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Abstract: In the active anti-roll bar control on heavy vehicles, roll stability and energy consumption
of actuators are two essential but conflicting performance objectives. In a previous work, the authors
proposed an integrated model, including four electronic servo-valve hydraulic actuators in a linear yaw-
roll model on a single unit heavy vehicle. This paper aims to design an H∞ active anti-roll bar control and
solves a Multi-Criteria Optimization (MCO) problem by using Genetic Algorithms (GAs) to select the
weighting functions for the H∞ synthesis. Thanks to GAs, the roll stability and the energy consumption
are handled using a single high level parameter and illustrated via the Pareto optimality. Simulation
results in frequency and time domains emphasize the efficiency of the use of the GAs method for a MCO
problem in H∞ active anti-roll bar control on heavy vehicles.
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1. INTRODUCTION

The aim of rollover prevention is to provide the vehicle with the
ability to resist overturning moments generated during vehicle
maneuvers. Roll stability is determined by the height of the
center of mass, the track width and the kinematic properties of
the suspension. The primary overturning moment arises from
the lateral acceleration acting on the center of gravity of the
vehicle. More destabilizing moment arises during the cornering
manoeuver when the center of gravity of the vehicle shifts
laterally. The roll stability of the vehicle can be guaranteed if
the sum of the destabilizing moment is compensated during a
lateral manoeuver.
Several schemes concerned with the possible active interven-
tion into vehicle dynamics have been proposed. These ap-
proaches employ active anti-roll bars, active steering, active
braking, active suspensions, or a combination of them (Gaspar
et al., 2004). The active anti-roll bar system is the most common
method used to improve the roll stability of heavy vehicles.
Several control design problems for active anti-roll bar systems
have been investigated with many different approaches during
the last decades. In (Gaspar et al., 2005a) the authors presented
Linear Parameter Varying (LPV) techniques to control the ac-
tive anti-roll bars, combined with an active brake control on
single unit heavy vehicles. The forward velocity is considered
as the varying parameter. Other works concerning the yaw-roll
model on single unit heavy vehicles have dealt with optimal
control (Sampson and Cebon, 2003a), robust control (Vu et al.,
2016b), and neural network control (Boada et al., 2007).
The H∞ control design approach is an efficient tool for im-
proving the performance of a closed-loop system in pre-defined
frequency ranges. The key step of the H∞ control design is the
selection of weighting functions which depends on the engineer
skill and experience (Skogestad and Postlethwaite, 2003). In
many real applications, the difficulty in choosing the weighting
functions still increases significantly because the performance
specification is not accurately defined i.e., it is simply to achieve

the best possible performance (optimal design) or to achieve an
optimally joint improvement of more than one objective (multi-
objectives design). So the optimization of weighting functions
to satisfy all the desired performances is still an interesting
problem. In (Hu et al., 2000) the authors proposed to consider
each system, no matter how complex it is, as a combination of
sub-systems of the first and second order, for which it is easy to
find the good weighting functions to be used in the H∞ control
methodology. However, there is no explicit method to find these
functions in the general case. The usual way is to proceed by
trial-and-error. Recently, the idea to use an optimization tool
was proposed in (Alfaro-Cid et al., 2008). The choice of GAs
seems natural because their formulation is well suited for this
type of problems (Do et al., 2011).
Based on the integrated model presented in (Vu et al., 2016a),
this paper proposes an H∞ control for active anti-roll bar, the
GAs method is used to solve the Multi-Criteria Optimization
(MCO) problem for the H∞ synthesis. The latter work is here
extended providing two new main contributions:
• We design here an H∞ controller for active anti-roll bar

system on the integrated model for the single unit heavy
vehicle. The aim is to improve the roll stability of the
heavy vehicle. The normalized load transfers and the lim-
itation of the input currents generated by the controllers
are considered.

• The GAs method is applied to define the weighting func-
tions of the H∞ controller for the active anti-roll bar sys-
tem on the integrated model. Thanks to GAs, the conflict-
ing objectives between the normalized load transfers and
the input currents are handled using only one single high
level parameter.

