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A tutorial on the EM algorithm for Bayesian networks: application to self-diagnosis of GPON-FTTH networks

Network behavior modelling is a central issue for model-based approaches of self-diagnosis of telecommunication networks. There are two methods to build such models. The model can be built from expert knowledge acquired from network standards and/or the model can be learnt from data generated by network components by data mining algorithms. In a recent work, we proposed a model of architecture and fault propagation for the GPON-FTTH (Gigabit Passive Optical Network-Fiber To The Home) access network. This model is based on a Bayesian network which encodes expert knowledge. This includes dependencies that encode fault propagation and conditional probability distributions that encode the strength of those dependencies. In this paper we consider the problem of automatically tuning the above mentioned probability distributions. This is a parameter estimation problem under missing data conditions that we solve with the Expectation Maximization (EM) algorithm. Conditional probability distributions are learnt from the tremendous amount of alarms generated by an operating GPON-FTTH network during two months in 2015. Self-diagnosis is carried out to analyze the root cause of alarms. The performance of the diagnosis is evaluated with respect to an expert system based on deterministic decision rules currently used by the Internet Access Provider to diagnose network problems.

I. INTRODUCTION

Performing self-diagnosis of a telecommunication network with a model-based approach [START_REF] Gruschke | Integrated event management: Event correlation using dependency graphs[END_REF] [2] [3] [4] [START_REF] Kätker | A generic model for fault isolation in integrated management systems[END_REF] [START_REF] Kätker | Fault isolation and event correlation for integrated fault management[END_REF] requires building an explicit representation of network architecture and behavior. Network architecture describes physical interconnections between components. Network behavior, also called fault propagation, describes how faults and alarms propagate through the distributed architecture. The consequence of both fault and alarm propagation is that a single root cause may result in a complex and distributed pattern of subsequent failures and their corresponding alarms [START_REF] Hounkonnou | Active self-diagnosis in telecommunication networks[END_REF].

There are two methods to model a telecommunication network for self-diagnosis. The model of network behavior can be built from some expert knowledge acquired from standards. The main difficulty encountered by experts is to keep the model close enough to the reality of the network while maintaining a high level of abstraction to make it independent with respect to the various engineering techniques implemented.

Another important issue is to model fault and alarm propagation through the distributed network. Fault propagation is a complex phenomenon because of the dynamic, distributed and non-deterministic behavior of telecommunication networks. A single fault may indeed generate multiple alarms, and a single alarm may be triggered by several faults.

In [START_REF] Tembo | A 3-layered selfreconfigurable generic model for self-diagnosis of telecommunication networks[END_REF], we have proposed a model of fault propagation in GPON-FTTH (Gigabit Passive Optical Network-Fiber To The Home) access networks. This model is based on a Bayesian network [START_REF] Pearl | Bayesian networks: A model of self-activated memory for evidential reasoning[END_REF]. Dependencies in the Bayesian network encode some expert knowledge acquired from ITU-T standards [10] [11]. A causal graph models the full chain of dependencies between faults or root causes, intermediate faults and the observed alarms. Probabilities quantify the strength of dependencies between nodes and their parents in the graph [START_REF] Pearl | Probabilistic reasoning in intelligent systems: networks of plausible inference[END_REF].

This Bayesian network model can be fine-tuned by mining data (faults and alarms) from operational GPON-FTTH access networks. Data may contain relevant knowledge that even a proven expert may not guess without the help of artificial intelligence methods. Both the structure of the Bayesian network and its parameters, i.e. the conditional probabilities, can be fine-tuned with appropriate data mining algorithms [13] [14].

This article focuses on learning conditional probabilities that parameterize the Bayesian network by mining a database of alarms collected on a GPON-FTTH access network. It contains thousands of lines of alarms collected for example after calls of clients to the hot line of the access provider. In this context missing data occur because the root cause as well as some intermediate faults or alarms may not be monitored.

To solve this problem we use the Expectation Maximization (EM) algorithm [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF] and more particularly its adaptation to the case of Bayesian networks [START_REF] Lauritzen | The EM algorithm for graphical association models with missing data[END_REF]. Our previously mentioned expert model of the GPON-FTTH network [START_REF] Tembo | A 3-layered selfreconfigurable generic model for self-diagnosis of telecommunication networks[END_REF] is used as an initialization point for the EM algorithm.

