
HAL Id: hal-01394362
https://hal.science/hal-01394362v1

Preprint submitted on 9 Nov 2016 (v1), last revised 14 Apr 2017 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Determination and exploration of practical parameters
for the latest Somewhat Homomorphic Encryption

(SHE) Schemes
Vincent Migliore, Guillaume Bonnoron

To cite this version:
Vincent Migliore, Guillaume Bonnoron. Determination and exploration of practical parameters for
the latest Somewhat Homomorphic Encryption (SHE) Schemes. 2016. �hal-01394362v1�

https://hal.science/hal-01394362v1
https://hal.archives-ouvertes.fr


Determination and exploration of practical
parameters for the latest Somewhat Homomorphic

Encryption (SHE) Schemes.
Vincent Migliore∗, Guillaume Bonnoron†

∗Université Bretagne Sud, vincent.migliore@univ-ubs.fr
†Chair of Naval Cyber Defense, guillaume.bonnoron@ecole-navale.fr

Abstract—Homomorphic encryption gets increasing attention
lately, and for good reasons. Lots of the burdens from the initial
proposals have been overcome and real applications become
feasible. In this work, we propose a survey of the current best
solutions together with a deep analysis of how to setup and size
these schemes, for real. Our overall aim is to provide easy-to-use
guidelines for implementation purposes.

I. INTRODUCTION

Homomorphic Encryption schemes are a new promising tool
in modern cryptography because they allow to carry out oper-
ations on enciphered data. Moreover, the mathematical objects
used to construct HE schemes are immune to quantum attacks.
The Fully Homomorphic Encryption (FHE) schemes, are so
called because they allow two types of elementary operations,
addition and multiplication, thus enabling to process virtually
any algorithm over encrypted data. Figure 1 illustrates a basic
client/server transaction in an homomorphic scenario.
Common cryptographic schemes sometimes present some
homomorphic properties, e.g. for multiplication [RSA78] or
addition [Pai99]. But it was only with the works from Al-
guilar [MGH10], Gentry [Gen09] that key ideas were in-
troduced to support both types of operations, with limited
restrictions. The first FHE schemes are based on hard lat-
tice problems, with high complexity and poor flexibility.
So to lighten the overhead of homomorphic capabilities,
a more promising solution is Somewhat Homomorphic En-
cryption (SHE). By (upper-)bounding the number of ho-
momorphic operations, SHE considerably reduces the size
of ciphertext operands and associated costs. As of today
many FHE/SHE schemes have been presented. They can
be split into three families depending on the assumption
serving as hardness ground: Approximate-Great Common
Divisor (AGCD) based schemes [vDGHV10][CLT14], LTV
based schemes [BLLN13], [DS16] and Ring-Learning With
Errors (R-LWE) based schemes [BGV12], [Bra12], [FV12],
[GSW13], [BV14], [KGV15].
For many years, FHE/SHE theoretical background has been
moving. Thus, it has been a real challenge to draw practical
parameters. In former publications, the authors usually present
values for specific use-cases and do not address wide range of
applications. Moreover these values should now be considered
with caution. To address this main issue that stands in the
way toward broader implementation and use of homomorphic
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Fig. 1: Presentation of a client/server transaction in an homo-
morphic encryption scenario.

encryption, we concisely and precisely present in this paper
how the extraction of SHE parameters work. We make specific
efforts to provide ready-to-use content to people from outside
the cryptography community, providing pre-computed tables
and simple formulas for a self-determination of parameters.
We decide to evaluate three most promising schemes: FV,
SHIELD and F-NTRU. The main contributions of the paper
are as follows:
• A concise presentation of the three schemes with an

harmonization of notation.
• A review of parameters extraction for each of them, with

several explorations to evaluate parameters for different
applications.

• Numerous tables of parameter under different constraints
in order to cover a wide range of use cases.

This paper is organized as follows. Section II provides notation
and the basic theoretical background required. Section III
presents FV, SHIELD and F-NTRU with harmonized notation
and provides a brief state of the art of current implementation
techniques. Section IV provides methodology for parameters
extraction. Section V proposes ready to use tables and compare
FV, SHIELD and F-NTRU according to different scenarios.
Section VI draws some conclusions.

II. PRELIMINARIES

A. Notation

In the following, operations are performed on a ring of
polynomials with integer coefficients. Let Zq[X] = Z[X]/qZ
be the set of polynomials with integer coefficients modulo q.
The mth cyclotomic polynomial of degree n is noted Φm(X).
We define Rq = Zq[X]/Φm(X) the ring of polynomials
with integer coefficients modulo q, reduced by the cyclotomic
polynomial Φm(X).



We adopt a particular notation for operands, described below.
A polynomial is represented with an uppercase and its coef-
ficients with a lowercase. For polynomial A, ai represents its
ith coefficient. A vector of polynomials is noted in bold. For
vector A, A[i] is the ith polynomial of the vector. For a set R
and a polynomial A, A← UR represents a uniformly sampled
polynomial in R, A← BR a uniformly sampled polynomial in
R with binary coefficients and A← DR,σ a polynomial of R
with coefficients sampled from a discrete Gaussian distribution
with width parameter σ, i.e. proportional to exp(−πx2/σ2).
For coefficient ai of polynomial A, ai,(j..k) corresponds to
the binary string extraction of ai between bits j and k. This
notation is extended to polynomial A where A(j..k) is the sub-
polynomial where the binary string extraction is applied to
each coefficient. Other standard operators are represented as
follows:
A modular reduction by an integer q is noted [·]q . For integer
a, bac, dae and bae operators are respectively the floor, ceil
and nearest rounding operations. These notations are extended
to polynomials by applying the operation on each coefficient.
For vectors A and B, 〈A,B〉 represents

∑
A[i]B[i].