This paper is organised as follows: Section 2 gives the inte-
grated model for a single unit heavy vehicle. Section 3 presents
the MCO problem of active anti-roll bar control. Section 4 illus-
trates the H∞ robust control synthesis to improve roll stability
of heavy vehicles. In section 5, GAs method is used for MCO



in the H∞ anti-roll bar control. Section 6 shows the simulation
results in the frequency and time domains. Finally, some con-
clusions are drawn in section 7.

2. INTEGRATED MODEL FOR HEAVY VEHICLES

The proposed integrated model includes four Electronic Servo-
Valve Hydraulic (ESHV) actuators (two at the front axle and
two at the rear axle) in a linear single unit heavy vehicle yaw-
roll model (Gaspar et al., 2005b). The control signal is the elec-
trical current u opening the electronic servo-valve, the output is
the force Fact generated by the hydraulic actuator. The symbols
of the integrated model are found in Table 1.
In the linear single unit heavy vehicle yaw-roll model, the dif-
ferential equations of motion, i.e., the lateral dynamics, the yaw
moment, the roll moment of the sprung mass, the roll moment
of the front and the rear unsprung masses, are formalized in the
equations (1):

mv(β̇+ ψ̇)−mshφ̈ = Fy f + Fyr

−Ixzφ̈+ Izzψ̈ = Fy f l f −Fyrlr
(Ixx + msh2)φ̈− Ixzψ̈ = msghφ+ msvh(β̇+ ψ̇)
−k f (φ−φt f )−b f (φ̇− φ̇t f ) + MAR f + T f

−kr(φ−φtr)−br(φ̇− φ̇tr) + MARr + Tr

−rFy f = mu f v(r−hu f )(β̇+ ψ̇) + mu f ghu f .φt f − kt fφt f

+k f (φ−φt f ) + b f (φ̇− φ̇t f ) + MAR f + T f

−rFyr = murv(r−hur)(β̇+ ψ̇)−murghurφtr − ktrφtr

+kr(φ−φtr) + br(φ̇− φ̇tr) + MARr + Tr

(1)

In (1) the lateral tyre forces Fy;i in the direction of velocity at the
wheel ground contact points are modelled by a linear stiffness
as: {

Fy f = µC fα f

Fyr = µCrαr
(2)

with tyre side slip angles:
α f = −β+δ f −

l f ψ̇

v

αr = −β+
lrψ̇
v

(3)

The moment of passive anti-roll bar impacts the unsprung and
sprung masses at the front and rear axles as follows:

MAR f = 4kAO f
tAtB

c2 φ−4kAO f
t2
A

c2 φu f

MARr = 4kAOr
tAtB

c2 φ−4kAOr
t2
A

c2 φur

(4)

where kAO f , kAOr are respectively the torsional stiffnesses of the
anti-roll bar at the front and rear axles, tA is half the distance of
the two suspensions, tB is half the distance of the chassis, c is
the length of the anti-roll bars’ arm.
The torque generated by the active anti-roll bar system at the
front axle is now determined by:

T f = 2lactFact f = 2lactAp∆P f (5)
and the torque generated by the active anti-roll bar system at
the rear axle is:

Tr = 2lactFactr = 2lactAp∆Pr (6)
where ∆P f and ∆Pr are respectively the difference of pressure
of the hydraulic actuator at the front and rear axles.
The equations of these electronic servo-valve actuators are
given by (7):

Table 1. Symbols of the integrated model (see
Gaspar et al. (2005a), Vu et al. (2016a)).