We recall in Section 2 the basic concepts of parametric estimation. Section 3 deals with Maximum Likelihood Estimation from incomplete data with the EM algorithm. EM for Bayesian networks is studied in Section 4. Section 5 demonstrates the application of the EM to fine tune the probability distributions of the expert GPON-FTTH network model and assesses the performance of self-diagnosis with the Bayesian network model. Section 6 concludes and presents future works.

II. PARAMETER ESTIMATION WITH MLE

A. Basic concepts on MLE

In statistics parameter estimation deals with estimating the value of parameters based on empirical data that has a random component.

As a matter of illustration let us consider a very simple example. Let us consider samples x 1 , x 2 , . . . , x T and assume that these samples are independent and identically distributed realizations of a random variable X. X takes on the values {1, ..., K} with probabilities p 1 , p 2 , . . . , p K so that P(X = i) = p i , ∀i ∈ {1, ..., K}. The problem of estimating probabilities p i from measured/empirical data x 1 , x 2 , . . . , x T is a problem of parameter estimation.

Maximum-likelihood estimation (MLE) is a particular method of estimating the parameters of a statistical model given data. MLE selects the set of values of the model parameters that maximizes the likelihood function. This is a way of finding out the set of values of model parameters for which observed data best "fit" the model, in the sense that the likelihood of the empirical data is maximum.

We go back to our simple above mentioned example. The joint probability (or likelihood) of x 1 , x 2 , . . . , x T can be factored into a product (because we assume that samples are independent) p(x 1 , x 2 , . . . , x T ) = T t=1 p(x t ) and the loglikelihood can be factored as a sum L(x 1 , x 2 , . . . , x T ) = log p(x 1 , x 2 , . . . , x T ) = T t=1 log p(x t ). Each factor p(x t ) equals one of the proportions p i depending on the value of x t i.e. p(x t ) = K i=1 p i 1I xt=i where 1I is the indicator function (so that 1I xt=i equals 1 if x t = i and 0 otherwise). Equivalently, it holds that log p(x t ) = K i=1 1I xt=i log p i . All in all the log-likelihood equals:

L(x 1 , x 2 , . . . , x T ) = T t=1 K i=1 1I xt=i log p i = K i=1 T t=1 1I xt=i log p i = K i=1 N i log p i (1)
In the equation above N i = T t=1 1I xt=i is the number of occurrences of the value i in the dataset x 1 , . . . , x T .

In this case MLE sums up to maximizing L(x 1 , x 2 , . . . , x T ) = K i=1 N i log p i with respect to the probabilities p i while taking into account the normalization constraint

K i=1 p i = 1.
This constrained optimization problem can be solved with the lagrange multipliers method. Let us introduce

Φ(p 1 , . . . , p K , λ) = K i=1 N i log p i + λ(1 - K i=1 p i ).
To solve the problem, Φ should be maximized with respect to each p i and with respect to the lagrange multiplier λ. By solving ∂Φ ∂pi = Ni pi -λ = 0 one gets that p i is proportional to N i : p i = Ni λ . And by solving ∂Φ ∂λ = 1 -

K i=1 p i = 0 one gets λ = K j=1 N j = T so that p i = Ni
T . In that very simple case of independent and identically distributed discrete valued samples the MLE is equal to the set of empirical frequencies pi = Ni T i.e. the proportion of samples that are equal to i.

B. MLE for Bayesian networks

Let us now consider the problem of parameter estimation for Bayesian networks. A Bayesian network [START_REF] Pearl | Bayesian networks: A model of self-activated memory for evidential reasoning[END_REF] (or probabilistic directed acyclic graphical model) represents a set of random variables and their conditional dependencies via a directed acyclic graph (DAG). See figure 1. In a Bayesian network (BN) nodes represent random variables and edges represent dependencies. These random variables can be observations/measurements, latent variables or hypotheses for example. Each node is associated with a set of probability distributions that represent the distribution of the variable represented by the node, conditionally to the values of its parent nodes. These probabilities will be denoted as θ i,j,k = P(X i = k|pa(X i ) = j) where this quantity stands for the probability that the value of node i is k given that the value of its set of parent nodes is j.

