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Abstract. Homomorphic encryption gets increasing attention lately,
and for good reasons. A lot of the burdens from the initial proposals have
been overcome and real applications become reachable. In this work, we
propose a study of the current best solutions, providing a deep analysis
of how to setup and size their parameters. Our overall aim is to provide
easy-to-use guidelines for implementation purposes.

1 Introduction

Homomorphic Encryption (HE) is a recent promising tool in modern cryptog-
raphy, that allows to carry out operations on encrypted data. Historically, some
early cryptographic schemes presented partial homomorphic properties, for mul-
tiplication [?] or addition [16]. But it was only with the works from [15] and [10]
that key ideas were introduced to support both operations simultaneously. These
schemes have been followed by many others [3,8,5,4,9,11,6,12]. It is important
to notice that nearly all these post-2009 schemes are built upon lattices, which
makes a great difference when comparing with former partial HE schemes, both
for performance (lattice-based homomorphic schemes lead to more practical con-
straints in terms of efficiency and encrypted data size) and for security considera-
tions (lattice-based schemes security has been less studied, yet seems not affected
by quantum cryptanalysis). In this paper, we will only focus on these post-2009
schemes built upon lattices, which enable both additions and multiplications over
encrypted data. Among HE schemes, Fully Homomorphic Encryption (FHE)
schemes allow the two types of elementary operations, without any restrictions,
thus enabling to process virtually any algorithm over encrypted data. However
the first FHE schemes presented too many drawbacks for a concrete use, as they
had very high complexity and poor flexibility. So, to lighten the overhead of ho-
momorphic capabilities, a more promising rationale has been investigated, the
so-called Somewhat Homomorphic Encryption (SHE) schemes. These allow any



number of additions, but only a limited number of multiplications. By (upper-
)bounding the number of homomorphic operations, SHE schemes considerably
reduce the size of ciphertexts and associated costs. Among the many HE schemes
have been presented, the most promising ones are based on ideal lattices. Here,
we focus on 2nd and 3rd generation schemes, which are the most efficient.
For many years, HE theoretical background has been evolving. Thus, it has
remained a real challenge to draw practical parameters. Morevover, former pub-
lications usually present values for specific use-cases and do not address wide
range of applications. This issue stands in the way toward broader implemen-
tation and use of homomorphic encryption, therefore to address this, we con-
cisely and precisely present here how the extraction of SHE parameters works.
We make specific efforts to offer ready-to-use content to people from outside
the cryptography community, providing pre-computed tables and simple formu-
las for a self-determination of parameters. We decided to focus our study on
three of most promising schemes: FV[9], SHIELD[12] and F-NTRU[8]. Usually,
implementations target YASHE’[3] instead of FV. However confidence in this
scheme has been recently damaged by the subfield/sublattice attack [1,?]. Mak-
ing YASHE’ immune to these attacks would lead to oversize its parameters, far
too much for practical use [?]. We selected SHIELD and F-NTRU for compar-
ison because they are the 3rd generation schemes equivalent to, respectively,
FV and YASHE’. With larger costs for the first homomorphic multiplications,
these schemes have a much better asymptotic behavior. Thus, even if F-NTRU
is based on YASHE’, secure parameters can still be selected. Another interesting
candidate would have been BGV[5], used in HElib [?]. However BGV could not
be fairly compared because of the modulus-switching operations that prevent
efficient hardware implementations.
The main contributions of the paper are: a concise presentation of the three
schemes with harmonized notation; a review of parameters extraction for each
of them, with several explorations to evaluate parameters for various applica-
tions; numerous tables of parameters under different constraints, in order to
cover a wide range of use cases. It is organized as follows. Section 2 provides
notation and the basic theoretical background. Section 3 presents FV, SHIELD
and F-NTRU with harmonized notation and provides a brief state of the art
of current implementation techniques. Section 4 discusses the methodology for
parameters extraction. Section 5 offers ready-to-use tables and compare these
schemes according to different scenarios. Section 6 draws some conclusions.

2 Preliminaries

Let Zq[X] = Z[X]/qZ be the set of polynomials with integer coefficients mod-
ulo q. The mth cyclotomic polynomial of degree n is noted Φm(X). We define
Rq = Zq[X]/Φm(X) the ring of polynomials with integer coefficients modulo
q, reduced by the cyclotomic polynomial Φm(X). A polynomial is represented
with an uppercase and its coefficients with a lowercase. For polynomial A, ai
represents its ith coefficient. A vector of polynomials is noted in bold. For vector



A, A[i] is the ith polynomial of the vector. For a set R and a polynomial A,
A← UR represents a uniformly sampled polynomial in R, A← BR a uniformly
sampled polynomial in R with binary coefficients and A ← DR,σ a polynomial
of R with coefficients sampled from a discrete Gaussian distribution with width
parameter σ, i.e. proportional to exp(−πx2/σ2). For coefficient ai of polynomial
A, ai,(j..k) corresponds to the binary string extraction of ai between bits j and k.
This notation is extended to polynomial A where A(j..k) is the sub-polynomial
where the binary string extraction is applied to each coefficient. A modular re-
duction by an integer q is noted [·]q. For integer a, bac, dae and bae operators
are respectively the floor, ceil and nearest rounding operations. This notation
is extended to polynomials by applying the operation on each coefficient. For
vectors A and B, 〈A,B〉 represents

∑
A[i]B[i]. To simplify notation, we use

several variables: l = log2 q, N = 2 l and lω,q = dlog2 q/ log2 ωe, for some integer
ω. In the following, all polynomial operations are considered performed in Rq.