Symbols Description

ms Sprung mass
mu f ,r Unsprung mass on the front/rear axle
m The total vehicle mass
v Forward velocity
h Height of sprung mass from roll axis
hu,i Height of unsprung mass from ground
r Height of roll axis from ground
ay Lateral acceleration
β Side-slip angle at center of mass
ψ Heading angle
ψ̇ Yaw rate
α Side slip angle
φ Sprung mass roll angle
φu f ,r Unsprung mass roll angle at the front/rear axle
δ f Steering angle
u f ,r Control current at the front/rear axle
C f ,r Tire cornering stiffness on the front/rear axle
k f ,r Suspension roll stiffness on the front/rear axle
b f ,r Suspension roll damping on the front/rear axle
kt f ,r Tire roll stiffness on the front/rear axle
Ixx Roll moment of inertia of sprung mass
Ixz Yaw-roll inertial of sprung mass
Izz Yaw moment of inertia of sprung mass
l f ,r Length of the front axle/rear axle from the CG
lw Half of the vehicle width
µ Road adhesion coefficient
AP Area of the piston
Kx Valve flow gain coefficient
KP Total flow pressure coefficient
Ctp Total leakage coefficient
Vt Total volume of trapped oil
βe Effective bulk modulus of the oil
τ Time constant of the servo-valve
Kv Servo-valve gain
Xv f ,r Spool valve displacements at the front/rear axle



Vt

4βe
∆̇P f + (KP +Ctp)∆P f −KxXv f

+Aplactφ̇−Aplactφ̇u f = 0

Ẋv f +
1
τ

Xv f −
Kv

τ
u f = 0

Vt

4βe
∆̇Pr + (KP +Ctp)∆Pr −KxXv f

+Aplactφ̇−Aplactφ̇ur = 0

Ẋvr +
1
τ

Xvr −
Kv

τ
ur = 0

(7)

Defining the state vector:

x =
[
β ψ̇ φ φ̇ φu f φur ∆P f Xv f ∆Pr Xvr

]T

The motion differential equations (1)-(7) can be rewritten in the
LTI state-space representation as:{

ẋ = A.x + B1.w + B2.u
z = C.x + D1.w + D2.u

(8)

where A, B1, B2, C, D1, D2 are the model matrices of appropri-
ate dimensions.
The exogenous disturbance (steering angle) is:

w =
[
δ f

]T

and the control inputs (input currents):

u =
[

u f ur
]T



3. MULTI-CRITERIA OPTIMIZATION OF ACTIVE
ANTI-ROLL BAR CONTROL

3.1 Multi-criteria optimization and Pareto-optimal solutions

Multi-Criteria Optimization (MCO) can be described in mathe-
matical terms as follows (Ehrgott, 2005):

min
x∈S

F(x) =
[
f1(x), f2(x), ..., fn(x)

]
(9)

where n > 1 and S is the set of constraints defined above.
The space in which the objective vector belongs is called the
objective space, and the image of the feasible set under F
is called the attained set. In the following such a set will be
denoted by C = {y ∈ Rn : y = f (x), x ∈ S }. The scalar concept of
optimality does not apply directly in the multi-criteria setting.
Here the notion of Pareto optimality is introduced. Essentially,
a vector x∗ ∈ S is said to be Pareto optimal for a multi-criteria
problem if all other vectors x ∈ S do have a higher value for at
least one of the objective functions fi, with i = 1, ...,n, or have
the same value for all the objective functions.
There are many formulations to solve the problem (9) such as
weighted min-max method, weighted global criterion method,
goal programming methods... (Marler and Arora, 2004) and
references therein. Here, one uses a particular case of the
weighted sum method, where the multi-criteria functions vector
F is replaced by the convex combination of objectives:

min
x∈S

J =

n∑
i=1

αi fi(x),
n∑

i=1

αi = 1 (10)

The vector α = (α1,α2, ...,αn) represents the gradient of func-
tion J. By using various sets of α, one can generate several
points in the Pareto set.
The shape of the Pareto surface indicates the nature of the trade-
off between the different objective functions. An example of a
Pareto curve is reported in Fig 1, where all the points between
( f2(x̂), f1(x̂)) and ( f2(x̃), f1(x̃)) define the Pareto front. These
points are called non-inferior points.

Fig. 1. Example of a Pareto curve.