There are different definitions of what a BN is. Let X = (X 1 , X 2 , . . . , X N ) be the set of nodes of the BN. One possible definition is to state that the joint probability of nodes can be factored as the following product (or equivalently that the joint log-likelihood can be factored as a sum):

p(X; Θ) = N i=1 P(X i |pa(X i )) = N i=1 θ i,pa(Xi),Xi L(X; Θ) = log p(X) = N i=1 log θ i,pa(Xi),Xi (2) 
Here the notation p(X; Θ) (respectively L(X; Θ)) makes explicit that the joint likelihood (respectively log-likelihood) depends on the set of parameters Θ = (θ i,j,k ) i,j,k .

Let us now assume that several independent realizations (measurements) of the BN are available. Those measurements can be used in order to tune the set Θ of parameters so that the model fits the dataset (as much as possible). MLE of the probabilities θ i,j,k can be performed from the measurements X 1 , X 2 , . . . , X T . Note that each random variable X t denotes one realization of the BN, this realization being indexed by the upperscript t (1 ≤ t ≤ T ). Moreover each realization X t = (X t 1 , X t 2 , . . . , X t N ) is a multivariate random variable where the subscript i of X t i denotes node number i in the BN. The measurements dataset is denoted as D = (X 1 , X 2 , . . . , X T ).

Because we consider independent successive realizations of the BN and because of the factorization of the joint probability of nodes (Eq. 2) the log-likelihood of the dataset D can be splitted into a sum:

L(D; Θ) = T t=1 L(X t ; Θ) = T t=1 N i=1 log θ i,pa(X t i ),X t i (3)
We are now going to make explicit that this sum depends on the parameters θ i,j,k by observing that many terms are the same in the above sum. Indeed log θ i,pa(X t i ),X t i = j,k 1I pa(X t i )=j,X t i =k log θ i,j,k and it is possible to merge the equal terms:

L(D; Θ) = i,j,k log(θ i,j,k )N i,j,k (4) 
where

N i,j,k = T t=1 1I pa(X t i )=j,X t
i =k counts the number of records in the dataset D where the value of node X i is k and the set of values of its parent nodes pa(X i ) is j.

To maximize the likelihood of the dataset D it is then necessary to solve a series of constrained maximization problems:

max k log(θ i,j,k )N i,j,k subject to k θ i,j,k = 1 (5)
There are as many maximization problems as combinations of values for (i, j) and each optimization is performed with respect to the third subscript k of θ i,j,k .

Each constrained maximization problem is similar to the problem solved in section II-A with a lagrange multiplier method. The result is then:

θi,j,k = N i,j,k k N i,j,k (6) 
which counts the empirical frequency of X i = k when pa(X i ) = j.

III. MLE FROM INCOMPLETE DATA WITH THE EM ALGORITHM

A. Incomplete data

In statistics, missing data occur when no data value is stored for some variables in an observation. This can occur because measurements are not performed properly or because some variables are not reported. In BN some nodes are observations/measurements whereas other nodes are hypotheses or latent variables. Latent variables (as well as hypotheses) are not directly observed but rather inferred from measurements. BN is consequently a setting in which incomplete data occur.

MLE from incomplete data is not straightforward. Indeed most of the time it is not possible to compute the value of the likelihood of the dataset with incomplete data. Indeed let us assume that X is the vector of observed data (or measurements) and Y is a vector of missing data (or latent variables). Computing the joint likelihood p(X, Y ) of the complete data (X, Y ) is supposed to be straightforward under the considered model; this model can be for example a BN (in which case the expression of the likelihood is given by Eq. 2), or another parametric model that captures dependencies between random variables.

As Y is not measured it is unfortunately not possible to tune the parameters of the model by maximizing p(X, Y ; θ) with respect to θ. Rather, the likelihood of observed data p(X; θ) should be maximized with respect to θ. But the computation of p(X; θ) is most of the time not tractable. Indeed p(X; θ) = Y p(X, Y ; θ) and the number of terms in the sum Y is huge since this the product of the number of states of each component of the vector Y . The complexity grows exponentially fast with the number of components in Y (e.g. number of nodes that represent a latent variable in the BN).