We recall here the definition of the Ring-Learning With Errors problem [14].

Definition Let R be a ring of degree n over Z (usually R = Z[x]/(f(x)) for
some cyclotomic polynomial f(x)). Let q be a positive integer, χ a probability
distribution on R of width parameter σ and S a secret random element in Rq.
We denote by LS,χ the probability distribution on Rq ×Rq obtained by choosing
A ∈ Rq uniformly at random, choosing E ∈ R according to χ and considering it
in Rq, and returning (A,C) = (A, [A · S + E]q) ∈ Rq ×Rq.

Decision-Ring-LWE is the problem of deciding whether given pairs (A,C) are
sampled according to LS,χ or the uniform distribution on Rq ×Rq. Search-Ring-
LWE is the problem to recovering s from pairs (A,C) sampled from LS,χ.

The hardness of Ring-LWE problem depend on the three variables n, σ and
q. The reduction presented in the introductory paper stands when σ > 2

√
n.

3 Presentation of the schemes

3.1 FV

FV [9] is a transposition of the scale-invariant Brakerski scheme [4] to the Ring-
LWE problem. Published at the same time as YASHE, it does not suffer from
any security flaw and has been addressed as a very promising scheme in several
recent publications. The public key is a pair (AS+E,A) of a Ring-LWE instance,
and the secret key is the polynomial S. After an homomorphic multiplication,
the ciphertext is composed of 3 terms instead of 2. To recover its initial form, an
additional step called relinearization is required, making use of a relinearization
key. FV also introduces two additional parameters, namely t and ω. Integer
t ∈ (1, q) corresponds to the upper bound of a message. When t = 2, messages are
binary. ω is a parameter associated with the relinearization, and determines the
size of the relinearization key and the complexity of the relinearization operation.
It is usual to select ω as a 32 bits or 64 bits integer for computational aspects.



– FV.PowersOfw,q(A) :

A ∈ Rlw,q
q

for i = 0 to lw,q − 1
A[i] =

[
Awi

]
q

end for
return A

– FV.WordDecompw,q(A) :

A ∈ Rlw,q
q

for i = 0 to lw,q − 1
l0 = i× log2 ω
l1 = (i+ 1)× log2 ω − 1
A[i] = A(l0..l1)

end for
return A〈

FV.PowersOfw,q(A),FV.WordDecompw,q(B)
〉

=
[
A×B

]
q
.

– FV.GenKeys(λ) :
S ← DRq,σkey

, A← URq , E ← DRq,σerr

Pkey = (−AS + E,A)
Skey = S
return (Pkey, Skey)

– FV.GenRelinKeys(Pkey, Skey) :

A← U
lw,q

Rq
, E← D

lw,q

Rq,σerr

γ =

([
FV.PowersOfw,q

(
S2
key

)
−
(
ASkey + E

)]
q
,A

)
return γ

– FV.Encrypt(m,Pkey) :

U ← D
lw,q

Rq,σkey
, (E1, E2)← D2

Rq,σerr

C =

([
q
tm+ Pkey[0]U + E1

]
q
,
[
Pkey[1]U + E2

]
q

)
return C

– FV.Decrypt(C, Skey) :

M̃ =
[
C[0] + C[1]Skey

]
q

m =
⌊
t
qM̃ [0]

⌉
return m

– FV.Add(CA, CB) :

C+ =

([
CA[0] + CB [0]

]
q
,
[
CA[1] + CB [1]

]
q

)
return C+

– FV.Mult(CA, CB , γ) :

C̃0 =
[⌊

t
qCA[0]× CB [0]

⌉]
q

C̃1 =
[⌊

t
q (CA[0]× CB [1] + CA[1]× CB [0])

⌉]
q



C̃2 =
[⌊

t
qCA[1]× CB [1]

⌉]
q

C× = FV.Relin(C̃0, C̃1, C̃2, γ)
return C×

– FV.Relin(C̃0, C̃1, C̃2, γ) :
CR = (CR,0, CR,1)

CR,0 =

[
C̃0 +

〈
FV.WordDecompw,q (C̃2), γ[0]

〉]
q

CR,1 =

[
C̃1 +

〈
FV.WordDecompw,q (C̃2), γ[1]

〉]
q

return CR

3.2 SHIELD

SHIELD [12] is a transposition of GSW scheme [11] to the Ring-LWE problem. It
is a so called 3rd generation HE schemes, and does not require any relinearization,
but requires much more polynomials per ciphertext (namely 2×N = 4 · log2 q for
SHIELD, instead of 2 for FV). To counterbalance, the inner noise grows more
slowly than in 2nd generation HE schemes, reducing the size of the modulus
q and the cyclotomic polynomial degree n. By carefully examining SHIELD,
one can notice strong similarities with FV, especially for the key generation,
the encryption and the decryption. Because no relinearization is required, the
homomorphic multiplication is much more natural than in FV.