To simplify notation, we use several variables:
• l = log2 q.
• N = 2 l.
• lω,q = dlog2 q/ log2 ωe, for some integer ω

In the following, all polynomial operations are considered
performed in Rq .

B. Ring-LWE

We recall here the definition of the Ring-Learning With
Errors problem [LPR10].
Definition Let R be a ring of degree n over Z (usually
R = Z[x]/(f(x)) for some cyclotomic polynomial f(x)). Let
q be a positive integer, χ a probability distribution on R of
width parameter σ and S a secret random element in Rq .
We denote by LS,χ the probability distribution on Rq × Rq
obtained by choosing A ∈ Rq uniformly at random, choosing
E ∈ R according to χ and considering it in Rq , and returning
(A,C) = (A, [A · S + E]q) ∈ Rq ×Rq .

Decision-Ring-LWE is the problem of deciding whether
given pairs (A,C) are sampled according to LS,χ or the
uniform distribution on Rq ×Rq .

Search-Ring-LWE is the problem to recovering s from pairs
(A,C) sampled from LS,χ.

The hardness of Ring-LWE problem depend on the three
variables n, σ and q. The reduction presented in the introduc-
tory paper stands when σ > 2

√
n.

III. PRESENTATION OF THE DIFFERENT SHE SCHEMES

A. FV

FV [FV12] is a transposition of the scale-invariant
Brakerski scheme [Bra12] to the Ring-LWE problem. The
public key is a pair (AS + E,A) of a Ring-LWE instance,
and the secret key the polynomial S. After an homomorphic
multiplication, the ciphertext is composed of 3 terms instead
of 2. To recover its initial form, an additional step called

relinearization is required, making use of a relinearization
key.
FV also introduces two additional parameters, namely t
and ω. Integer t ∈ (1, q) corresponds to the upper bound
of a message. When t = 2, messages are binary. ω is a
parameter associated with the relinearization, and determines
the size of the relinearization key and the complexity of the
relinearization operation. It is usual to select ω as a 32 bits or
64 bits integer for computational aspects.
All primitives of FV are as follows:

• FV.PowersOfw,q(A) :
A ∈ Rlw,q

q

for i = 0 to lw,q − 1

A[i] =
[
Awi

]
q

end for
return A

• FV.WordDecompw,q(A) :
A ∈ Rlw,q

q

for i = 0 to lw,q − 1

l0 = i× log2 ω
l1 = (i+ 1)× log2 ω − 1
A[i] = A(l0..l1)

end for
return A〈

FV.PowersOfw,q(A),FV.WordDecompw,q(B)
〉

=
[
A×B

]
q
.

• FV.GenKeys(λ) :
S ← DRq,σkey

, A← URq , E ← DRq,σerr

Pkey = (−AS + E,A)
Skey = S
return (Pkey, Skey)

• FV.GenRelinKeys(Pkey, Skey) :
A← U

lw,q

Rq
, E← D

lw,q

Rq,σerr

γ =

([
FV.PowersOfw,q

(
S2
key

)
−
(
ASkey + E

)]
q
,A

)
return γ

• FV.Encrypt(m,Pkey) :
U ← D

lw,q

Rq,σkey
, (E1, E2)← D2

Rq,σerr

C =

([
q
tm+ Pkey[0]U + E1

]
q
,
[
Pkey[1]U + E2

]
q

)
return C

• FV.Decrypt(C, Skey) :
M̃ =

[
C[0] + C[1]Skey

]
q

m =
⌊
t
qM̃ [0]

⌉
return m

• FV.Add(CA, CB) :

C+ =

([
CA[0] + CB [0]

]
q
,
[
CA[1] + CB [1]

]
q

)
return C+

• FV.Mult(CA, CB , γ) :
C̃0 =

[⌊
t
qCA[0]× CB [0]

⌉]
q

C̃1 =
[⌊

t
q (CA[0]× CB [1] + CA[1]× CB [0])

⌉]
q

C̃2 =
[⌊

t
qCA[1]× CB [1]

⌉]
q

C× = FV.Relin(C̃0, C̃1, C̃2, γ)
return C×



• FV.Relin(C̃0, C̃1, C̃2, γ) :
CR = (CR,0, CR,1)

CR,0 =

[
C̃0 +

〈
FV.WordDecompw,q (C̃2), γ[0]

〉]
q

CR,1 =

[
C̃1 +

〈
FV.WordDecompw,q (C̃2), γ[1]

〉]
q

return CR

B. SHIELD

SHIELD [KGV15] is a transposition of the GSW
scheme [GSW13] to the Ring-LWE problem. It is a so called
3rd generation FHE/SHE schemes, and does not require any
relinearization. As an important issue, such schemes require
much more polynomials per ciphertext, namely 2 × N =
4 · log2 q for SHIELD, instead of 2 for FV. To counterbal-
ance, the inner noise grows more slowly than 2nd generation
FHE/SHE schemes, reducing the size of the modulus q and the
cyclotomic polynomial degree n. By carefully examining the
construction of SHIELD, one can notice strong similarities
with FV, especially for the key generation, the encryption
and the decryption. Because no relinearization is required, the
homomorphic multiplication is much more natural than FV.
All primitives of SHIELD are as follows:
• SHIELD.BD(A) :

(A ∈ RN×2q )

