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Abstract—Network behavior modelling is a central issue for
model-based approaches of self-diagnosis of telecommunication
networks. There are two methods to build such models. The
model can be built from expert knowledge acquired from network
standards and/or the model can be learnt from data generated
by network components by data mining algorithms. In a recent
work, we proposed a model of architecture and fault propagation
for the GPON-FTTH (Gigabit Passive Optical Network-Fiber To
The Home) access network. This model is based on a Bayesian
network which encodes expert knowledge. This includes depen-
dencies that encode fault propagation and conditional probability
distributions that encode the strength of those dependencies. In
this paper we consider the problem of automatically tuning the
above mentioned probability distributions. This is a parameter
estimation problem under missing data conditions that we solve
with the Expectation Maximization (EM) algorithm. Conditional
probability distributions are learnt from the tremendous amount
of alarms generated by an operating GPON-FTTH network
during two months in 2015. Self-diagnosis is carried out to
analyze the root cause of alarms. The performance of the
diagnosis is evaluated with respect to an expert system based
on deterministic decision rules currently used by the Internet
Access Provider to diagnose network problems.

I. INTRODUCTION

Performing self-diagnosis of a telecommunication network
with a model-based approach [1] [2] [3] [4] [5] [6] requires
building an explicit representation of network architecture and
behavior. Network architecture describes physical intercon-
nections between components. Network behavior, also called
fault propagation, describes how faults and alarms propagate
through the distributed architecture. The consequence of both
fault and alarm propagation is that a single root cause may
result in a complex and distributed pattern of subsequent
failures and their corresponding alarms [7].

There are two methods to model a telecommunication
network for self-diagnosis. The model of network behavior can
be built from some expert knowledge acquired from standards.
The main difficulty encountered by experts is to keep the
model close enough to the reality of the network while main-
taining a high level of abstraction to make it independent with
respect to the various engineering techniques implemented.

Another important issue is to model fault and alarm propa-
gation through the distributed network. Fault propagation is a
complex phenomenon because of the dynamic, distributed and
non-deterministic behavior of telecommunication networks. A
single fault may indeed generate multiple alarms, and a single
alarm may be triggered by several faults.

In [8], we have proposed a model of fault propagation in
GPON-FTTH (Gigabit Passive Optical Network-Fiber To The
Home) access networks. This model is based on a Bayesian
network [9]. Dependencies in the Bayesian network encode
some expert knowledge acquired from ITU-T standards [10]
[11]. A causal graph models the full chain of dependencies
between faults or root causes, intermediate faults and the
observed alarms. Probabilities quantify the strength of depen-
dencies between nodes and their parents in the graph [12].

This Bayesian network model can be fine-tuned by mining
data (faults and alarms) from operational GPON-FTTH access
networks. Data may contain relevant knowledge that even a
proven expert may not guess without the help of artificial in-
telligence methods. Both the structure of the Bayesian network
and its parameters, i.e. the conditional probabilities, can be
fine-tuned with appropriate data mining algorithms [13] [14].

This article focuses on learning conditional probabilities
that parameterize the Bayesian network by mining a database
of alarms collected on a GPON-FTTH access network. It
contains thousands of lines of alarms collected for example
after calls of clients to the hot line of the access provider. In
this context missing data occur because the root cause as well
as some intermediate faults or alarms may not be monitored.
To solve this problem we use the Expectation Maximization
(EM) algorithm [15] and more particularly its adaptation to
the case of Bayesian networks [16]. Our previously mentioned
expert model of the GPON-FTTH network [8] is used as an
initialization point for the EM algorithm.

We recall in Section 2 the basic concepts of paramet-
ric estimation. Section 3 deals with Maximum Likelihood
Estimation from incomplete data with the EM algorithm.
EM for Bayesian networks is studied in Section 4. Section
5 demonstrates the application of the EM to fine tune the



probability distributions of the expert GPON-FTTH network
model and assesses the performance of self-diagnosis with the
Bayesian network model. Section 6 concludes and presents
future works.

II. PARAMETER ESTIMATION WITH MLE

A. Basic concepts on MLE

In statistics parameter estimation deals with estimating the
value of parameters based on empirical data that has a random
component.

As a matter of illustration let us consider a very sim-
ple example. Let us consider samples x1, x2, . . . , xT and
assume that these samples are independent and identically
distributed realizations of a random variable X . X takes on
the values {1, ...,K} with probabilities p1, p2, . . . , pK so that
P(X = i) = pi,∀i ∈ {1, ...,K}. The problem of estimating
probabilities pi from measured/empirical data x1, x2, . . . , xT
is a problem of parameter estimation.