3.2 Control objective, and MCO for H∞ active anti-roll bar
control

The main objective of the active anti-roll bar control system is
to maximize the roll stability of the vehicle to prevent a rollover
phenomenon in an emergency. Two main criteria are commonly
used to assess the roll stability of the heavy vehicle:
• The normalized load transfer R f ,r at the two axles, defined

as follows (Hsun-Hsuan et al., 2012):

R f =
∆Fz f

Fz f
, Rr =

∆Fzr

Fzr
(11)

where Fz f is the total axle load at front axle and Fzr at
rear axle. ∆Fz f and ∆Fzr are respectively the lateral load
transfers at the front and rear axles, which can be given
by:

∆Fz f =
ku fφu f

lw
, ∆Fzr =

kurφur

lw
(12)

where ku f and kur are the stiffness of the tyres, φu f and φur
are the roll angles of the unsprung masses at the front and
rear axles, lw the half of the vehicle’s width.
The normalized load transfer R f ,r = ±1 value corresponds
to the largest possible load transfers. The roll stability is
achieved by limiting the normalized load transfers within
the levels corresponding to wheel lift-off.

• The roll angles between the sprung and unsprung masses
(φ − φu), give the maximum stabilizing moment of the
active anti-roll bar system to be increased. They should
stay within the limits of the suspension travel 7 − 8deg
(Sampson and Cebon, 2003b).

As mentioned above, the objective of the active anti-roll bar
control system is to improve the roll stability of heavy vehicles.
However, such a performance objective must be balanced with
the energy consumption of the anti-roll bar system due to the in-
put current entering the electronic servo-valve of the actuators.
Therefore the objective function is selected as follows:

f = α fNormalized−load−trans f er + (1−α) fControl−cost (13)
The vector α = [0 ÷ 1] is the gradient of function f . When
α moves to 0, the optimal problem focusses on minimizing
input currents. And conversely, when α moves to 1, the optimal
problem focusses on minimizing normalized load transfers.
In the objective function (13), fNormalized−load−trans f er and
fControl−cost are performance indices corresponding to the nor-
malized load transfers and input currents at the two axles, which
are defined as follows:

fNormalized−load−trans f er =
1
2


√

1
T

∫ T

0
R2

f (t)dt +

√
1
T

∫ T

0
R2

r (t)dt


fControl−cost =

1
2


√

1
T

∫ T
0 u2

f (t)dt√
1
T

∫ T
0 u2

f (t)maxdt
+

√
1
T

∫ T
0 u2

r (t)dt√
1
T

∫ T
0 u2

r (t)maxdt


(14)

where u f ,rmax are defined when the optimal problem focusses
only on the normalized load transfers (i.e., the input currents
are then not considered in the optimisation problem). In that
case, α = 1 and f = fNormalized−load−trans f er.
The MCO problem represented by the equation (13) can not
be resolved directly in the synthesis of H∞ controller. Thus,
summarizing the implementation is done in this paper is de-
scribed as Fig 2. The generalized plant includes the integrated
model (section 2) and the weighting functions. The controller is
synthesised in term of H∞ method (section 4). The conflicting
objective between roll stability and energy consumption is the
computation of the close-loop performance (MCO problem in
section 3). Depending on the purpose of the MCO problem, the
weighting functions are appropriately selected by GAs (section
5). The optimal parameters obtained from GAs are sent to
the weighting functions to calculate the characteristics of the
closed-loop system (section 6).

4. H∞ ACTIVE ANTI-ROLL BAR CONTROL TO
IMPROVE ROLL STABILITY OF HEAVY VEHICLES

4.1 Background on H∞ control

The interested reader may refer to (Skogestad and Postleth-
waite, 2003), (Scherer and Weiland, 2005) for detailed expla-
nations on H∞ control design.



Fig. 2. Controller optimization for H∞ active anti-roll bar using
Genetic Algorithms.

The H∞ control problem is formulated according to the gener-
alized control structure shown in Fig 3.

Fig. 3. Generalized control structure.

with P partitioned as[
z
y

]
=

[
P11(s) P12(s)
P21(s) P22(s)

] [
d
u

]
(15)

and
u = K(s).y (16)

which yields
z
d

= Fl(P,K) := [P11 + P12K[I−P22K]−1P21] (17)

The aim is to design a controller K(s) that reduces the signal
transmission path from disturbances d to performance outputs
z and also stabilizes the closed-loop system. The H∞ problem
is to find K which minimizes γ such that

‖Fl(P,K)‖∞ < γ (18)
By minimizing a suitably weighted version of (18), the control
aim is achieved, as presented below.