– SHIELD.BD(A) :
(A ∈ RN×2q )

B ∈ BN×NRq

for i = 0 to N − 1

for j = 0 to log2 q − 1
B[i][j] = A[i][0](j)
B[i][j + log2 q] = A[i][1](j)

end for

end for
return B

– SHIELD.BDI(A) :
(A ∈ BN×NRq

)

B ∈ RN×2q

for i = 0 to N − 1

B[i][0] =
log2 q−1∑
j=0

A[i][j]2j

B[i][1] =
N−1∑

j=log2 q

A[i][j]2j



end for
return B

– SHIELD.GenKeys(λ) :
T ← DRq,σkey

, A← URq
, E ← DRq,σerr

B = A · T + E

Pkey =
[
B A

]
Skey =

[
1

−T

]
return (Pkey,Skey)

– SHIELD.Encrypt(m,Pkey) :
rN×1 ← BN×1Rq

, EN×2 ← DN×2
Rq,σerr

C = CN×2 = m · BDI(IN×N) + rN×1 ·Pkey + EN×2
return C

– SHIELD.Decrypt(C,Skey) :
M = C · Skey = m · BDI(IN×N) · Skey + error

m =
⌊
2
q ·M[0][0]

⌉
return m

– SHIELD.Add(C1,C2) :
C+ = C1 + C2

return C+

– SHIELD.Mult(C1,C2) :
C× = BD(C1) ·C2

return C×

3.3 F-NTRU

F-NTRU [8] scheme is the latest homomorphic encryption scheme presented in
this paper. In contrast to FV or SHIELD, the decryption is not based on a
polynomial pair where one member contains a noisy image of the secret key
to help decryption. Instead, F-NTRU is based on LTV scheme, which requires
an invertible polynomial as a key to avoid the polynomial-pair requirement.
Even if F-NTRU and YASHE’ share the same problematic security assump-
tions, F-NTRU adapts latest noise management techniques proposed in GSW
to reduce the noise growth. This allows for secure parameters even under the
subfield/sublattice attacks. This new noise management requires an additional
operation called FLATTEN, that requires an array of polynomials instead of a
single one like in YASHE’.



– F-NTRU.BDI(A) :
(A ∈ Bl×lRq

)

B ∈ Rl×1q

for i = 0 to l − 1

B[i]=
l−1∑
j=0

A[i][j]2j

end for
return B

– F-NTRU.BD(A) :
(A ∈ Rl×1q )

B ∈ Bl×lRq

for i = 0 to l − 1
for j = 0 to l − 1

B[i][j] = A[i](j)
end for

end for
return B

– F-NTRU.FLATTEN(A) : (A ∈ Bl×lRq
)

B ∈ Bl×lRq

B = F-NTRU.BD( F-NTRU.BDI(A))
return A

– F-NTRU.GenKeys(λ) :
G← DRq,σkey

, F ′ ← DRq,σkey

B = A · T + E
Skey = F = 2F ′ + 1
Pkey = 2GF−1

return (Pkey, Skey)
– F-NTRU.Encrypt(m,Pkey) :

S← Dl×1
Rq,σerr

,E← Dl×1
Rq,σerr

for i = 0 to l − 1
C′l×1[i] = Pkey · S[i] + 2 E[i] + 0

end for
C = F-NTRU.FLATTEN(m · Il×l + BD(C′l×1))

– F-NTRU.Decrypt(C, Skey) :
c0 = BDI(C(0,l−1), . . . C(0,0))
m = bc0Skeyemod2
return m

– F-NTRU.Add(C1,C2) :
C+ = F-NTRU.FLATTEN(C1 + C2)
return C+

– F-NTRU.Mult(C1,C2) :
C× = F-NTRU.FLATTEN(C1 ·C2)
return C×

3.4 Batching

For each scheme above, the cleartext is a polynomial in Rq. For convenience, mes-
sages are commonly chosen to be integers. However, this integer representation
turns out to be limited when considering interesting homomorphic operations.



More evolved algorithms, e.g. calling comparison operators, require dealing with
binary messages. This latter representation brings two important issues. First,
to perform an integer addition or multiplication with the binary representation,
one must reconstruct the binary circuit of the operators. Second, the size of ci-
phertexts is strongly impacted. To balance the ciphertext expansion issue, the
batching technique is a good solution. Introduced in [18], the batching allows
to ”pack” several messages into one single ciphertext. To do so, the associated
cyclotomic polynomial must be reducible modulo 2, and have only simple root
factors. Then, a polynomial CRT is applied to pack the messages, with one
message per factor.

3.5 Current implementation techniques and their impacts

Since the chosen polynomial multiplication algorithm impacts the parameters,
we briefly introduce the Number Theoretic Transform (NTT) algorithm and its
NWC variant. To be efficient, NTT must be generated by a polynomial with
irreducible factors of very small degree. This is why xn − 1 and xn + 1 are of-
ten chosen to be completely factorized with degree-1 factors. When performing
a polynomial multiplication using the NTT algorithm, the output polynomial
is reduced by the polynomial that generates the NTT, so it implies to double
the size of the NTT w.r.t. the input polynomials. Also, xn + 1 is a cyclotomic
polynomial, and selecting this polynomial to generate the NTT provides a solu-
tion where the polynomial reduction is directly integrated into the computation.
This special NTT is called Negative Wrapped Convolution (NWC) and requires
a NTT of size n instead of 2n in the standard case. However, this cyclotomic
property has an important issue. When factoring xn + 1 modulo 2, the resulting
polynomial is (x+1)n, which has a unique factor, namely (x+1). This is incom-
patible with the batching technique presented in Section 3.4. Thus, the NWC is
optimized for performance but incompatible with batching techniques.

4 Parameters extraction

As described in Section 3.4, SHE proposes two types of evaluations: an operation
on integer messages and binary messages. The following section focuses on the
binary approach including also an exploration of the impact of the NWC NTT
and the batching technique.

