key. For a multiplicative depth of 15, it is as
large as 17.4 MB, when SHIELD does not require such a key. It can be reduced
a bit by enlarging ω at an additional computation cost. However SHIELD is no
longer the lightest with batching. Even a packing of only 3 accounts for the same
as what we observe in FV with increase in the multiplicative depth.

6 Conclusion

This study has provided some new and helpful information concerning practical
issues of homomorphic encryption. Two different schemes have been studied: FV,

a second, and SHIELD a third generation scheme. FV has in major cases shorter
ciphertexts than the others, thanks to the relinearization step. More precisely,
an FV ciphertext is only composed of two polynomials, but with higher degree
and coefficient size. Also, FV is very sensitive to the multiplicative depth and has
no particular optimization for any binary circuit. SHIELD is a third generation
scheme, which means that the relinearization step is somehow included in the
multiplication. The noise growth is much lower than for FV, leading to cipher-
texts composed of smaller sub-polynomials. Yet there are many polynomials to
handle, 2× log2 q times more. This is not a major issue for SHIELD, because if
the computation is optimized to prefer multiplication with fresh ciphertexts, it
can achieve a very high multiplicative depth (up to 20) without impacting much
the sub-polynomial size. For example, maintaining it below 1024 for log2 q ≤ 41
bits. As SHIELD authors reported, numerous but small polynomials multiplica-
tion can be very efficiently implemented in GPU and counterbalance the size of
ciphertexts.

About batching: unlike FV, SHIELD is very sensitive to batching. For a
multiplicative depth of 4, SHIELD with batching requires n = 1649 and log2 q =
72. This has a critical impact compared to the no-batching version because
we now require to double the size of the NTT/NWC, and double the size of
the integer multiplication operands. And this phenomenon worsens when the
multiplicative depth grows.
To conclude, SHIELD is a good candidate when the multiplicative depth is
important, namely L ≥ 10 . But this only holds when the bandwidth is not
such a problem. However, if one wants to efficiently use the bandwidth, if the
multiplicative depth is not too important (L ≤ 9), then FV is probably a better
solution, and even more so when coupled with the batching technique.

Further work on implementations will provide even better insights on the
real performances and behaviours of these schemes.

References

1. Martin Albrecht, Shi Bai, and Léo Ducas. A subfield lattice attack on overstretched
ntru assumptions: Cryptanalysis of some fhe and graded encoding schemes. Cryp-
tology ePrint Archive, Report 2016/127, 2016.

2. Martin R. Albrecht. On dual lattice attacks against small-secret lwe and parameter
choices in helib and seal. Cryptology ePrint Archive, Report 2017/047, 2017.
http://eprint.iacr.org/2017/047.

3. Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of
Learning with Errors. Cryptology ePrint Archive, Report 2015/046, 2015.

4. Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved secu-
rity for a ring-based fully homomorphic encryption scheme. In Proc. of Cryptogra-
phy and Coding: 14th IMA International Conference – IMACC 2013, pages 45–64.
Springer, 2013.

5. Zvika Brakerski. Fully homomorphic encryption without modulus switching from
classical gapsvp. In Advances in Cryptology–CRYPTO 2012, pages 868–886.
Springer, 2012.

http://eprint.iacr.org/2017/047

6. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully ho-
momorphic encryption without bootstrapping. In Proc. of the 3rd Innovations
in Theoretical Computer Science Conference – ITCS 2012, pages 309–325. ACM,
2012.

7. Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based fhe as secure as pke.
In Proc. of the 5th Conference on Innovations in Theoretical Computer Science –
ITCS 2014, pages 1–12. ACM, 2014.

8. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster
fully homomorphic encryption: Bootstrapping in less than 0.1 seconds. In Ad-
vances in Cryptology–ASIACRYPT 2016: 22nd International Conference on the
Theory and Application of Cryptology and Information Security, Hanoi, Vietnam,
December 4-8, 2016, Proceedings, Part I 22, pages 3–33. Springer, 2016.

9. Yarkın Doröz and Berk Sunar. Flattening ntru for evaluation key free homomorphic
encryption. Cryptology ePrint Archive, Report 2016/315, 2016.

10. Léo Ducas and Daniele Micciancio. Fhew: Bootstrapping homomorphic encryption
in less than a second. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 617–640. Springer, 2015.

11. Junfeng Fan and Frederick Vercauteren. Somewhat Practical Fully Homomorphic
Encryption. Cryptology ePrint Archive, Report 2012/144, 2012.

12. Taher El Gamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Trans. Information Theory, 31(4):469–472, 1985.

13. Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis, Stanford
University, 2009.

14. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based.
In Proc. of Advances in Cryptology – CRYPTO 2013, pages 75–92, 2013.

15. Shai Halevi. Helib. Available at https://github.com/shaih/HElib.
16. Alhassan Khedr, Glenn Gulak, and Vinod Vaikuntanathan. Shield: Scalable ho-

momorphic implementation of encrypted data-classifiers. Accepted to IEEE Trans-
actions on Computers, 2015.

17. Paul Kirchner and Pierre-Alain Fouque. Comparison between Subfield and
Straightforward Attacks on NTRU. Cryptology ePrint Archive, 2016/717, 2016.