Maximum-likelihood estimation (MLE) is a particular
method of estimating the parameters of a statistical model
given data. MLE selects the set of values of the model
parameters that maximizes the likelihood function. This is a
way of finding out the set of values of model parameters for
which observed data best ”fit” the model, in the sense that
the likelihood of the empirical data is maximum.

We go back to our simple above mentioned example. The
joint probability (or likelihood) of x1, x2, . . . , xT can be
factored into a product (because we assume that samples are
independent) p(x1, x2, . . . , xT ) =

∏T
t=1 p(xt) and the log-

likelihood can be factored as a sum L(x1, x2, . . . , xT ) =
log p(x1, x2, . . . , xT ) =

∑T
t=1 log p(xt).

Each factor p(xt) equals one of the proportions pi depend-
ing on the value of xt i.e. p(xt) =

∑K
i=1 pi1Ixt=i where 1I

is the indicator function (so that 1Ixt=i equals 1 if xt = i
and 0 otherwise). Equivalently, it holds that log p(xt) =∑K
i=1 1Ixt=i log pi. All in all the log-likelihood equals:

L(x1, x2, . . . , xT ) =
∑T
t=1

∑K
i=1 1Ixt=i log pi

=
∑K
i=1

∑T
t=1 1Ixt=i log pi =

∑K
i=1Ni log pi

(1)

In the equation above Ni =
∑T
t=1 1Ixt=i is the number of

occurrences of the value i in the dataset x1, . . . , xT .
In this case MLE sums up to maximizing L(x1, x2, . . . , xT ) =∑K
i=1Ni log pi with respect to the probabilities pi while

taking into account the normalization constraint
∑K
i=1 pi = 1.

This constrained optimization problem can be solved
with the lagrange multipliers method. Let us introduce
Φ(p1, . . . , pK , λ) =

∑K
i=1Ni log pi + λ(1 −

∑K
i=1 pi). To

solve the problem, Φ should be maximized with respect to
each pi and with respect to the lagrange multiplier λ. By
solving ∂Φ

∂pi
= Ni

pi
− λ = 0 one gets that pi is proportional

to Ni: pi = Ni

λ . And by solving ∂Φ
∂λ = 1−

∑K
i=1 pi = 0 one

gets λ =
∑K
j=1Nj = T so that pi = Ni

T .
In that very simple case of independent and identically

distributed discrete valued samples the MLE is equal to the

set of empirical frequencies p̂i = Ni

T i.e. the proportion of
samples that are equal to i.

B. MLE for Bayesian networks

Let us now consider the problem of parameter estimation for
Bayesian networks. A Bayesian network [9] (or probabilistic
directed acyclic graphical model) represents a set of random
variables and their conditional dependencies via a directed
acyclic graph (DAG). See figure 1.

Fig. 1. A simple Bayesian network of 6 random variables.

In a Bayesian network (BN) nodes represent random vari-
ables and edges represent dependencies. These random vari-
ables can be observations/measurements, latent variables or
hypotheses for example. Each node is associated with a set of
probability distributions that represent the distribution of the
variable represented by the node, conditionally to the values
of its parent nodes. These probabilities will be denoted as
θi,j,k = P(Xi = k|pa(Xi) = j) where this quantity stands
for the probability that the value of node i is k given that the
value of its set of parent nodes is j.

There are different definitions of what a BN is. Let X =
(X1, X2, . . . , XN ) be the set of nodes of the BN. One possible
definition is to state that the joint probability of nodes can be
factored as the following product (or equivalently that the joint
log-likelihood can be factored as a sum):

p(X; Θ) =
∏N
i=1 P(Xi|pa(Xi)) =

∏N
i=1 θi,pa(Xi),Xi

L(X; Θ) = log p(X) =
∑N
i=1 log θi,pa(Xi),Xi

(2)
Here the notation p(X; Θ) (respectively L(X; Θ)) makes
explicit that the joint likelihood (respectively log-likelihood)
depends on the set of parameters Θ = (θi,j,k)i,j,k.