4.1 Noise management

4.1.1 Notation We briefly introduce additional notation for the noise ex-
traction. For polynomials A and B, we define ‖A‖∞ = max

0≤i<n
| ai |. When

A ← DRq,σkey
and B ← DRq,σerr

, we note ‖A‖∞ = Bkey and ‖B‖∞ = Berr.
B0 refers to the upper bound of the noise for a fresh ciphertext, BL denotes the



noise bound after a multiplicative depth of L. We also introduce the expansion
factor δ, which bounds the product of two polynomials. For two polynomials A
and B, the expansion can be expressed as δ = sup{‖A ·B‖∞/‖A‖∞‖B‖∞} = n.

4.1.2 FV The noise bound has been thoroughly studied in [13], thus we only
recall some key information below.
Initial noise. To determine the initial noise, we apply the decryption procedure
on a fresh ciphertext, focusing on the encryption of a 0:

C[0] + C[1] · Skey = (AS + E)U + E1 + (AU + E2)Skey = EU + E1 + E2S

Thus, the initial noise is B0 = Berr(1 + 2nBkey).
Multiplicative noise. Following the approach in [13], to ensure concreteness of
FV, we must have CL1 B0 +LCL−11 C2 < (∆− rt(q))/2 where C1 = δt(4 + δBkey),
C2 = δ2Bkey(Bkey + t2) + δωlω,qBerr, ∆ = bq/tc and rt(q) = q −∆t.

4.1.3 SHIELD Authors of [12] only provided an asymptotic evaluation of
SHIELD’s noise growth. We develop below a more precise calculation, providing
the constant terms. In this section, BD and BDI refer to SHIELD variants.
Initial noise. To determine the initial noise, we apply the decryption procedure
on a fresh ciphertext, focusing on the encryption of a 0:

C · Skey = (m · BDI(IN×N) + rN×1 ·Pkey + EN×2) · Skey

= rN×1 ·Pkey · Skey + EN×2 · Skey = rN×1 · E + EN×2 · Skey

We set E = rN×1 · E + EN×2 · Skey and we have

‖E [i]‖∞ < nBerr +Berr + n ·Berr ·Bkey = Berr(1 + n(1 +Bkey))

Thus, the initial noise can be bounded by B0 = Berr(1 + n(1 +Bkey)).
Multiplicative noise. To determine the noise after an homomorphic multipli-
cation in SHIELD, we apply the decryption procedure after the multiplication
step. Recall that SHIELD.Mult(C1,C2) = BD(C1) ·C2

BD(C1) ·C2 · Skey = BD(C1)(m2 BDI(IN×N) · Skey + E2)

= m2 · BD(C1) · BDI(IN×N) · Skey + BD(C1) · E2
= m2 ·C1 · Skey + BD(C1) · E2
= m1 ·m2 · BDI(IN×N) · Skey +m2 · E1 + BD(C1) · E2

We set E× = m2 · E1 + BD(C1) · E2. To bound E×, which is a vector, one must
bound each elements. BD(C1) is always a N ×N -matrix of binary polynomials.
Thus, each row of BD(C1) · E2 is a product/accumulation of N = 2 log2 q binary
polynomials with polynomials bounded by ‖E2[i]‖∞. After one homomorphic
multiplication, the noise can be bounded by

‖E×[i]‖∞ < m2 ·B(1)
0 + (2n log2 q)B

(2)
0 < B0(1 + 2n log2 q) (1)



Then, by an immediate induction, the noise after L homomorphic multiplications
can be expressed as BL = B0(1+2n log2 q)

L. To be able to decrypt without error
after L homomorphic multiplications, the final noise must be lower than q/2. We
must have q/2 > B0(1 + 2n log2 q)

L.
Better noise for multiplication. Unlike in FV, noise in SHIELD grows slowly
if a ciphertext is multiplied by a fresh one. By carefully examining Equation 1,
one can deduce that the noise of each ciphertext is independent. Thus, the
multiplicative noise growth can be more finely managed. When a ciphertext
is multiplied by L other fresh ciphertexts, the noise growth can be expressed as
BL = B0 + L(2n log2 q)B0 = B0(1 + L(2n log 2q)).
With batching. Earlier, we extracted noise parameters when m = m̃ = 1.
However, if one wants to use batch operations, the message is a polynomial
with coefficients in {0, 1}. In that case, noise equation of the optimized circuit
becomes Bi+1 = n ·Bi + (2n log2 q)B0.
It is an arithmetico-geometric sequence of the form Bi+1 = a · Bi + b, where
a = n and b = 2n log2 qB0. So BL = aL(B0 − r) + r, with r = b

1−a .