18. Kim Laine, Hao Chen, and Rachel Player. Simple encrypted arithmetic library -
seal (v2.1). Technical report, September 2016.

19. Tancrede Lepoint and Michael Naehrig. A Comparison of the Homomorphic En-
cryption Schemes FV and YASHE. In Proc. of AFRICACRYPT 2014, volume
8469 of LNCS, pages 318–335, 2014.

20. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learn-
ing with errors over rings. Advances in Cryptology–EUROCRYPT 2010, pages
1–23, 2010.

21. Carlos Aguilar Melchor, Philippe Gaborit, and Javier Herranz. Additively homo-
morphic encryption with d-operand multiplications. In Annual Cryptology Con-
ference, pages 138–154. Springer, 2010.

22. Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In Proc. of Advances in Cryptology — EUROCRYPT 1999, number 1592
in LNCS, pages 223–238, 1999.

23. Chris Peikert. How (Not) to Instantiate Ring-LWE. Cryptology ePrint Archive,
Report 2016/351, 2016.

24. N. P. Smart and F. Vercauteren. Fully homomorphic simd operations. Designs,
Codes and Cryptography, 71(1):57–81, 2014.

https://github.com/shaih/HElib

Table 5: Parameters of FV and SHIELD for 80 bits of security when batching
is enabled, where L is the multiplicative depth, batching the number of packed
operations,m the rank of the cyclotomic polynomial and hw the hamming weight
of the associated cyclotomic polynomial. Binary key, σerr = 2

√
n

(a) Values for FV. ω = 32 bits.

L batching hw n m

1
12 33 1296 2835

72 97 1296 1971

2

2 7 1944 3645

6 17 1944 3159

18 49 1944 2997

20 57 2000 4125

3
4 23 2592 4131

12 57 2520 4851

24 59 2592 5265

4

2 7 3240 6075

4 31 3120 4225

12 57 3240 6237

16 73 3200 6375

5
12 33 3888 8505

24 59 3744 7605

72 97 3888 5913

6
2 39 4536 7047

20 57 4400 9075

7 2 41 5060 5819

8
2 7 5832 10935

6 17 5832 9477

18 49 5832 8991

(b) Values for SHIELD.

L batching hw n m

1

6 9 972 1701

18 25 972 1539

24 59 864 1755

40 65 800 1025

2

2 7 1080 2025

4 31 1200 1625

8 41 1088 1445

14 49 1176 1421

20 57 1200 2475

60 73 1200 2325

3
2 31 1368 1805

24 59 1440 2925

4
2 7 1800 3375

6 9 1764 3087

42 73 1764 2107

5

2 7 2058 2401

6 17 1944 3159

18 49 1944 2997

20 57 2000 4125

6
6 9 2268 3969

22 41 2420 2783

7
4 23 2592 4131

24 59 2592 5265

8
2 7 3000 5625

6 9 2916 5103

18 25 2916 4617

30 49 3000 3875

36 99 3024 5733

Table 6: Parameters size for FV and SHIELD, where λ is the security level and
L the multiplicative depth. Binary key, σerr = 2

√
n.

(a) FV

L

λ = 80 bits

ω = 32 bits ω = 64 bits

C, Pkey γ C, Pkey γ

1 16.0 KB 32.0 KB 42.6 KB 85.3 KB

5 144.8 KB 724.2 KB 213.9 KB 855.7 KB

10 527.7 KB 5.2 MB 655.2 KB 3.8 MB

15 1.1 MB 17.4 MB 1.3 MB 10.7 MB

20 2.1 MB 41.8 MB 2.3 MB 25.6 MB

λ = 128 bits

ω = 32 bits ω = 64 bits

C, Pkey γ C, Pkey γ

26.0 KB 52.1 KB 67.8 KB 135.6 KB

245.6 KB 1.4 MB 357.5 KB 1.4 MB

903.6 KB 8.8 MB 1.1 MB 6.4 MB

2.0 MB 29.6 MB 2.3 MB 18.2 MB

3.6 MB 71.4 MB 4.0 MB 43.6 MB

(b) SHIELD. Optimized circuit.

L

λ = 80 bits

No batching Batching

C Pkey C Pkey

1 496.1 KB 6.9 KB 375 KB 5.4 KB

5 636.5 KB 8.2 KB 5.2 MB 32.3 KB

10 686.7 KB 8.6 KB 30 MB 105.1 KB

15 686.7 KB 8.6 KB 94.8 MB 226.8 KB

20 739.5 KB 9.0 KB 223 MB 402 KB

λ = 128 bits

No batching Batching

C Pkey C Pkey

920.8 KB 12.1 KB 521.4 KB 7.2 KB

1.1 MB 14.1 KB 7.4 MB 44.3 KB

1.2 MB 14.8 KB 43 MB 145.9 KB

1.2 MB 14.8 KB 136.6 MB 316.5 KB

1.3 MB 15.7 KB 320 MB 559.2 KB

	Determination and Exploration of Practical Parameters for the Latest Somewhat Homomorphic Encryption (SHE) Schemes.