Let us now assume that several independent realizations
(measurements) of the BN are available. Those measurements
can be used in order to tune the set Θ of parameters so that
the model fits the dataset (as much as possible). MLE of the
probabilities θi,j,k can be performed from the measurements
X1, X2, . . . , XT . Note that each random variable Xt denotes
one realization of the BN, this realization being indexed by the
upperscript t (1 ≤ t ≤ T ). Moreover each realization Xt =
(Xt

1, X
t
2, . . . , X

t
N ) is a multivariate random variable where

the subscript i of Xt
i denotes node number i in the BN. The

measurements dataset is denoted as D = (X1, X2, . . . , XT ).
Because we consider independent successive realizations of

the BN and because of the factorization of the joint probability



of nodes (Eq. 2) the log-likelihood of the dataset D can be
splitted into a sum:

L(D; Θ) =

T∑
t=1

L(Xt; Θ) =

T∑
t=1

N∑
i=1

log θi,pa(Xt
i ),Xt

i
(3)

We are now going to make explicit that this sum de-
pends on the parameters θi,j,k by observing that many terms
are the same in the above sum. Indeed log θi,pa(Xt

i ),Xt
i

=∑
j,k 1Ipa(Xt

i )=j,Xt
i =k log θi,j,k and it is possible to merge the

equal terms:

L(D; Θ) =
∑
i,j,k log(θi,j,k)Ni,j,k (4)

where Ni,j,k =
∑T
t=1 1Ipa(Xt

i )=j,Xt
i =k counts the number of

records in the dataset D where the value of node Xi is k and
the set of values of its parent nodes pa(Xi) is j.

To maximize the likelihood of the dataset D it is then nec-
essary to solve a series of constrained maximization problems:

max
∑
k log(θi,j,k)Ni,j,k subject to

∑
k θi,j,k = 1 (5)

There are as many maximization problems as combinations
of values for (i, j) and each optimization is performed with
respect to the third subscript k of θi,j,k.

Each constrained maximization problem is similar to the
problem solved in section II-A with a lagrange multiplier
method. The result is then:

θ̂i,j,k =
Ni,j,k∑
kNi,j,k

(6)

which counts the empirical frequency of Xi = k when
pa(Xi) = j.

III. MLE FROM INCOMPLETE DATA WITH THE EM
ALGORITHM

A. Incomplete data

In statistics, missing data occur when no data value is stored
for some variables in an observation. This can occur because
measurements are not performed properly or because some
variables are not reported. In BN some nodes are observa-
tions/measurements whereas other nodes are hypotheses or
latent variables. Latent variables (as well as hypotheses) are
not directly observed but rather inferred from measurements.
BN is consequently a setting in which incomplete data occur.

MLE from incomplete data is not straightforward. Indeed
most of the time it is not possible to compute the value of
the likelihood of the dataset with incomplete data. Indeed
let us assume that X is the vector of observed data (or
measurements) and Y is a vector of missing data (or latent
variables). Computing the joint likelihood p(X,Y ) of the
complete data (X,Y ) is supposed to be straightforward under
the considered model; this model can be for example a BN (in
which case the expression of the likelihood is given by Eq.
2), or another parametric model that captures dependencies
between random variables.

As Y is not measured it is unfortunately not possible to
tune the parameters of the model by maximizing p(X,Y ; θ)

with respect to θ. Rather, the likelihood of observed data
p(X; θ) should be maximized with respect to θ. But the
computation of p(X; θ) is most of the time not tractable.
Indeed p(X; θ) =

∑
Y p(X,Y ; θ) and the number of terms

in the sum
∑
Y is huge since this the product of the number

of states of each component of the vector Y . The complexity
grows exponentially fast with the number of components in
Y (e.g. number of nodes that represent a latent variable in the
BN).

As the likelihood of the observed data p(X; θ) is not
computationally tractable it is even more an issue to maximize
p(X; θ) with respect to θ.

B. The Expectation Maximization (EM) algorithm

The problem of MLE from incomplete data can be solved
with the EM algorithm [15]. As explained above computing
the log-likelihood log p(X; θ) of the observed data is not possi-
ble, whereas computing the log-likelihood of the complete data
log p(X,Y ; θ) would be possible if only Y was not missing.
It would then be possible to maximize log p(X,Y ; θ) with
respect to θ.

As Y is missing, rather than maximimizing log p(X,Y ; θ)
with respect to θ, the EM algorithm attempts to maximize
iteratively the expected value of the log-likelihood of the
complete data. Let us introduce Q(θ, θ′) as follows:

Q(θ, θ′) = E(L(X,Y ; θ)|X; θ′) (7)

In the equation above E(•|X; θ′) stands for the expected
value under the probability distribution of the missing data
Y conditionally to the measurements X (for the value θ′ of
the model parameters set).

EM is an iterative algorithm. At each iteration Q(θ, θr) =
E(L(X,Y ; θ)|X; θr) is maximized with respect to the first
parameter θ, that is to say:

θr+1 = Argmax
θ
Q(θ, θr) (8)

Each iteration is decomposed into two steps: the expectation
step (E step), and the maximization step (M step). The E
step computes the probability distribution of missing data Y
conditionally to the measurements X under the model with
parameter θr (i.e. the current value of the parameter estimate).
In practice this comes down to computing some statistics
that summarize this conditional probability distribution, as it
will be explained later in the particular case of the Bayesian
network model. The E step is the most demanding step in the
EM algorithm.