4.1.4 F-NTRU Authors of F-NTRU also precisely analyzed the noise growth,
but the study was done for integer messages. In the following, we adapt their
equations to binary messages. In this section, BD, BDI and FLATTEN refer to
F-NTRU variants.
Initial noise. To determine the initial noise, we apply the decryption procedure
on a fresh ciphertext, focusing on the encryption of a 0:

BDI(C) · Skey = BDI(FLATTEN(BD(C′l×1))) · Skey

= BDI(BD(BDI(BD(C′l×1)))) · Skey = C′l×1 · Skey

Thus, the initial noise can be expressed as

‖(C′l×1 · Skey)[i]‖∞ ≤ ‖Pkey · S[i] · Skey‖∞ + ‖2 E[i] · Skey‖∞
= ‖2GF−1 · S[i] · F‖∞ + ‖2 E[i] · (2F ′ + 1)‖∞
= ‖2G · S[i]‖∞ + ‖2 E[i] · (2F ′ + 1)‖∞

Since ‖G‖∞ = ‖F ′‖∞ = Bkey, ‖S[i]‖∞ = ‖E[i]‖∞ = Berr, we have

B0 ≤ 2Berr(3nBkey + 1)

Multiplicative noise. In F-NTRU, a ciphertext is a l × l-matrix of degree-n
binary polynomials. As proposed in [8], in order to reduce the number of sub-
polynomials for the homomorphic multiplication, one can apply a word decom-
position instead of a bit decomposition in BD/BDI. Following the same notation
than FV, polynomials are split with segments of ω bits. However, the reduction
of the number of polynomials increases the size of coefficients and thus impact
the noise growth. The optimization relies on the following assertion:
PowerOfw,q(WordDecompw,q(A)·WordDecompw,q(B)) =WordDecompw,q(A) ·B



For c and c̃ two ciphertexts, c′ the resulting ciphertext after the homomorphic

multiplication, c
(k)
i the ith row of c after k homomorphic multiplications, and

c(i,j) the ith row of the jth element of WordDecompw,q(c), c
′
j can be expressed

as follows (see [8] for more details)

c
(i)
j =

lw,q−1∑
k=0

c(j,k) · c̃
(i−1)
k + c

(i−1)
j m̃+ c̃

(i−1)
j m+ 2jmm̃

We set ‖c(i)j ‖∞ = ‖yi‖∞ and ‖c(i)j,k‖∞ = ‖yT ‖∞ = ω. Then, the first row can be
written yi = lw,q · ỹi−1 · yT + yi−1m̃+ ỹi−1m+mm̃.

If we consider binary messages (m = m̃ ∈ {0, 1}), with an equivalent noise
for ỹi−1 and yi−1, the equation becomes

‖F · yi‖∞ ≤ lw,q‖F · yi−1 · yT ‖∞ + 2‖F · yi−1‖∞ + ‖F‖∞
= lw,q nω‖F · yi−1‖∞ + 2‖F · yi−1‖∞ + ‖F‖∞

(2)

Thus, the noise can be expressed as Bi+1 ≤ (n · lw,q · w + 2)Bi + 2Bkey + 1.
It is an arithmetico-geometric sequence of the form Bi+1 = a · Bi + b where
a = 2 + n · lw,q · w and b = 2 ·Bkey + 1.

So BL = aL(B0 − r) + r, with r = b
1−a = − 2Bkey+1

n·lw,q·w+1 .

Better noise for multiplication. Like in SHIELD, when a ciphertext is mul-
tiplied by a fresh one, the noise growth is lower. By considering Equation 2 with
‖ỹi−1‖∞ = B0, the new noise growth can be expressed as

Bi = lω,q · n ·B0 · ω +Bi−1 +B0 + 2Bkey + 1

BL ≤ L · (B0 · (1 + lw,q · n · ω) + 2Bkey + 1) +B0

4.2 Security

4.2.1 Attacks As expected in cryptography, all the schemes presented here
come with hardness results, provided by reductions to the Ring-LWE problem.
Yet, beyond these asymptotic reductions, we need concrete hardness results to
choose the scheme parameters according to a security level objective, e.g. 80
bits or 128 bits. Albrecht et al. [2] summarize the state-of-the-art of the attacks
against LWE. All of them apply against ring instances which are particular cases.
Another line of algebraic attacks exists also against Ring-LWE [17].

4.2.2 Ring-LWE A common approach to determine the security parameters
is to consider the advantage of the attacker at distinguishing Ring-LWE samples
from uniformly random samples, i.e. breaking decision-Ring-LWE.

For a Ring-LWE sample (a, u) = (a, as+ e), the attack consists in finding a
short vector v ∈ q ·Λ(a)×, where Λ(a)× is the dual lattice generated by a. With
such a vector, the inner product 〈v, u〉 gives 〈v, e〉, which is a small Gaussian. In
the case where (a, u) is uniformly random, the inner product is also uniformly



Table 1: Maximum log2 q for a given dimension n, where λ is the security level.
σerr = 2

√
n.

n 1024 2048 4096 8192

λ = 80 bits 54 bits 103 bits 201 bits 401 bits

λ = 128 bits 44 bits 81 bits 156 bits 307 bits

random, hence the distinction objective. For more information, the reader can
refer to [2, Section 5.3].
Thus, the extraction of v is a turning point of the attack. To our knowledge,
the best way to find such a short vector is to use the BKZ-2.0 algorithm. The
size of the smallest short vector one can recover is linked a parameter called
root Hermite factor γ. It captures the quality of the output of BKZ algorithm,
the smaller γ, the better the quality. Chen and Nguyen [7] experimented with
BKZ and provide time estimates to achieve root Hermite factors. So, following
the work in [13], we get a minimal γ from a security objective. Then we get an
upper bound on q

log2 q ≤ min
m>n

m2 log2 γ(m,λ) +m log2(σ/α)

m− n
(3)

Where σ is the width parameter of the error term, α =
√
− log ε/π = 3.7577

with ε = 2−64 the distinguishing advantage of the attacker.