B ∈ BN×NRq

for i = 0 to N − 1

for j = 0 to log2 q − 1

B[i][j] = A[i][0](j)
B[i][j + log2 q] = A[i][1](j)

end for
end for
return B

• SHIELD.BDI(A) :
(A ∈ BN×NRq

)
B ∈ RN×2q

for i = 0 to N − 1

B[i][0] =
log2 q−1∑
j=0

A[i][j]2j

B[i][1] =
N−1∑

j=log2 q

A[i][j]2j

end for
return B

• SHIELD.GenKeys(λ) :
T ← DRq,σkey

, A← URq
, E ← DRq,σerr

B = A · T + E
Pkey =

[
B A

]
Skey =

[
1

−T

]
return (Pkey,Skey)

• SHIELD.Encrypt(m,Pkey) :
rN×1 ← BN×1Rq

, EN×2 ← DN×2
Rq,σerr

C = CN×2 = m · BDI(IN×N) + rN×1 ·Pkey + EN×2
return C

• SHIELD.Decrypt(C,Skey) :
M = C · Skey = m · BDI(IN×N) · Skey + error

m =
⌊
2
q ·M[0][0]

⌉
return m

• SHIELD.Add(C1,C2) :
C+ = C1 + C2

return C+

• SHIELD.Mult(C1,C2) :
C× = BD(C1) ·C2

return C×

C. F-NTRU

F-NTRU [DS16] scheme is the latest homomorphic encryp-
tion scheme presented in this paper. To understand how F-
NTRU is constructed, it is important to understand the history
of LTV-based schemes. In 2012, a strong competitor to FV
scheme was introduced using one polynomial instead of two
for the ciphertext, at a limited cost on the size of the modulus
q. This scheme called YASHE’ is based on the LTV scheme
and introduces an additional constraint on the secret key, it
must be an invertible polynomial. An additional assumption is
required, the Decision Small Polynomial Ratio (DSPR), and
has been shown to be insecure with the parameters previously
selected. However, with immune parameters, the noise growth
is too important to allow homomorphic operations. Then F-
NTRU was introduced, using latest noise management tech-
niques proposed in GSW to reduce the noise growth, and
thus enabling homomorphic operations. This new noise man-
agement requires an additional operation called FLATTEN,
requiring an array of polynomials instead of a single one like
YASHE’.
All primitives of F-NTRU are as follows:

• F-NTRU.BDI(A) :
(A ∈ Bl×lRq

)
B ∈ Rl×1q

for i = 0 to l − 1

B[i]=
l−1∑
j=0

A[i][j]2j

end for
return B

• F-NTRU.BD(A) :
(A ∈ Rl×1q )

B ∈ Bl×lRq

for i = 0 to l − 1

for j = 0 to l − 1

B[i][j] = A[i](j)
end for

end for
return B

• F-NTRU.FLATTEN(A) : (A ∈ Bl×lRq
)

B ∈ Bl×lRq

B = F-NTRU.BD( F-NTRU.BDI(A))
return A

• F-NTRU.GenKeys(λ) :
G← DRq,σkey

, F ′ ← DRq,σkey

B = A · T + E
Skey = F = 2F ′ + 1
Pkey = 2GF−1

return (Pkey, Skey)



• F-NTRU.Encrypt(m,Pkey) :
S← Dl×1

Rq,σerr
,E← Dl×1

Rq,σerr

for i = 0 to l − 1

C′l×1[i] = Pkey · S[i] + 2 E[i] + 0

end for
C = F-NTRU.FLATTEN(m · Il×l + BD(C′l×1))

• F-NTRU.Decrypt(C, Skey) :
c0 = BDI(C(0,l−1), . . . C(0,0))
m = bc0Skeyemod2
return m

• F-NTRU.Add(C1,C2) :
C+ = F-NTRU.FLATTEN(C1 + C2)
return C+

• F-NTRU.Mult(C1,C2) :
C× = F-NTRU.FLATTEN(C1 ·C2)
return C×

D. Batching

For each scheme above, the cleartext is a polynomial in
Rq . For convenience, messages are commonly chosen to be
integers, in order to perform additions and multiplications
on integers instead of polynomials. However, this integer
representation turns out to be limited when considering inter-
esting homomorphic operations. Indeed, constructing a simple
conditional or test operator is impossible without a binary
representation. In which case a ciphertext is an encryption of
one bit of cleartext.
This latter representation brings two important issues. First,
while the integer addition or multiplication requires one ho-
momorphic operation in the case of integer representation of
messages, the binary representation requires to reconstruct the
binary circuit of these operators, which is clearly not efficient.
Second, the size of the ciphertexts is strongly impacted.
To balance the ciphertext expansion issue, the batching tech-
nique is a good solution. Introduced in [SV14], the batching
allows to ”pack” several messages into one ciphertext. To do
so, the associated cyclotomic polynomial must be reducible
modulo 2, and have only simple root factors. Then, a polyno-
mial CRT is applied to pack the messages, with one message
per factor.

E. Current implementation techniques and their impacts

Since the chosen polynomial multiplication algorithm
impacts the parameters, we briefly introduce the Number
Theoretic Transform (NTT) algorithm and its NWC variant.
To be efficient, NTT must be generated by a polynomial
with irreducible factors of very small degree. That is
why xn − 1 and xn + 1 are often chosen as they can be
completely factorized with degree-1 factors. When performing
a polynomial multiplication using the NTT algorithm, the
output polynomial is reduced by the polynomial which
generates the NTT, so it implies to double the size of the
NTT w.r.t. the input polynomials. Also, xn+1 is a cyclotomic
polynomial, selecting this polynomial to generate the NTT
provides a solution where the polynomial reduction is directly

integrated into the computation. This special NTT is called
Negative Wrapped Convolution (NWC) and requires a NTT
of size n instead of 2n in the standard case.
However, this cyclotomic has an important issue. When
factoring xn + 1 modulo 2, the resulting polynomial is
(x + 1)n, which has a unique factor, namely (x + 1). This
is incompatible with the batching technique presented in
section III-D. Thus, the NWC is optimized for performance
but is incompatible with bathing techniques.