In the M step the function Q(θ, θr) is maximized with
respect to the first parameter θ so that an updated value θr+1

of the parameter estimate is obtained. Very often there exists
a closed-form solution of this maximization problem so that
the problem is simple to solve.

As stated before the EM algorithm is an iterative al-
gorithm. It must be initialized with a value θ0. At each
iteration the parameter estimate is updated as follows: at
iteration 1, θ1 = Argmaxθ Q(θ, θ0), then at iteration 2
θ2 = Argmaxθ Q(θ, θ1) and so on until the algorithm



converges to a stable value of θ. It has been proven that each
iteration of EM increases the log-likelihood of measurement
data, that is to say:

L(x; θr+1) ≥ L(x; θr). (9)

As a consequence θr converges to a maximum of the log-
likelihood L(X; θ) of measurement data (or a saddle point).
It is important to note that this maximum can be a local (but
not necessarily global) maximum. In practice this means that
the initial value θ0 must be selected with care in order to avoid
problems of convergenge to local (but not global) maximum.

IV. EM ALGORITHM FOR BAYESIAN NETWORKS

A. M step

The EM algorithm has been adapted to the particular case of
Bayesian networks [16]. In BN some nodes Xi may represent
variables that are missing. In this context the EM algorithm can
be used to infer the probabilities θi,j,k = P(Xi = k|pa(Xi) =
j) from measurement data (that is to say from nodes which
are not missing).

Recall from Eq. 4 that the log-likelihood has the following
expression L(X; Θ) =

∑
i,j,k log(θi,j,k)Ni,j,k where Ni,j,k =∑T

t=1 1Ipa(Xt
i )=j,Xt

i =k.
Let us now make explicit that some nodes are measurements

while other nodes are not observed (missing data). The former
will be denoted as Xo,t

i while the latter will be denoted as
Xm,t
i . Xo,t

i is the value of node Xi in the t-th observation of
the Bayesian network (t represents ”time”) and the upperscript
o means that Xo,t

i is available (observed). Xm,t
i is the random

variable associated to node Xi in the t-th observation of the
Bayesian network and the upperscript m means that Xm,t

i is
missing (i.e. is not measured or the measurement value is not
available).

As part of the nodes are not observed they are considered
as random variables so that Ni,j,k =

∑T
t=1 1Ipa(Xt

i )=j,Xt
i =k

is a random variable. The Q function of the EM algorithm
introduced in Eq. 7 has the following expression:

Q(θ, θ′) =
∑
i,j,k

log(θi,j,k)N̂i,j,k (10)

where N̂i,j,k represent the expected count of number
of records where the value of node Xi is k and
the set of values of its parent nodes pa(Xi) is j:
N̂i,j,k = E(

∑T
t=1 1Ipa(Xt

i )=j,Xt
i =k|Xo, θ′). In this equation

Xo is the set of measurement data. As the expectation
E(•) is linear and as the expected value of the indicator
function of a random event equals the probability of
this event, it holds that N̂i,j,k =

∑T
t=1 γ

t
i,j,k where

γti,j,k = P(pa(Xt
i ) = j,Xt

i = k|Xo,t; θ′). This last quantity
represents the probability that Xt

i = k and pa(Xt
i ) = j

conditionally to the measured nodes in the t-th observation of
the Bayesian network.

The M step is the maximization of
∑
k log(θi,j,k)N̂i,j,k

under constraint
∑
k θi,j,k = 1 for all values of (i, j). The

result of the M step updates the probabilities θi,j,k as follows:

θr+1
i,j,k =

N̂i,j,k∑
k N̂i,j,k

(11)

B. E step

The E step computes, for each node Xi of the Bayesian
network, the conditional joint probabilities of Xi and its
parents γti,j,k = P(pa(Xt

i ) = j,Xt
i = k|Xo,t; θr) as well as

the expected counts N̂i,j,k =
∑T
t=1 γ

t
i,j,k. The computation of

the conditional joint probability γti,j,k is based on the algorithm
of propagation of evidence Xo,t on the junction tree [17] [18]
[19] representation of the Bayesian network. This inference
algorithm allows us to run EM on the Bayesian network
without worrying about loops. A potential is associated to
each clique Cp and Cq of the junction tree and their common
separator Spq . A potential is a value associated to the random
variables belonging to a clique (or separator).