4.2.3 Determining security parameters Real use-cases of homomorphic
cryptography define requirements for the multiplicative depth L and a security
level λ to achieve, then one needs to choose the corresponding security parame-
ters.
Getting γ. Depending on the security level, one must select the appropriate
root Hermite factor γ. Since γ also depends on the dimension m, we provide the
following modeling, based on a logarithmic approximation of γ(m) for different
security level. It follows from the study in [13].

– For λ = 80 bits, γ(m) = 0.0005649115 · log10(m) + 1.005907
– For λ = 128 bits, γ(m) = 0.0002924305 · log10(m) + 1.005042

Upper bound on q. Next, one set an arbitrary (tentative) n, the cyclotomic
polynomial degree, as low as possible. Then, with the help of equation 3, one
can determine an upper-bound of q.
Lower bound on q. The last step is to evaluate if such a modulus q is com-
patible with the required multiplicative depth L. This depends of the scheme,
unlike the upper bound. If it does not, i.e. the security requires a q smaller than
what is needed by the multiplicative depth, one must increment n and go back
to the previous step in order to attempt to solve again the two inequalities on q.

All the values we report in the tables have been determined following Al-
gorithm 1 and are no more optimistic than those from estimators in [2, Table
2].



Algorithm 1 Determine (n, σ and q) parameters from (L, λ) for a given scheme

1: function ChooseParam(scheme, L, λ)
2: q ← 0
3: n← 1
4: repeat
5: σ ← 2

√
n

6: Mq ← Max-modulus(n, λ)
7: mq ← Min-modulus(n,L, scheme)
8: if mq < Mq then
9: q ← mq

10: else
11: n← n+ 1
12: end if
13: until q 6= 0
14: return n, σ, q
15: end function

5 Practical parameters

In this section, we explore different settings: arbitrary circuit, optimized circuit,
NWC, batching, and report concrete parameters for scheme comparison.

5.1 Multiplicative depth for an arbitrary binary circuit

Table 2 provides parameters for FV, SHIELD and F-NTRU for 80 and 128 bits
of security. Parameters are extracted following the latest recommendations, that
is to say σerr = 2

√
n for each scheme and σkey = 2n

√
8nq · q1/3+e for F-NTRU

in order to maintain the security on the DSPR assumption [19].
First observation, F-NTRU seems less efficient. Even though the authors re-
ported n = 1024 and log2 q = 125 bits for L = 5 and λ = 80 bits [8]. Due to
equation 3, such a q is too high to maintain 80 bits of security for n = 1024,
log2 q should be less than 54 bits. This is why to find a q that enables both L = 5
and λ = 80 bits, the dimension should be much higher. Values for SHIELD seem
the bests in the tables. However the number of sub-polynomials for a given ci-
phertext explodes because it is proportional to log2 q for SHIELD. For example,
with L = 5, a ciphertext in SHIELD contains 2 × N = 4 × log2 q = 472 sub-
polynomials of degree-2327 with 118 bits coefficients, whereas FV only requires
two sub-polynomials of degree-3167 with 157 bits coefficients.
Consequently, in the case of an arbitrary binary circuit, FV is best.

5.2 Multiplicative depth for an optimized circuit

As stated in the previous section, SHIELD and F-NTRU are both inefficient
for arbitrary circuits. However, they have a really interesting feature: when a
ciphertext is multiplied by a fresh ciphertext, the noise growth is additive instead



Table 2: Parameters for FV, SHIELD and F-NTRU, where λ is the security level
and L the multiplicative depth. Arbitrary circuit.

(a) Selection of parameters for FV. Binary key, σerr = 2
√
n.

L

λ = 80 bits λ = 128 bits

ω = 32 bits ω = 64 bits ω = 32 bits ω = 64 bits

log2 q n log2 q n log2 q n log2 q n

1 54 1012 87 1721 54 1295 87 2184

5 157 3167 191 3884 161 4218 195 5151

10 298 6082 333 6800 307 8190 341 9110

15 448 9138 482 9827 460 12311 494 13225

20 602 12246 636 12931 619 16573 653 17477

(b) Selection of parameters for SHIELD.
Binary error, σkey = 2

√
n.

L
λ = 80 bits λ = 128 bits

log2 q n log2 q n

1 35 627 36 824

5 118 2327 121 3128

10 235 4792 240 6378

15 360 7343 367 9815

20 490 9989 500 13383

(c) Selection of parameters for F-NTRU.
σkey = 2n

√
8nq·q1/3+e (e = 2−64), σerr =

2
√
n, ω = 16 bits.

L
λ = 80 bits λ = 128 bits

log2 q n log2 q n

1 109 2161 111 2869

5 319 6510 323 8627

10 597 12147 605 16198

15 886 17930 898 24003

17 1004 20277 1017 27159

of multiplicative for binary messages. Table 3 provides parameters for SHIELD
and F-NTRU for the optimized circuit. FV is omitted here, because it presents
no particular optimization.
Results are very impressive, both schemes scale to large multiplicative depth
with nearly no impact on n and q. For SHIELD and for 80 bits of security, the
modulus only increases by 5 bits between a multiplicative depth of 1 and 20
when the degree of the associated cyclotomic polynomial remains under 1024.
As a reminder from Table 2, FV requires at least n = 12246 and log2 q = 602
bits for a multiplicative depth of 20. For the F-NTRU scheme, even with this
optimization, parameters seems to high for a practical use. Indeed, the degree-n
is just above 2048 for multiplicative depths from 1 to 20, implying a NTT NWC
of size 4096 with coefficients larger than 100 bits (yet below 128 bits).
SHIELD is best for an optimized circuit. Since F-NTRU is far from competitive,
we focus our study on FV and SHIELD in the next sections.