IV. PARAMETERS EXTRACTION

A. Methodology
As described in section III-D, SHE proposes two types of

evaluations : an operation on integer messages and binary mes-
sages. The following section focuses on the binary approach
with also an exploration of the impact of the NWC NTT and
the batching technique.

B. Noise management
1) Notation: We briefly introduce additional notations for

the noise extraction. For polynomials A and B, we define
‖A‖∞ = max

0≤i<n
| ai |. When A ← DRq,σkey

and B ←
DRq,σerr

, we note ‖A‖∞ = Bkey and ‖B‖∞ = Berr. B0

refers to the upper bound of the noise for a fresh ciphertext,
BL denotes the noise bound after a multiplicative depth of L.
We also introduce the expansion factor δ, which bounds the
product of two polynomials. For two polynomials A and B,
the expansion can be expressed as:

δ = sup{‖A ·B‖∞/‖A‖∞‖B‖∞} = n

2) FV: The noise bound has been thoroughly studied
in [LN14], thus we only recall some key information below.

a) Initial noise: To determine the initial noise, we apply
the decryption procedure on a fresh ciphertext. To simplify the
operations, we consider an encryption of a 0.

C[0] + C[1] · Skey = (AS + E)U + E1 + (AU + E2)Skey

= EU + E1 + E2S

Thus, the initial noise can be expressed as:

B0 = Berr(1 + 2nBkey) (1)

b) Multiplicative noise: Following the approach
in [LN14], to ensure concreteness of FV, one must satisfy:

CL1 B0 + LCL−11 C2 < (∆− rt(q))/2 (2)

where :
C1 = δt(4 + δBkey)
C2 = δ2Bkey(Bkey + t2) + δωlω,qBerr
∆ = bq/tc
rt(q) = q −∆t

For binary messages it yields:
C1 = n(4 + nBkey)
C2 = n2Bkey(Bkey + 1) + nωlω,qBerr
∆ = bq/2c
rt(q) = q − 2 ·∆



3) SHIELD: The authors analyzed in detail the noise
growth [KGV15], but they only provide an asymptotic eval-
uation. Below we develop the calculation in order to extract
the constant terms. In this section, BD refers to SHIELD.BD
and BDI to SHIELD.BDI.

a) Initial Noise: To determine the initial noise, we apply
the decryption procedure on a fresh ciphertext. To simplify the
operations, we consider an encryption of a 0.

C · Skey = (m · BDI(IN×N) + rN×1 ·Pkey + EN×2) · Skey

= rN×1 ·Pkey · Skey + EN×2 · Skey

= rN×1 · E + EN×2 · Skey

We set
E = rN×1 · E + EN×2 · Skey

‖E [i]‖∞ < nBerr+Berr+n·Berr·Bkey = Berr(1+n(1+Bkey))

Thus, the initial noise can be bounded by:

B0 = Berr(1 + n(1 +Bkey)) (3)

b) Multiplicative Noise: To determine the noise after
an homomorphic multiplication in SHIELD, we apply
the decryption procedure after the multiplication step.
MULT(C,D) = BD(C) ·D

BD(C1) ·C2 · Skey = BD(C1)(m2 BDI(IN×N) · Skey + E2)

= m2 · BD(C1) · BDI(IN×N) · Skey

+ BD(C1) · E2
= m2 ·C1 · Skey + BD(C1) · E2
= m1 ·m2 · BDI(IN×N) · Skey

+m2 · E1 + BD(C1) · E2

We set
E× = m2 · E1 + BD(C1) · E2 (4)

To bound E×, which is a vector, one must bound each
elements. BD(C1) is always a N × N -matrix of binary
polynomials. Thus, each row of BD(C1) · E2 is a prod-
uct/accumulation of N = 2 log2 q binary polynomials with
polynomials bounded by ‖E2[i]‖∞. After one homomorphic
multiplication, the noise can be bounded by :

‖E×[i]‖∞ < m2 ·B(1)
0 + (2n log2 q)B

(2)
0 < B0(1 + 2n log2 q)

(5)
Then, by an immediate induction, the noise after L
homomorphic multiplications can be expressed as:

BL = B0(1 + 2n log2 q)
L (6)

To be able to decrypt without error after L homomorphic
multiplications, the final noise must be lower than q/2:

q/2 > B0(1 + 2n log2 q)
L (7)

c) Better noise for multiplication: Unlike FV, noise in
SHIELD grows slowly if a ciphertext is multiplied by a fresh
one. By carefully examining equation 5, one can deduce
that the noise of each ciphertext is independent. Thus, the
multiplicative noise growth can be more finely managed. When
a ciphertext is multiplied by L other fresh ciphertexts, the noise
growth can be expressed as :

BL = B0 + L(2n log2 q)B0 = B0(1 + L(2n log 2q)) (8)

d) With batching: Earlier, we extracted noise parameters
when m = m̃ = 1. However, if one wants to use batch
operations, the message is a polynomial with coefficients in
{0, 1}. In that case, noise equation of the optimized circuit
can be expressed as:

Bi+1 = n ·Bi + (2n log2 q)B0 (9)

It is an arithmetico-geometric sequence:
• Bi+1 = a ·Bi + b
• a = n
• b = 2n log2 qB0

• r = b
1−a

• BL = aL(B0 − r) + r

4) F-NTRU: Authors of F-NTRU also precisely analyzed
the noise growth, but the study was done for integer mes-
sages. In the following, we adapt their equations to binary
messages. In this section, BD refers to F-NTRU.BD, BDI to
F-NTRU.BDI and FLATTEN to F-NTRU.FLATTEN.

a) Initial Noise: To determine the initial noise, we apply
the decryption procedure on a fresh ciphertext. To simplify the
operations, we consider an encryption of a 0.