The initial value of potentials is set as follows:

φSpq = 1

φCp =
∏
Xi∈Cp,pa(Xi)⊂Cp∨pa(Xi)=∅ P(Xi|pa(Xi); θ

′
)

(12)
where the product is taken over all the random variables Xi

that belong to the clique Cp and whose parents pa(Xi) also
belong to Cp (or do not have parents because they are root
nodes).

The algorithm of propagation of the evidence Xo,t on the
junction tree updates the potential of all cliques Cp and Cq
and their common separator Spq . Assume the potential of a
clique Cp is already updated, i.e. the propagation of evidence
already reached the clique Cp but not yet the clique Cq . The
propagation algorithm proceeds as follows: the potential of
the separator Spq is updated by marginalization, and then
the potential of the clique Cq is updated by applying a
multiplicative factor:

φ∗Spq
=

∑
Cp\Spq

φ∗Cp

φ∗Cq
= φCq

φ∗Spq

φSpq

(13)

In the equation above the notation Cp \ Spq represents the
set of variables of the clique Cp which do not belong to the
separator Spq .

Propagation starts by recomputing the potentials of observed
cliques., that is to say cliques where at least one random
variable is observed. After that, updating operations are done
in two recursive stages. The first stage (called collect) is
performed by collecting evidence from leave cliques to root
cliques. The second stage (called distribute) is performed by
distributing evidence from root cliques to leave cliques.

At the end, the updated potential φ∗Cp
of a clique Cp equals

the joint probability of evidence Xo,t and of random variables
belonging to clique Cp: φ∗Cp

= P(Cp, X
o,t; θr)

Note that for any family f = {Xi ∪ pa(Xi)} of variables
there is at least one clique Cz such that f ⊆ Cz . Therefore



the joint probability of the family f given measurement data
Xo,t can be computed by marginalization:

γti,j,k = P(pa(Xt
i ) = j,Xt

i = k|Xo,t; θ′) ∝
∑
Cz\f

φ∗Cz
(14)

where ∝ means ”proportional to” and the proportionality
factor can be obtained by normalization.

V. APPLICATION OF EM ALGORITHM TO GPON-FTTH
ACCESS NETWORK

We applied in this section, the EM algorithm in order to
learn the conditional probability distributions of the GPON-
FTTH network model proposed in [8], based on a Bayesian
network. Before doing this, we first talk about our motivations,
i.e. the reason for which we need the EM algorithm.

A. Context

In [8], we proposed a model of the architecture and fault
propagation of the GPON-FTTH access network [10] [11]. The
GPON-FTTH network is made up of several PONs (Passive
Optical Network). A PON has a tree-like topology which
connects an Optical Line Terminal (OLT) with a maximum
of 64 Optical Network Terminals (ONTs) in our example
(see figure 2). Each ONT is connected to a RG (Residential
Gateway) via an Ethernet link. A PON is a point-to-multipoint
link through the ODN (Optical Distribution Network). The
ODN can be decomposed into several splitting levels and
each splitting level contains several splitters. Since there is
no interaction between PONs, and all PONs have the same
behavior, we have modeled one single PON. This model can
be replicated to any PON of a GPON-FTTH access network.

Fig. 2. A simple engineering of the GPON-FTTH network

The model of the GPON-FTTH network proposed in [8]
is a Bayesian Network (BN) which encodes expert knowl-
edge acquired from ITU-T standards [10] [11]. The detailed
description of nodes and dependencies of the GPON-FTTH
model depicted by the figure 3 is given in [8]. From this
expert knowledge we have built a causal graph of the full chain
of dependencies between faults or root causes, intermediate
faults and observed alarms. We have turned this graph into
a Bayesian network by determining an order of magnitude

of conditional probabilities which quantify the strength of
dependencies between nodes in the graph.

We have used this model to perform self-diagnosis of the
GPON-FTTH network. In order to assess the performance of
self-diagnosis with this BN model we have used two different
approaches. A first approach described in [8] was to set up a
physical testbed with a PON with two ONTs. Different faults
were emulated, and alarms as well as counters were collected.
The diagnosis of the root cause of alarms was performed with
the BN approach. Seven usual fault scenarios were considered.
Diagnosis results were inspected manually in order to assess
their reliability. This demonstrated that self diagnosis based
on a BN model was a reliable and promising approach.