Table 3: Parameters for SHIELD and F-NTRU, where λ is the security level and
L the multiplicative depth. Optimized circuit. Binary message (No batching).

(a) Selection of parameters for SHIELD.
Binary error, σkey = 2

√
n.

L
λ = 80 bits λ = 128 bits

log2 q n log2 q n

1 35 627 36 824

5 38 693 39 899

10 39 715 40 923

15 40 736 41 947

20 40 736 41 947

(b) Selection of parameters for F-NTRU.
σkey = 2n

√
8nq · q1/3+e, σerr = 2

√
n.

L
λ = 80 bits λ = 128 bits

log2 q n log2 q n

1 109 2161 111 2869

5 113 2236 113 2974

10 115 2273 114 3026

15 116 2291 118 3052

20 116 2291 119 3077

5.3 The case of the Negative Wrapped Convolution

Attracted by its performance, a majority of polynomial multiplication implemen-
tation uses the NWC NTT. We provide in Table 4 the associated parameters
for FV. For SHIELD, parameters seem quite independent of the multiplicative
depth. Moreover, because the polynomial degree is oversized due to NWC, a
security of λ = 128 bits is always achieved. For the same use case as FV, the
polynomial degree is always 1024, with log2 q = 39 bits for a multiplicative depth
of 5, 40 bits for a multiplicative depth of 10, and 41 bits for a multiplicative depth
of 15. As a reminder, NWC uses the cyclotomic polynomial xn+ 1 and the NTT
computations are performed in the ring Z[x]/(xn + 1). Hence the polynomial re-
duction is directly integrated into NTT computations. This performance tweak
comes at the cost of disabling the packing of several messages into one cipher-
text, no batching possible. Parameters are selected to maximize the multiplica-
tive depth for a given n, which is necessarily a power of 2, because the NWC
NTT set the cyclotomic polynomial to xn + 1. When compared to the previous
case, this slightly increases the size of the modulus, for a given multiplicative
depth. For example with FV, for a multiplicative depth of 4, optimized param-
eters are n = 2617 and log2 q = 130. In a NWC NTT scenario, new parameters
are n = 4096 and log2 q = 135 bits. Thus, the ciphertexts are slightly larger
when compared to optimized ones, but the computation time is still better than
for standard multiplication which requires a 2n-NTT with zero padding.

5.4 The impact of batching

As stated in Section 3.4, the batching technique is very useful to reduce the
ciphertext expansion. Table 5 provides parameters for FV and SHIELD when
batching technique is used, in an optimized circuit as described in Section 5.2.
Unlike when the messages are binary, SHIELD parameters becomes sensitive to
the multiplicative depth.
As early as a depth of 3, the dimension goes over 1024 and implies an associated



Table 4: Parameters for FV for the NWC NTT, where λ is the security level and
L the multiplicative depth. Binary key, σerr = 2

√
n. Warning: no batching with

the NWC NTT.

n

λ = 80 bits λ = 128 bits

ω = 32 bits ω = 64 bits ω = 32 bits ω = 64 bits

log2 q L log2 q L log2 q L log2 q L

1024 54 1 × × × × × ×
2048 80 2 55 1 80 2 × ×
4096 186 6 161 5 135 4 141 3

8192 389 13 361 12 307 10 284 8

16384 793 26 764 25 589 19 591 18

NTT of size 2048. Moreover, the modulus q grows significantly with the depth,
on average 12 more bits per level. which leads to more and more sub-polynomials
for a given ciphertext. For a multiplicative depth of 10, SHIELD with batching
requires 292 sub-polynomials of degree 2949 with coefficients of 146 bits, while
without batching it only requires 78 sub-polynomials of degree 715 with coeffi-
cients of 39 bits.
As we see here, batching in FV has no significant impact on the parameters,
whereas it is the opposite for SHIELD.

5.5 Keys and ciphertexts sizes

Figure 6 provides the volume of data for FV and SHIELD in a scenario requiring
8 bits of information. For SHIELD, it is only the size of 8 ciphertexts. For FV,
the size of relinearization keys are also included because they are required during
the homomorphic multiplication. For small multiplicative depths, namely under
8, FV requires a lower amount of data than SHIELD. But for larger depths,
the improved noise management of SHIELD is highly beneficial. The main issue
for FV is the size of the relinearization key. For multiplicative depth of 15, it is
13.7 MB large, when SHIELD does not require such a key. It can be reduced a
bit by enlarging ω at an additional computation cost. However SHIELD is no
longer the lightest with batching. Even a packing of only 3 accounts for the same
as what we observe in FV with increase in the multiplicative depth.

6 Conclusion

This study has provided some new and helpful information concerning practical
issues of homomorphic encryption. Three different schemes have been studied:
FV, a 2nd generation scheme, and two 3rd generation schemes: SHIELD and F-
NTRU. As we showed, F-NTRU’s parameters are really worse than SHIELD’s
ones, and then we do not recommand it for practical use. Hence, we focused on
a more precise comparison of FV and SHIELD.
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Fig. 1: Data size for an homomorphic scenario with 8 encryptions.