BDI(C) · Skey = BDI(FLATTEN(BD(C′l×1))) · Skey

= BDI(BD(BDI(BD(C′l×1)))) · Skey

= C′l×1 · Skey

Thus, the initial noise can be expressed as:

‖(C′l×1 · Skey)[i]‖∞ ≤ ‖Pkey · S[i] · Skey‖∞
+ ‖2E[i] · Skey‖∞
= ‖2GF−1 · S[i] · F‖∞
+ ‖2E[i] · (2F ′ + 1)‖∞
= ‖2G · S[i]‖∞ + ‖2E[i] · (2F ′ + 1)‖∞

Since ‖G‖∞ = ‖F ′‖∞ = Bkey , ‖S[i]‖∞ = ‖E[i]‖∞ =
Berr:

B0 ≤ 2Berr(3nBkey + 1) (10)

b) Multiplicative noise: In F-NTRU, a ciphertext is
a l × l-matrix of degree-n binary polynomials. As pro-
posed in [DS16], in order to reduce the number of sub-
polynomials for the homomorphic multiplication, one can
apply a word decomposition instead of a bit decomposition in
F-NTRU.BD/F-NTRU.BDI. Following the same notation than
FV, polynomials are split with segments of ω bits. However,
The reduction of the number of polynomials increases the



size of coefficients and thus impact the noise growth. The
optimization relies on the following assertion:

PowerOfw,q(WordDecompw,q(A) ·WordDecompw,q(B))

= WordDecompw,q(A) ·B

For c and c̃ two ciphertexts, c′ the resulting ciphertext after
the homomorphic multiplication, c(k)i the ith row of c after
k homomorphic multiplications, and c(i,j) the ith row of the
jth element of WordDecompw,q(c), c′j can be expressed as
follows (see [DS16] for more explanations):

c
(i)
j =

lw,q−1∑
k=0

c(j,k) · c̃
(i−1)
k +c

(i−1)
j m̃+ c̃

(i−1)
j m+2jmm̃ (11)

We set:
• ‖c(i)j ‖∞ = ‖yi‖∞
• ‖c(i)j,k‖∞ = ‖yT ‖∞ = ω

Then, the first row can be written:

yi = lw,q · ỹi−1 · yT + yi−1m̃+ ỹi−1m+mm̃ (12)

If we consider binary messages (m = m̃ ∈ {0, 1}), with
an equivalent noise for ỹi−1 and yi−1, the equation can be
expressed as:

‖F · yi‖∞ ≤ lw,q‖F · yi−1 · yT ‖∞ + 2‖F · yi−1‖∞ + ‖F‖∞
= lw,q nω‖F · yi−1‖∞ + 2‖F · yi−1‖∞ + ‖F‖∞

Thus, the noise can be expressed as:

Bi+1 ≤ (n · lw,q · w + 2)Bi + 2Bkey + 1 (13)

It is an arithmetico-geometric sequence:
• Bi+1 = a ·Bi + b
• a = 2 + n · lw,q · w
• b = 2 ·Bkey + 1

• r = b
1−a = − 2Bkey+1

n·lw,q·w+1

• BL = aL(B0 − r) + r

c) Better noise for multiplication: Like SHIELD, when
a ciphertext is multiplied by a fresh one, the noise growth is
lower. By considering equation 12 with ‖ỹi−1‖∞ = B0, the
new noise growth can be expressed as:

Bi = lω,q · n ·B0 · ω +Bi−1 +B0 + 2Bkey + 1

BL ≤ L · (B0 · (1 + lw,q · n · ω) + 2Bkey + 1) +B0 (14)

C. Security

1) Attacks: As expected in cryptography, all the schemes
presented here come with hardness results, provided by reduc-
tions to the Ring-LWE problem. Yet, beyond these asymptotic
reductions, we need concrete hardness results to choose the
scheme parameters according to a security level objective, e.g.
80 bits or 128 bits. Albrecht et al. [APS15] summarize the
state-of-the-art of the attacks against LWE. All of them apply
against ring instances which are particular cases. Another line
of algebraic attacks exists also against Ring-LWE [Pei16].

TABLE I: Maximum log2 q for a given dimension n, where λ
is the security level. σerr = 2

√
n.

n 1024 2048 4096 8192
λ = 80 bits 54 bits 103 bits 201 bits 401 bits
λ = 128 bits 44 bits 81 bits 156 bits 307 bits

2) Ring-LWE: A common approach to determine the se-
curity parameters is to consider the advantage of the attacker
at distinguishing Ring-LWE sample from uniformly random
samples, i.e. breaking decision-Ring-LWE.

For a Ring-LWE sample (a, u) = (a, as + e), the attack
consists in finding a short vector v ∈ q ·Λ(a)×, where Λ(a)×

is the dual lattice generated by a. With such a vector, the inner
product 〈v, u〉 gives 〈v, e〉, which is a small Gaussian. In the
case where (a, u) is uniformly random, the inner product is
also uniformly random, hence the distinction objective. For
more information, the reader can refer to [APS15, Section
5.3].
Thus, the extraction of v is a turning point of the attack. To our
knowledge, the best way to find such a short vector is to use the
BKZ-2.0 algorithm. The size of the smallest short vector one
can recover is linked a parameter called root Hermite factor
γ. It captures the quality of the output of BKZ algorithm, the
smaller γ, the better the quality. Chen and Nguyen [CN13]
experimented with BKZ and provide time estimates to achieve
root Hermite factors. So, following the work in [LN14], we
get a minimal γ from a security objective. Then we get an
upper bound on q:

log2 q ≤ min
m>n

m2 log2 γ(m,λ) +m log2(σ/α)

m− n
(15)

Where σ is the width parameter of the error term, α =√
− log ε/π = 3.7577 and ε = 2−64 the distinguishing

advantage of the attacker.
3) Determining security parameters: Real use-cases of

FHE/SHE define requirements for the multiplicative depth L
and a security level λ to achieve, then one needs to choose
the corresponding security parameters.

a) Getting γ: Depending on the security level, one
must select the appropriate root Hermite factor γ. Since γ
also depends on the dimension m, we provide the following
modeling, based on a logarithmic approximation of γ(m) for
different security level. It follows from the study in [LN14].