In a second phase, a database of 10611 real diagnosis
cases collected by Orange on a commercial GPON-FTTH
network in july-august 2015 was analysed. Two tools have
been compared: PANDA, the self-diagnosis tool based on
the BN approach described in this paper, and DELC, a self-
diagnosis tool based on deterministic decision rules. DELC is
currently used to diagnose faults in the operational network.
The different diagnosis were: no default (i.e. nominal GPON-
FTTH network), faulty ONT, attenuating drop fiber, broken
drop fiber, faulty or shutdown power supply, broken feeder
fiber and unknown root cause. Over 10611 cases, DELC and
PANDA took the same decision in 9768 cases (with 7393
cases of ”no default”). We analysed into details the cases
where the diagnosis of DELC and PANDA were not the
same. Interestingly, there were 766 cases out of 10611 where
DELC was not able to produce a diagnosis whereas PANDA
diagnosed most of the time that there was no default (716
cases) or located a particular default (50 cases: either faulty
ONT, or attenuating drop fiber or power supply shutdown).
DELC was not able to diagnose those cases because they were
complicated and did not correspond to any of its decision rules.
Maintaining a rule based decision system is a tedious task
and it is almost impossible to take into account any possible
combination of faults and alarms.

Nevertheless, we think that we can improve these self-
diagnosis results if the parameters, i.e. the conditional proba-
bility distributions of the GPON-FTTH model are fine tuned
by a machine learning algorithm from the tremendous amount
of data generated by the components of this network. The
GPON-FTTH network data contain alarms, transmitted and
received power of network components, transmission error
counters, currents, voltages, temperatures and so on. Our
dataset corresponds to two months of measurement on a
commercial PON of the Orange FTTH access provider in july-
august 2015. In pratice, there is always some situations where
the network management system fails to get some values
from some network components. These situations may be due
for example to the filtering policy of network data applied
by the network operator, or due to the communication loss
between the network management system and one or many
network components or due to some older devices that may not
generate some facts. These situations lead to missing variables.
That is why we have used the EM algorithm in order to



Fig. 3. The GPON-FTTH model based on Bayesian network.

automatically fine tune the expert parameters of the GPON-
FTTH network model.

We have divided the dataset into two subsets. The first sub-
set corresponds to 5130 diagnosis cases collected by Orange
on a commercial GPON-FTTH network in july 2015. The
second subset corresponds to 5481 diagnosis cases collected
in august 2015. The first subset is the training dataset used
to learn the parameters of the BN model with the EM. The
second subset is the test dataset used to assess the performance
of fault localization with the fine tuned BN model.

As explained in section III, the EM algorithm is initialized
with a value θ0 of the parameters vector. In our case θ0

has been determined from operational expertise in diagnosing
GPON-FTTH networks.

Figure 3 is a model of a PON of the GPON-FTTH network.
A PON may contain up to 64 ONTs. All PONs have the
same behaviour and there is no interaction between PONs.
All ONTs also have the same behaviour. Therefore we have
chosen to run the EM algorithm on a Bayesian network which
models a PON containing only one ONT . The parameters of
this ONT can be generalized to all ONTs connected to any
PON. Note that if the GPON-FTTH changes, i.e. new nodes
are added into the PON model, only the parameters of these
new nodes and former nodes whose the parents set is updated,
will be revaluated by the EM algorithm. We do not need to
retrain completely the Bayesian network model.

B. Results of the application of EM algorithm for parameters
learning of the GPON-FTTH network model

In this section, we assess the benefits of fine tuning the
parameters by the EM, with respect to a diagnosis based on a

BN which parameters have been set by an expert. For doing
so we compare the diagnosis results of PANDA over 5481
experimental cases in two situations: the model parameters
have been set by an expert, or they have been moreover fine
tuned with an EM by mining the whole dataset.

Figure 4 displays the evolution along the first iterations of
the EM algorithm of the log-likelihood value of the 5130 real
diagnosis cases collected by Orange in july 2015 on an opera-
tional GPON-FTTH network. As stated by Equation 9 one can
observe on Figure 4 that the log-likelihood of measurement
data increases at each iteration of the EM algorithm. The log-
likelihood stabilizes at a maximum value after 7 or 8 iterations,
and the algorithm then converges.

Fig. 4. The Evolution of the Loglikelihood of network data with iterations.

From a practical point of view it is important to mention
that we have encountered a few numerical problems with real
measurement data. These problems appear when data do not



perfectly fit to the theoretical model (which bounds to happen
when one deals with real data), for example if the dataset
contains outliers. One problem that we have encountered
concerns the update of some parameters by the M-step of
the EM algorithm. In some cases it occurred that the value
of a few expected counts N̂i,j,k was equal to 0. This must be
interpretated as some combinations of events being considered
by the E-step as absolutely impossible (taking into account
measurement data). This causes numerical problems when one
seeks to update the corresponding parameters by Equation
[11] (divide by zero error). In those infrequent cases we
have decided that the corresponding parameter should not be
updated, that is to say that it is considered as a constant which
is not estimated from data but set from expert knowledge.