4.2 H∞ control design for active anti-roll bar system

Fig. 4. Closed-loop structure of an H∞ active anti-roll bar
control.

Figure 4 shows the closed-loop structure of an H∞ control
designed for the active anti-roll bar system on a single unit
heavy vehicle, using ESVH actuators. In the diagram, the
feedback structure includes the nominal model G, the controller
K, the performance output z, the control input u, the measured

output y, the measurement noise n. The steering angle δ f is the
disturbance signal, which is set by the driver. The weighting
functions Wδ,Wz,Wn are presented below.
According to Figure 4, the concatenation of the linear model
(8) with the performance weighting functions lead to the state
space representation of P(s): ẋ

z
y

 =

 A B1 B2
C1 D11 D12
C2 D21 D22


 x

w
u

 (19)

with the exogenous input:

w =
[
δ f n

]
the control input:

u =
[

u f ur
]T

where u f and ur are the input current at the two axles.
the performance output vector:

z =
[

u f ur R f Rr ay
]T

and the measured output vector:

y =
[

ay φ̇
]T

The input scaling weight Wδ normalizes the steering angle to
the maximum expected command. It is selected as Wδ = π/180,
which corresponds to a 10 steering angle command.
The weighting function Wn is selected as a diagonal matrix,
which accounts for small sensor noise models in the control
design. The noise weights are chosen as 0.01(m/s2) for the
lateral acceleration and 0.01(0/sec) for the derivative of roll
angle φ̇ (Gaspar et al., 2004).
The weighting functions matrix Wz represents the performance
output, Wz = diag[Wzu,WzR,Wza]. The purpose of the weighting
functions is to keep the control inputs, normalized load transfers
and lateral acceleration as small as possible over the desired
frequency range. These weighting functions can be considered
as penalty functions, that is, weights should be large in the fre-
quency range where small signals are desired and small where
larger performance outputs can be tolerated.
The weighting function Wzu is chosen as Wzu = diag[Wzu f ,Wzur],
corresponding to the input currents at the front and rear axles,
and are chosen as:

Wzu f =
1
Z1

; Wzur =
1
Z2

(20)

The weighting function WzR is chosen as WzR = diag[WzR f ,WzRr],
corresponding to the normalized load transfers at front and rear
axles, and are selected as:

WzR f =
1
Z3

; WzRr =
1
Z4

(21)

The weighting function Wza is selected as:

Wza = Z51
Z52s + Z53

Z54s + Z55
(22)

Here, the weighting function Wza corresponds to a design that
avoids the rollover situation with the bandwidth of the driver
in the frequency range up to more than 4rad/s. This weighting
function will directly minimize the lateral acceleration when it
reaches the critical value, to avoid the rollover.
As said before, the key step of the H∞ control design is how
to select the weighting function. This is not an easy task even
with good engineers, because it depends on the engineer skill
and experience. From equations (20) - (22), Zi and Z5, j are
constant parameters. The following variables are to be defined:
Z1, Z2, Z3, Z4, Z51, Z52, Z53, Z54, Z55. In the next section, the



GAs method will be used to find these variables, suited for the
MCO problem.

5. USING GENETIC ALGORITHMS FOR
MULTI-CRITERIA OPTIMIZATION IN H∞ ANTI-ROLL

BAR CONTROL

This section introduces the MCO problem for the H∞ active
anti-roll bar control on heavy vehicles, which is solved by using
the GAs method.

5.1 Genetic Algorithms

A Genetic Algorithms developed by J.H. Holland (Holland,
1975) is a model of machine learning, which derives its behav-
ior from a metaphor of the processes of evolution in nature. GAs
are executed iteratively on a set of coded chromosomes, called
a population, with three basic genetic operation: selection,
crossover and mutation. Each member of the population, called
a chromosome (or individual) is represented by a string. GAs
use only the objective function information and probabilistic
transition rules for genetic operations. The primary operation of
GAs is the crossover. The crossover happens with a probability
of 0.9 and the mutation happens with a small probability 0.095.
The basic flowchart of GAs is shown in Fig 5.

Fig. 5. Basic flowchart of Genetic Algorithm.