FV has in major cases shorter ciphertexts than the others, thanks to the re-
linearization step. More precisely, an FV ciphertext is only composed of two
polynomials, but with higher degree and coefficient size. Also, FV is very sensi-
tive to the multiplicative depth and has no particular optimization for any binary
circuit. SHIELD is a 3rd generation scheme, which means that the relinearization
step is somehow included in the multiplication. The noise growth is much lower
than for FV, leading to ciphertexts composed of smaller sub-polynomials. Yet
there are many polynomials to handle, log2 q times more. This is not a major
issue for SHIELD, because if the computation is optimized to prefer multiplica-
tion with fresh ciphertexts, it can achieve very high multiplicative depth (up to
20) without impacting much the sub-polynomial size. For example, maintaining
it below 1024 for log2 q ≤ 41 bits. As SHIELD authors reported, numerous but
small polynomials multiplication can be very efficiently implemented in GPU
and counterbalance the size of ciphertexts.

Concerning the batching. Unlike FV, SHIELD is very sensitive to batching.
For a multiplicative depth of 4, SHIELD with batching requires n = 1342 and
log2 q = 70. This has critical impact compared to the no-batching version because
we now require to double the size of the NTT/NWC, and double the size of
the integer multiplication operands. And this phenomenon worsen when the
multiplicative depth grows.
To conclude, SHIELD is a good candidate when the multiplicative depth is



important, namely L ≥ 10 . But this only holds when the bandwidth is not
such a problem. However, if one wants to efficiently use the bandwidth, if the
multiplicative depth is not too important (L ≤ 9), then FV is probably a better
solution, and even more so when coupled with the batching technique.

Further work on implementations will provide even better insights on the
real performances and behaviours of these schemes.
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Table 5: Parameters of FV and SHIELD for 80 bits of security when batching
is enabled, where L is the multiplicative depth, batching the number of packed
operations,m the rank of the cyclotomic polynomial and hw the hamming weight
of the associated cyclotomic polynomial. Binary key, σerr = 2

√
n

(a) Values for FV. ω = 32 bits.

L batching hw n m

1
2 7 1080 2025

4 31 1200 1625

12 33 1296 2835

14 49 1176 1421

20 57 1200 2475

24 59 1440 2925

2
2 7 2058 2401

6 9 1764 3087

8 41 1600 2125

18 49 1944 2997

20 57 2000 4125

3
6 9 2268 3969

10 17 2200 3025

12 33 2160 4725

22 41 2420 2783

24 59 2592 5265

4
2 7 3000 5625

6 9 2916 5103

18 25 2916 4617

5
2 7 3240 6075

6 23 3528 4459

12 33 3600 7875

20 57 3600 7425

6
2 9 4116 7203

12 33 3888 8505

24 59 3744 7605

7
2 15 4860 8019

4 23 4896 7803

6 41 4860 7533

20 57 4400 9075

24 59 4320 8775

(b) Values for SHIELD.

L batching hw n m

1
2 7 648 1215

6 9 756 1323

12 33 720 1575

18 49 648 999

2
2 7 1000 1875

6 9 972 1701

10 17 1000 1375

18 25 972 1539

24 59 864 1755

3
2 17 1176 1715

4 31 1200 1625

12 33 1296 2835

14 49 1176 1421

20 57 1200 2475

4
2 31 1368 1805

8 41 1600 2125

24 59 1440 2925

5
2 7 1800 3375

6 9 1764 3087

6
2 7 2058 2401

6 17 1944 3159

18 49 1944 2997

7
6 9 2268 3969

10 17 2200 3025

12 33 2160 4725

16 73 2176 4335

18 169 2268 3429



Table 6: Parameters size for FV and SHIELD, where λ is the security level and
L the multiplicative depth. Binary key, σerr = 2

√
n.

(a) FV

L

λ = 80 bits

ω = 32 bits ω = 64 bits

C, Pkey γ C, Pkey γ

1 13.3 KB 26.7 KB 36.6 KB 73.1 KB

5 121.4 KB 607 KB 181.1 KB 543.3 KB

10 442.5 KB 4.3 MB 552.8 KB 3.2 MB

15 999.5 KB 13.7 MB 1.1 MB 9 MB

20 1.8 MB 33.4 MB 2.0 MB 19.6 MB

λ = 128 bits

ω = 32 bits ω = 64 bits

C, Pkey γ C, Pkey γ

17.1 KB 34.1 KB 46.4 KB 92.8 KB

165.8 KB 994.8 KB 245.2 KB 1 MB

613.9 KB 6 MB 758.4 KB 4.4 MB

1.4 MB 20.3 MB 1.6 MB 12.5 MB

2.4 MB 48.9 MB 2.7 MB 29.9 MB

(b) SHIELD. Optimized circuit.

L

λ = 80 bits

No batching Batching

C Pkey C Pkey

1 375 KB 5.4 KB 375 KB 5.4 KB

5 488.6 KB 6.4 KB 5.2 MB 32.3 KB

10 531 KB 6.8 KB 30 MB 105.1 KB

15 575 KB 7.2 KB 94.8 MB 226.8 KB

20 575 KB 7.2 KB 223 MB 402 KB

λ = 128 bits

No batching Batching

C Pkey C Pkey

521.4 KB 7.2 KB 521.4 KB 7.2 KB

667.7 KB 8.6 KB 7.4 MB 44.3 KB

721.1 KB 9 KB 43 MB 145.9 KB

777.3 KB 9.5 KB 136.6 MB 316.5 KB

777.3 KB 9.5 KB 320 MB 559.2 KB
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