C. Diagnosis results

At that point we had two models: the expert model and
the learned model. We have performed the diagnosis on the
same cases separately with the two models. Table I shows a
2-dimensions confusion matrix which compares self-diagnosis
results of the two models. The rows and columns of this matrix
respectively represent self-diagnosis carried out with the expert
model and with the learned model. Fine tuning the parameters
of the model changed the diagnosis results in 185 cases out
of the 5481 cases. This means that the order of magnitude
of the parameters had been evaluated correctly by the expert.
However it is interesting to analyze into more details cases
where the diagnosis was different with a finely tuned BN,
i.e. the cases corresponding to non-zero values outside the
diagonal of the confusion matrix.

Each table from II to VI compares the two models for each
instance of those cases (i.e. each non null element outside of
the diagonal of the confusion matrix). The title of each of
these tables is a short description of observations collected on
the operating GPON-FTTH network for the considered case.

TABLE I
2-DIMENSIONS CONFUSION MATRIX OF SELF-DIAGNOSIS RESULTS

BETWEEN THE TWO MODELS.

Root causes 1 2 3 4 5 6 7
1 No Default 4030 0 0 7 6 0 9
2 Configuration Mistake 0 183 0 0 0 0 0
3 Faulty ONT 0 0 602 0 0 0 0
4 ONT power supply 0 0 0 402 0 0 0
5 Drop fiber attenuated 0 0 0 0 56 0 0
6 Drop fiber broken 0 0 0 0 14 0 0
7 Feeder fiber attenuated 0 0 149 0 0 0 32

Table II shows that, on a PON of forty ONTs, when the
upstream received power of an ONT denoted by ONT1 is low
while the downstream received power of ONT1 is nominal,
the expert model does not detect any fault. This is a wrong
diagnosis carried out by the expert model since the upstream
optical channel between the OLT and ONT1 is experiencing
attenuation. On the other hand, the learned model computes
the appropriate diagnosis, i.e. attenuation of the drop fiber
FiberDB1 of ONT1. Note that OK, AT and BR denote

TABLE II
PON WITH FORTY ONTs. NO ALARM ON THE PON. UPSTREAM RECEIVED

POWER RxOLT [1] OF ONT1 IS LOW. DOWNSTREAM RECEIVED POWER
RxONT [1] OF ONT1 IS NOMINAL. RECEIVED POWERS OF NEIGHBOR

ONTS ARE NOMINAL.

Model Root causes States Beliefs
Expert FiberDB1

[OK, AT,BR] [0.9, 8.e-02, 3.e-06]
FiberDBi6=1

[OK, AT,BR] [0.9, 8.e-02, 3.e-06]
Learned FiberDB1 [OK,AT, BR] [9.e-02, 0.9, 2.e-06]

FiberDBi6=1
[OK, AT,BR] [0.9, 8.e-02, 3.e-06]

a fiber which does not attenuate, which attenuates or a broken
fiber. This situation appears in 6 cases in the test dataset.

TABLE III
THE PON HAS FORTY ONTs. NO ALARM IS OBSERVED ON THE PON. THE

UPSTREAM AND DOWNSTREAM RECEIVED POWERS RxOLT [1] AND
RxONT [1] OF ONT1 ARE NOMINAL. THE RECEIVED POWERS OF

NEIGHBORS OF ONT1 , I.E., RxOLT [i] AND RxONT [i] FOR
i ∈ {2, ..., 40} ARE LOW.

Model Root causes States Beliefs
Expert FiberDB1 [OK, AT,BR] [0.9, 8.e-02, 3.e-06]

FiberDBi6=1
[OK,AT, BR] [8.e-02, 0.9, 3.e-06]

FiberDB1
[OK,AT,BR] [0.9, 9.e-02, 2.e-06]

Learned FiberT [OK,AT, BR] [5.e-03, 0.99, 5.e-39]
FiberDBi6=1

[OK, AT,BR] [0.68, 0.31 , 0.001]

Table III shows a case for which the received power levels of
ONT1 are nominal while those of neighbors of ONT1 are low.
In this situation the expert model diagnoses that the drop fiber
of each neighbor of ONT1 experiences attenuation. Doing so,
the expert model assumes that when the received power levels
of at least one ONT on the PON are nominal, then the feeder
fiber (denoted by FiberT ) shared by all ONTs connected on
the PON cannot experience attenuation although the received
power levels of other ONTs are low. This reasoning is not
always true since for this diagnosis case it is the feeder fiber
that attenuates. But this attenuation has not affected ONT1

since its received power levels were very high before the
beginning of the feeder fiber attenuation. On the other hand,
the received power levels of neighbors of ONT1 were nominal
but very close to the lower bound of the range of nominal
power values. We have observed 9 occurences of this case.