5.2 Solving multi-criteria optimization by genetic algorithms

From the objective function in (13), the MCO problem for the
H∞ active anti-roll bar control can be defined as:

min
p∈P

F(p),F(p) :=
[
fNormalized−load−trans f er , fControl−cost

]T

P :=
{
p = [Z1,Z2,Z3,Z4,Z51,Z52,Z53,Z54,Z55]T ∈ R | pl ≤ p ≤ pu

} (23)

where F(p) is the vector of objectives, p denotes the vector
of the weighting function parameters, and pl, pu represent the
lower and upper bounds of the weighting function selection.
The lower and upper bounds of the weighting function param-
eters are given in Table 2. Besides the minimization of the
objective function from equations (13) and (23), we also have
to account for the limitations of the normalized load transfers,
roll angle of suspensions, as well as the input currents at each
axle. These limitations are considered as the optimal conditions
(binding conditions) shown in the Table 3.
The proposed weighting function optimization procedure for
the H∞ active anti-roll bar control synthesis is as follows:

Table 2. Lower and upper bounds of the weighting
functions.

Bounds
Wzu f Wzur WzR f WzRr Wza
Z1 Z2 Z3 Z4 Z51 Z52 Z53 Z54 Z55

Lower bound 0.001 0.001 0.1 0.1 0.5 1
3000 1 10 0.001

Upper bound 10 10 100 100 100 10 900 1000 20

Table 3. Binding conditions.

No Note Maximum value Unit
1 | φ−φu f | < 7 deg
2 | φ−φur | < 7 deg
3 | R f | < 1 -
4 | Rr | < 1 -
5 | u f | < 20 mA
6 | ur | < 20 mA

• Step 1: Initialize with the weighting functions (it depends
on the engineer skill and experience), the vector of weight-
ing functions selected as p = p0.

• Step 2: Select lower bound, upper bound, scaling factor,
offset and start point.

• Step 3: Format optimal algorithm, select the vector of
objectives with the variation of switch value from 0 to 1
and then solve the minimization problem.

• Step 4: Select the individuals, apply crossover and muta-
tion to generate a new generation: p = pnew.

• Step 5: Evaluate the new generation by comparing with
the binding conditions. If the criteria of interest are not
satisfied, go to step 3 with p = pnew; else, stop and save
the best individual: popt = pnew.

6. SIMULATION RESULTS

6.1 Optimization results

Thanks to the GAs method, Table 4 gives a synthesis of
the values of the variables Zi, Z5 j in six cases for α =
[0;0.25;0.5;0.7;0.9;1], as explained in (13). When α = 0, f =
fControl−cost, the optimal problem focusses only on the input cur-
rents and when α = 1, f = fNormalized−load−trans f er, the optimal
problem focusses only on the normalized load transfers.
Figure 6 shows the conflicting relation between the normal-
ized load transfers and control costs with some Pareto-optimal
points, computed for the H∞ active anti-roll bar on heavy vehi-
cles. They are generated for different values of α in the range of
[0;1].
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Fig. 6. The Pareto frontier for the active anti-roll bar on heavy
vehicles using ESVH actuators.

To evaluate the optimization procedure, the simulation results
in both frequency and time domains are done and compared for
five cases: passive anti-roll bar (Vu et al., 2016a) and H∞ active
anti-roll bar with α = [0;0.5;0.9;1] .



Table 4. Optimization results for the weighting functions of H∞ active anti-roll bar.

Controllers
Wzu f Wzur WzR f WzRr Wza
Z1 Z2 Z3 Z4 Z51 Z52 Z53 Z54 Z55

α = 0 0.060 0.020 0.100 0.965 0.673 0.948 1.063 972.212 0.855
α = 0.25 0.057 0.052 0.51 0.863 0.863 0.664 155.627 651.707 0.573
α = 0.5 0.099 0.0773 1.403 0.217 0.812 0.813 88.666 407.658 1.001
α = 0.7 0.057 0.066 0.412 0.221 0.832 0.514 139.609 357.401 1.901
α = 0.9 0.066 0.072 0.616 0.482 0.724 0.492 202.316 455.747 0.544
α = 1 0.07 0.090 0.655 0.305 0.545 0.245 444.397 839.299 0.163