γ(m) = a · log10(m) + b
• For λ = 80 bits : a = 0.0005649115, b = 1.005907
• For λ = 128 bits : a = 0.0002924305, b = 1.005042

b) Upper bound on q: Next, one set an arbitrary (tenta-
tive) n, the cyclotomic polynomial degree, as low as possible.
Then, with the help of equation 15, one can determine an
upper-bound of q.

c) Lower bound on q: The last step is to evaluate if such
a modulus q is compatible with the required multiplicative
depth L. This depends of the scheme, unlike the upper bound.
If it does not, i.e. the security requires a q smaller than what



is needed by the multiplicative depth, one must increment n
and go back to the previous step in order to attempt to solve
again the two inequalities on q.

Algorithm 1 Determine (n, σ and q) parameters from (L, λ)
for a given scheme

1: function CHOOSEPARAM(scheme, L, λ)
2: q ← 0
3: n← 1
4: repeat
5: σ ← 2

√
n

6: Mq ← MAX-MODULUS(n, λ)
7: mq ← MIN-MODULUS(n,L, scheme)
8: if mq < Mq then
9: q ← mq

10: else
11: n← n+ 1
12: end if
13: until q 6= 0
14: return n, σ, q
15: end function

All the values that we report in the tables have been
determined with Algorithm 1 and are no more optimistic than
those from estimators in [APS15, Table 2].

V. PRACTICAL PARAMETERS

In this section, we explore different settings: arbitrary cir-
cuit, optimized circuit, NWC, batching, and report concrete
parameters for each scheme allowing for fair comparison.

A. Multiplicative depth for an arbitrary binary circuit

Table II provides parameters for FV, SHIELD and F-NTRU
for 80 and 128 bits of security. Parameters are extracted fol-
lowing the latest recommendations, that is to say σerr = 2

√
n

for each scheme and σkey = 2n
√

8nq · q1/3+e for F-NTRU
in order to maintain the security on the DSPR assumption
[SS11].
First observation, F-NTRU seems less efficient. Even though
the authors reported n = 1024 and log2 q = 125 bits for L =
5 and λ = 80 bits [DS16]. Due to equation 15, such a q is too
high to maintain 80 bits of security for n=1024, log2 q should
be less than 54 bits. This is why to find a q that enables both
L = 5 and λ = 80 bits, the dimension should be much higher.
Values for SHIELD seem the bests in the tables. However the
number of sub-polynomials for a given ciphertext explodes
because it is proportional to log2 q for SHIELD. For example,
with L = 5, a ciphertext in SHIELD contains 2 × N =
4×log2 q = 472 sub-polynomials of degree-2327 with 118 bits
coefficients, whereas FV only requires two sub-polynomials of
degree-3167 with 157 bits coefficients.
Consequently, in the case of an arbitrary binary circuit, FV
outperforms the other schemes.

TABLE II: Parameters for FV, SHIELD and F-NTRU, where
λ is the security level and L the multiplicative depth. Arbitrary
circuit.

(a) Selection of parameters for FV. Binary key, σerr = 2
√
n.

L
λ = 80 bits λ = 128 bits

ω = 32 bits ω = 64 bits ω = 32 bits ω = 64 bits
log2 q n log2 q n log2 q n log2 q n

1 54 1012 87 1721 54 1295 87 2184
5 157 3167 191 3884 161 4218 195 5151
10 298 6082 333 6800 307 8190 341 9110
15 448 9138 482 9827 460 12311 494 13225
20 602 12246 636 12931 619 16573 653 17477

(b) Selection of parameters for SHIELD. Binary error, σkey = 2
√
n.

L λ = 80 bits λ = 128 bits
log2 q n log2 q n

1 35 627 36 824
5 118 2327 121 3128
10 235 4792 240 6378
15 360 7343 367 9815
20 490 9989 500 13383

(c) Selection of parameters for F-NTRU. σkey = 2n
√
8nq · q1/3+e

(e = 2−64), σerr = 2
√
n, ω = 16 bits.

L λ = 80 bits λ = 128 bits
log2 q n log2 q n

1 109 2161 111 2869
5 319 6510 323 8627
10 597 12147 605 16198
15 886 17930 898 24003
17 1004 20277 1017 27159

B. Multiplicative depth for an optimized circuit

As stated in the previous section, SHIELD and F-NTRU
are both inefficient for arbitrary circuits. However, they have
a really interesting feature: when a ciphertext is multiplied
by a fresh ciphertext, the noise growth is additive instead of
multiplicative for binary messages. Table III provides param-
eters for SHIELD and F-NTRU for the optimized circuit. FV
is omitted here, because it presents no particular optimization.
Results are very impressive, both schemes scale to large multi-
plicative depth with nearly no impact on n and q. For SHIELD
and for 80 bits of security, the modulus only increases by 5 bits
between a multiplicative depth of 1 and 20 when the degree
of the associated cyclotomic polynomial remains under 1024.
As a reminder from Table II, FV requires at least n = 12246
and log2 q = 602 bits for a multiplicative depth of 20.
For the F-NTRU scheme, even with this optimization, param-
eters seems to high for a practical use. Indeed, the degree-n
is just above 2048 for multiplicative depths from 1 to 20,
implying a NTT NWC of size 4096 with coefficients larger
than 100 bits (yet below 128 bits).
SHIELD is best for an optimized circuit. Therefore we focus



TABLE III: Parameters for SHIELD and F-NTRU, where λ
is the security level and L the multiplicative depth when
the circuit is optimized as described in section V-B. Binary
message (No batching).