TABLE IV
PON WITH TWENTY ONTs. NO ALARM ON THE PON. RECEIVED POWERS

RxOLT [i] AND RxONT [i], FOR i ∈ {1, ..., 20}, ARE NOMINAL.
TRANSMITTED POWER TxONT [1] OF ONT1 IS LOW.

.
Model Root causes States Beliefs
Expert AltONT1 [OK,¬OK] [0.90, 0.10]
Learned AltONT1 [OK,¬OK] [0.05, 0.95]

Table IV illustrates a case for which the learned model
diagnoses that the power supply of ONT1 (denoted by
AltONT1) is faulty since the transmitted power level of this
ONT is low although all received power levels are nominal.
On the contrary the expert model did not understand this
strange situation and diagnosed that there was no default.



TABLE V
THE PON HAS FORTY ONTs. ALARMS LOFus[1] AND LOFds[1] ARE

OBSERVED FOR ONT1 . THE UPSTREAM AND DOWNSTREAM RECEIVED
POWERS RxOLT [1] AND RxONT [1] OF ONT1 ARE MISSING. THE
RECEIVED POWER LEVELS OF NEIGHBORS OF ONT1 ARE NOMINAL.

Model Root causes States Beliefs
Expert FiberDB1

[OK,AT,BR] [0.14, 0.34, 0.52]
FiberDBi6=1

[OK, AT,BR] [0.9, 8.e-02, 2.e-06]
Learned FiberDB1

[OK,AT, BR] [0.08, 0.86, 0.06]
FiberDBi6=1

[OK, AT,BR] [0.9, 8.e-02, 3.e-06]

Table V shows a situation for which LOF [1] (Loss of
Frame) alarm is observed for ONT1 and the received powers
of this ONT are missing. The expert model diagnoses that
the drop fiber FiberDB1 of ONT1 is broken. This is wrong
since the loss of frames between OLT and ONT1 is not
due to the cut of the fiber but rather due to the poor quality
of signal transmitted on this fiber, i.e, to fiber attenuation.
The learned model performs an appropriate diagnosis. This
situation occurred in 14 cases in the test dataset.

TABLE VI
THE PON HAS ONLY ONE ONT. ALARMS LOSus[1] AND LOSds[1] ARE

OBSERVED FOR ONT1 . THE UPSTREAM AND DOWNSTREM RECEIVED
POWERS, RxOLT [1] AND RxONT [1] OF ONT1 ARE MISSING.

Model Root causes States Beliefs
Faulty ONT1 [+fto,¬fto] [0.532, 0.468]

Expert FiberT [OK,AT, BR] [0.28, 0.43, 0.29]
FiberDB1

[OK,AT,BR] [0.24, 0.35, 0.41]
Faulty ONT1 [+fto,¬fto] [0.960, 0.040]

Learned FiberDB1
[OK,AT,BR] [0.33, 0.36, 0.31]

FiberT [OK,AT,BR] [0.33, 0.34, 0.33]

Table VI shows a situation of communication loss between
the OLT and the unique ONT connected to the considered
PON. In this case, no information about neighbors of ONT1

help the expert model to discriminate between three root
causes, feeder fiber attenuation (denoted by FiberT ), cut of
the drop fiber or a faulty ONT1. The expert model does not
identify one root cause as being much more likely than the
two others. The learned model diagnoses that ONT1 is faulty
but in practice it is impossible to decide this diagnosis is really
more appropriate than the two other ones. We have observed
this situation 149 times during our evaluation.

VI. CONCLUSION

We have studied into details the EM algorithm in the
case of Bayesian networks. Basics of parameter estimation
with a ML approach have been reminded. Then the EM
algorithm has been described into details. It makes it possible
to fine tune the parameters of a probabilistic model from
incomplete data. The case of EM for Bayesian networks has
been described, in particular evidence propagation over the
junction tree representation that forms the E step.

This has been applied to faults self diagnosis in GPON-
FTTH networks. We have analyzed a dataset of around 10000
diagnosis cases over a commercial network. 5000 cases, rep-
resenting one month of data, have been used to fine tune

the parameters of the Bayesian network model with an EM
algorithm. 5000 cases, representing the next month of data,
have been used to diagnose faults. We have compared the
diagnosis results when parameters have been set by an expert,
and when they have been trained with an EM. The few cases
where the diagnosis was not the same have been looked into
details. The learned model reasonably improves self-diagnosis
previously carried out by the expert model.

As future work we plan to automatically fine tune the graph
of causal dependencies of the Bayesian network model i.e.
learn or prune dependencies by mining real diagnosis cases.
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