6.2 Evaluation of optimization results in frequency domain

In this section, the frequency response of the heavy vehicle is
shown in the nominal parameters case of the single unit heavy
vehicle being considered, characterized by the forward velocity
V at 70Km/h and the road adhesion coefficient µ = 1 (see,
Gaspar et al. (2004) and Vu et al. (2016a)). Figures 7 and 8
show the transfer function magnitude of the normalized load
transfers at the two axles
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Fig. 7. Transfer function magnitude of the normalized load
transfer at the front axle
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To assess the roll stability of the heavy vehicle using the
four H∞ active anti-roll bar controllers. The reduction of the
magnitude of transfer functions compared with the passive anti-
roll bar case is considered at 10−2rad/s and at 2rad/s as:

λ(X) =
Xactive

δ f
−

Xpassive

δ f
(24)

where X is the variable of interest, which are the normalized
load transfers R f ,r.
Figure 9 shows the reduction of the magnitude of transfer
functions of the normalized load transfer compared with the
passive anti-roll bar case at 10−2rad/s and at 2rad/s. We can

see that at 10−2rad/s the controller with α = 0 decreases the
roll stability, meanwhile, when the value of α increases, the
roll stability of the heavy vehicle increases. The curves are very
different. At 2rad/s the transfer functions are not so different.
This will be explained in further studies.
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Fig. 9. Reduction of the magnitude of transfer functions of the
normalized load transfers at the two axles compared with
the passive anti-roll bar case (see (24)).

Figures 10 and 11 show the transfer function magnitude of
the input currents at the two axles

u f ,r
δ f

: when α increases (the
MCO problem focusses on the minimizing the normalized load
transfers), the total input currents also increase. It’s proven for
the normalized load transfer and the input current that they are
two conflicting performance objectives.
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Fig. 10. Transfer function magnitude of the input current at the
front axle
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Thus through the MCO problem, we can choose the weighting
functions to enhance the roll stability of the heavy vehicle in
the low frequency range as well as in the high frequency range
up to over 4rad/s which is the limited bandwidth of the driver
(Gaspar et al., 2004).
6.3 Evaluation of optimization results in time domain

In this section, the cornering responses of a single unit vehicle
can be seen. The steering angle (disturbance) applied in the
simulation is a step signal as in Fig 12.
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Fig. 12. Steering angle in the cornering manoeuvre (Gaspar
et al., 2004).

The forward velocity of the heavy vehicle continuously varies
during operation, especially in the case of an emergency. The
rollover of the heavy vehicle often occurs with a forward
velocity within 60 to 110Km/h. In Figures 13 - 14 we consider
the forward velocity of the heavy vehicle up to 160Km/h in
order to evaluate the roll stability when the normalized load
transfers reach its limitations.
From Figure 13, we can see that the maximum absolute value of
normalized load transfers at the front axle reaches the limit “1”
in the case of α= [0;0.5;0.9;1] where the forward velocities are
respectively 74, 110, 139, 144Km/h. Note that in the case of the
passive anti-roll bar, we get 92Km/h for the forward velocity.
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Fig. 13. Effect of the forward velocity on the normalized load
transfer: front axle R f .

Considering Figure 14, the maximum absolute value of the
normalized load transfers at the rear axle reaches the limit “1 in
the case of α = [0;0.5;0.9;1] where the forward velocities are
respectively 66, 84, 129, 139Km/h. Note that in the case of the
passive anti-roll bar, we get 80Km/h for the forward velocity.
From Figures above, we can conclude that the risk of the

rollover of heavy vehicles is reduced thanks to the multi ob-
jective H∞ controller.
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Fig. 14. Effect of the forward velocity on the normalized load
transfer: rear axle Rr.