(a) Selection of parameters for SHIELD. Binary error, σkey = 2
√
n.

L λ = 80 bits λ = 128 bits
log2 q n log2 q n

1 35 627 36 824
5 38 693 39 899
10 39 715 40 923
15 40 736 41 947
20 40 742 41 952

(b) Selection of parameters for F-NTRU. σkey = 2n
√
8nq · q1/3+e

(e = 2−64), σerr = 2
√
n.

L λ = 80 bits λ = 128 bits
log2 q n log2 q n

1 109 2161 111 2869
5 113 2236 113 2974
10 115 2273 114 3026
15 116 2291 118 3052
20 116 2291 119 3077

our study on FV and SHIELD in the next sections.

C. The case of the Negative Wrapped Convolution

Attracted by its performance, a majority of polynomial mul-
tiplication implementation uses the NWC NTT. We provide
in Table IV specific parameters for FV and SHIELD in this
setting. As a reminder, NWC uses the cyclotomic polynomial
xn + 1 and the NTT computations are performed in the ring
Z[x]/(xn + 1). Hence the polynomial reduction is directly
integrated into NTT computations. This performance tweak
comes at the cost of disabling the packing of several messages
into one ciphertext, no batching possible.
Parameters are selected to maximize the multiplicative depth
for a given n, which is necessarily a power of 2, because the
NWC NTT set the cyclotomic polynomial to xn + 1. When
compared to the previous case, this slightly increases the size
of the modulus, for a given multiplicative depth. For example
with FV, for a multiplicative depth of 4, optimized parameters
are n = 2617 and log2 q = 130. In a NWC NTT scenario,
new parameters are n = 4096 and log2 q = 135 bits. Thus, the
ciphertexts are slightly larger when compared to optimized
ones, but the computation time is still better than for standard
multiplication which requires a 2n-NTT with zero padding.
Also, as clearly visible on the table for SHIELD, the constraint
on n tighten the choice in parameters and the usual parameter
selection procedure yields the same value for both 80 and 128
bits of security for SHIELD.

D. The impact of batching

As stated in section III-D, the batching technique is very
useful to reduce the ciphertext expansion. Tables V and VI
provide parameters for respectively FV and SHIELD when

TABLE IV: Parameters for FV and SHIELD for the NWC
NTT, where λ is the security level and L the multiplicative
depth. Binary key, σerr = 2

√
n. Warning : no batching with

the NWC NTT.

(a) Parameters for FV.

n

λ = 80 bits λ = 128 bits
ω = 32 bits ω = 64 bits ω = 32 bits ω = 64 bits
log2 q L log2 q L log2 q L log2 q L

1024 54 1 × × × × × ×
2048 80 2 55 1 80 2 × ×
4096 186 6 161 5 135 4 141 3
8192 389 13 361 12 307 10 284 8
16384 793 26 764 25 589 19 591 18

(b) Parameters for SHIELD.

n λ = 80 bits λ = 128 bits
log2 q L log2 q L

37 1 37 1
39 5 39 5

1024 40 10 40 10
41 15 41 15
41 20 41 20

batching technique is used, in an optimized circuit as described
in section V-B. Unlike when the messages are binary, SHIELD
parameters becomes sensitive to the multiplicative depth.
As early as a depth of 3, the dimension goes over 1024
and implies to double the size of the associated NTT to
2048. Moreover, the modulus q grows significantly with the
depth, on average 12 more bits per level. which lead to
more and more sub-polynomials for a given ciphertext. For a
multiplicative depth of 10, SHIELD with batching requires 292
sub-polynomials of degree-2949 with coefficients of 146 bits,
while without batching it only requires 78 sub-polynomials of
degree 715 with coefficients of 39 bits.
As we see here, batching in FV has no significant impact on
the parameters, whereas it is the opposite for SHIELD.

E. Keys and ciphertexts sizes

Table VII provides sizes for keys and ciphertexts for FV
and SHIELD in different scenarios. For FV, the relinearization
key size is also provided because it is part of the required key
material
We see that the size dependence in the security level is similar
for both schemes, slightly worse for SHIELD.
For small multiplicative depths, namely under 10, FV and
SHIELD have comparable ciphertexts size. But for larger
depths, the better noise management in SHIELD is very benefi-
cial when compared to FV. The size of the FV relinearization
key also becomes very large with depth. For multiplicative
depth of 15, it is 13.7 MB large, when SHIELD does not
require such a key. It can be reduced a bit by enlarging ω
at an additional computation cost.
However SHIELD is no longer the lightest in batching cases.



TABLE V: Parameters of FV for 80 bits of security when
batching is enabled, where L is the multiplicative depth,
batching the number of packed operations, m the rank of the
cyclotomic polynomial and hw the hamming weight of the
associated cyclotomic polynomial. Binary key, σerr = 2

√
n.

ω = 32 bits.