7. CONCLUSION

In this paper, the integrated model of a single unit heavy vehicle
including four ESVH actuators is used to develop a linear H∞
control scheme maximizing its roll stability in order to prevent
rollover. The normalized load transfers and the limitations of
the input currents are considered in the development.
A weighting function optimization procedure using GAs for
H∞ active anti-roll bar control on the integrated model has also
been proposed. The conflicting objectives between the normal-
ized load transfers and input currents are handled using only
one high level parameter, which is a great advantage to solve
the multi-objective control problem. The simulation results in
frequency and time domains have shown the efficiency of GAs
in finding a suitable controller to satisfy the MCO problem.
Even if a LTI controller seems to performs reasonably well
here, the comparison with an LPV controller (scheduled by the
vehicle velocity) will be of interest for future works.

REFERENCES

Alfaro-Cid, E., McGookin, E., and Murray-Smith, D. (2008).
Optimisation of the weighting functions of an H∞ controller
using genetic algorithms and structured genetic algorithms.
International Journal of Systems Science, 39(4), 335–347.

Boada, M., Boada, B., Quesada, A., Gaucha, A., and Daz, V.
(2007). Active roll control using reinforcement learning for a
single unit heavy vehicle. In 12th IFToMM World Congress.
Besancon, France.

Do, L.A., Sename, O., Dugard, L., and Boussaad, S.
(2011). Multi-objective optimization by genetic algorithms
in H∞/LPV control of semi-active suspension. In IFAC
World Congress - 18th IFAC WC 2011. Italy.

Ehrgott, M. (2005). Multicriteria optimization. Springer, 2nd

edition.
Gaspar, P., Bokor, J., and Szaszi, I. (2004). The design of a

combined control structure to prevent the rollover of heavy
vehicles. European Journal of Control, 10(2), 148–162.

Gaspar, P., Bokor, J., and Szaszi, I. (2005a). Reconfigurable
control structure to prevent the rollover of heavy vehicles.
Control Engineering Practice, 13(6), 699–711.

Gaspar, P., Szabo, Z., and Bokor, J. (2005b). The design of an
integrated control system in heavy vehicles based on an lpv
method. In Proceedings of the 44th IEEE Conference on De-
cision and Control, and the European Control Conference.
Seville, Spain.



Holland, J.H. (1975). Adaptation in natural and artificial sys-
tems: an introductory analysis with applications to biology,
control, and artificial intelligence. Ann Arbor: University of
Michigan Press.

Hsun-Hsuan, H., Rama, K., and Dennis, A.G. (2012). Active
roll control for rollover prevention of heavy articulated vehi-
cles with multiple-rollover-index minimisation. Vehicle Sys-
tem Dynamics: International Journal of Vehicle Mechanics
and Mobility, 50(3), 471–493.

Hu, J., Bohn, C., and Wu, H. (2000). Systematic H∞ weighting
function selection and its application to the real-time control
of a vertical take-off aircraft. Control Engineering Practice,
8, 241–252.

Marler, R. and Arora, J. (2004). Survey of multi-objective
optimization methods for engineering. Structural and Multi-
disciplinary Optimization, 26, 369–395.

Sampson, D. and Cebon, D. (2003a). Achievable roll stability
of heavy road vehicles. In Proceedings of the Institution
of Mechanical Engineers, Part D: Journal of Automobile
Engineering, volume 217, 269–287. United Kingdom.

Sampson, D. and Cebon, D. (2003b). Active roll control of
single unit heavy road vehicles. Vehicle System Dynamics:
International Journal of Vehicle Mechanics and Mobility,
40(4), 229–270.

Scherer, C. and Weiland, S. (2005). Linear matrix inequalities
in control. University Lecture.

Skogestad, S. and Postlethwaite, I. (2003). Multivariable
Feedback Control. John Wiley & Sons, 2nd edition.

Vu, V.T., Sename, O., Dugard, L., and Gaspar, P. (2016a).
Active anti-roll bar control using electronic servo-valve hy-
draulic damper on single unit heavy vehicle. In IFAC Sym-
posium on Advances in Automotive Control - 8th AAC 2016.
Norrkoping, Sweden.

Vu, V.T., Sename, O., Dugard, L., and Gaspar, P. (2016b).
H∞ active anti-roll bar control to prevent rollover of heavy
vehicles: a robustness analysis. In IFAC Symposium on
System Structure and Control - 6th SSSC 2016. Istanbul,
Turkey.