L batching hw n m

1

2 7 1080 2025
4 31 1200 1625

12 33 1296 2835
14 49 1176 1421
20 57 1200 2475
24 59 1440 2925

2

2 7 2058 2401
6 9 1764 3087
8 41 1600 2125

18 49 1944 2997
20 57 2000 4125

3

6 9 2268 3969
10 17 2200 3025
12 33 2160 4725
22 41 2420 2783
24 59 2592 5265

4
2 7 3000 5625
6 9 2916 5103

18 25 2916 4617

5

2 7 3240 6075
6 23 3528 4459

12 33 3600 7875
20 57 3600 7425

6
2 9 4116 7203

12 33 3888 8505
24 59 3744 7605

7

2 15 4860 8019
4 23 4896 7803
6 41 4860 7533

20 57 4400 9075
24 59 4320 8775

Even a packing of only 3 accounts for the same as what we
observe in FV with increase in the multiplicative depth.

VI. CONCLUSION

This study has provided practical information to use homo-
morphic encryption in practice. Three different schemes have
been studied: a second generation scheme called FV, and two
third generation schemes called SHIELD and F-NTRU.
FV has in major cases smaller dimensions than third gener-
ation schemes, thanks to the relinearization step. It is only
composed of two polynomials, yet with higher degree and
coefficient size than third generation schemes. Moreover, it is
very sensitive to the multiplicative depth and has no particular
optimization for a given binary circuit.
SHIELD is a third generation scheme, which means that the
relinearization step is somehow included in the homomorphic

TABLE VI: Parameters of SHIELD for 80 bits of security
when batching is enabled, where L is the multiplicative depth,
batching the number of packed operations, m the rank of the
cyclotomic polynomial and hw the hamming weight of the
associated cyclotomic polynomial. Binary key, σerr = 2

√
n.

L batching hw n m

1

2 7 648 1215
6 9 756 1323

12 33 720 1575
18 49 648 999

2

2 7 1000 1875
6 9 972 1701

10 17 1000 1375
18 25 972 1539
24 59 864 1755

3

2 17 1176 1715
4 31 1200 1625

12 33 1296 2835
14 49 1176 1421
20 57 1200 2475

4
2 31 1368 1805
8 41 1600 2125

24 59 1440 2925

5 2 7 1800 3375
6 9 1764 3087

6
2 7 2058 2401
6 17 1944 3159

18 49 1944 2997

7

6 9 2268 3969
10 17 2200 3025
12 33 2160 4725
16 73 2176 4335
18 169 2268 3429

multiplication. The noise growth is much better than second
generation homomorphic encryption schemes, leading to ci-
phertexts composed of smaller sub-polynomials. Yet there are
much more polynomials to handle, log2 q times more. This
is not major issue for SHIELD, because if the computation
is optimized to prefer multiplication with fresh ciphertexts, it
can achieve very high multiplicative depth (up to 20) without
impacting much the sub-polynomial size. For example, main-
taining it below 1024 for log2 q ≤ 41 bits. As SHIELD authors
reported, numerous but small polynomials multiplication can
be very efficiently implemented in GPU and counterbalance
the size of ciphertexts.
On the batching side, unlike FV, SHIELD is very sensitive to
its use. For a multiplicative depth of 4, SHIELD with batching
requires n = 1342 and log2 q = 70. This has critical impact
compared to the no-batching version because now one requires
to double the size of the NTT/NWC, and double the size of the
integer multiplication operands. And this phenomenon worsen
when the multiplicative depth grows.
To conclude, SHIELD is a good candidate when the mul-



TABLE VII: Parameters size for FV and SHIELD, where λ
is the security level and L the multiplicative depth. σkey =
1/9.2, σerr = 2

√
n. Optimized circuit for SHIELD.

(a) FV

L
λ = 80 bits

ω = 32 bits ω = 64 bits
ciphertext
Public key Relin. key ciphertext

Public key Relin. key

1 13.3 KB 26.7 KB 36.6 KB 73.1 KB
5 121.4 KB 607 KB 181.1 KB 543.3 KB
10 442.5 KB 4.3 MB 552.8 KB 3.2 MB
15 999.5 KB 13.7 MB 1.1 MB 9 MB
20 1.8 MB 33.4 MB 2.0 MB 19.6 MB

L
λ = 128 bits

ω = 32 bits ω = 64 bits
ciphertext
Public key Relin. key ciphertext

Public key Relin. key

1 17.1 KB 34.1 KB 46.4 KB 92.8 KB
5 165.8 KB 994.8 KB 245.2 KB 1 MB
10 613.9 KB 6 MB 758.4 KB 4.4 MB
15 1.4 MB 20.3 MB 1.6 MB 12.5 MB
20 2.4 MB 48.9 MB 2.7 MB 29.9 MB

(b) SHIELD

L
λ = 80 bits

No batching Batching
ciphertext Public key ciphertext Public key

1 375 KB 5.4 KB 375 KB 5.4 KB
5 488.6 KB 6.4 KB 5.2 MB 32.3 KB
10 531 KB 6.8 KB 30 MB 105.1 KB
15 575 KB 7.2 KB 94.8 MB 226.8 KB
20 575 KB 7.2 KB 223 MB 402 KB

L
λ = 128 bits

No batching Batching
ciphertext Public key ciphertext Public key

1 521.4 KB 7.2 KB 521.4 KB 7.2 KB
5 667.7 KB 8.6 KB 7.4 MB 44.3 KB
10 721.1 KB 9 KB 43 MB 145.9 KB
15 777.3 KB 9.5 KB 136.6 MB 316.5 KB
20 777.3 KB 9.5 KB 320 MB 559.2 KB

tiplicative is important, namely L ≥ 10, and when the
bandwidth is not such a problem. However, if one wants to
efficiently use the bandwidth, if the multiplicative depth is not
too important (L ≤ 9), then FV is probably a better solution,
and even more so when coupled with the batching technique.
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