As the likelihood of the observed data p(X; θ) is not computationally tractable it is even more an issue to maximize p(X; θ) with respect to θ.

B. The Expectation Maximization (EM) algorithm

The problem of MLE from incomplete data can be solved with the EM algorithm [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF]. As explained above computing the log-likelihood log p(X; θ) of the observed data is not possible, whereas computing the log-likelihood of the complete data log p(X, Y ; θ) would be possible if only Y was not missing. It would then be possible to maximize log p(X, Y ; θ) with respect to θ.

As Y is missing, rather than maximimizing log p(X, Y ; θ) with respect to θ, the EM algorithm attempts to maximize iteratively the expected value of the log-likelihood of the complete data. Let us introduce Q(θ, θ ) as follows:

Q(θ, θ ) = E(L(X, Y ; θ)|X; θ ) (7) 
In the equation above E(•|X; θ ) stands for the expected value under the probability distribution of the missing data Y conditionally to the measurements X (for the value θ of the model parameters set).

EM is an iterative algorithm. At each iteration Q(θ, θ r ) = E(L(X, Y ; θ)|X; θ r ) is maximized with respect to the first parameter θ, that is to say:

θ r+1 = Arg max θ Q(θ, θ r ) (8) 
Each iteration is decomposed into two steps: the expectation step (E step), and the maximization step (M step). The E step computes the probability distribution of missing data Y conditionally to the measurements X under the model with parameter θ r (i.e. the current value of the parameter estimate). In practice this comes down to computing some statistics that summarize this conditional probability distribution, as it will be explained later in the particular case of the Bayesian network model. The E step is the most demanding step in the EM algorithm.

In the M step the function Q(θ, θ r ) is maximized with respect to the first parameter θ so that an updated value θ r+1 of the parameter estimate is obtained. Very often there exists a closed-form solution of this maximization problem so that the problem is simple to solve.

As stated before the EM algorithm is an iterative algorithm. It must be initialized with a value θ 0 . At each iteration the parameter estimate is updated as follows: at iteration 1, θ 1 = Arg max θ Q(θ, θ 0 ), then at iteration 2 θ 2 = Arg max θ Q(θ, θ 1 ) and so on until the algorithm converges to a stable value of θ. It has been proven that each iteration of EM increases the log-likelihood of measurement data, that is to say:

L(x; θ r+1 ) ≥ L(x; θ r ). (9) 
As a consequence θ r converges to a maximum of the loglikelihood L(X; θ) of measurement data (or a saddle point).

It is important to note that this maximum can be a local (but not necessarily global) maximum. In practice this means that the initial value θ 0 must be selected with care in order to avoid problems of convergenge to local (but not global) maximum.

IV. EM ALGORITHM FOR BAYESIAN NETWORKS

A. M step

The EM algorithm has been adapted to the particular case of Bayesian networks [START_REF] Lauritzen | The EM algorithm for graphical association models with missing data[END_REF]. In BN some nodes X i may represent variables that are missing. In this context the EM algorithm can be used to infer the probabilities θ i,j,k = P(X i = k|pa(X i ) = j) from measurement data (that is to say from nodes which are not missing).

Recall from Eq. 4 that the log-likelihood has the following expression L(X;

Θ) = i,j,k log(θ i,j,k )N i,j,k where N i,j,k = T t=1 1I pa(X t i )=j,X t i =k .
Let us now make explicit that some nodes are measurements while other nodes are not observed (missing data). The former will be denoted as X o,t i while the latter will be denoted as X m,t i . X o,t i is the value of node X i in the t-th observation of the Bayesian network (t represents "time") and the upperscript o means that X o,t i is available (observed). X m,t i is the random variable associated to node X i in the t-th observation of the Bayesian network and the upperscript m means that X m,t i is missing (i.e. is not measured or the measurement value is not available).

As part of the nodes are not observed they are considered as random variables so that

N i,j,k = T t=1 1I pa(X t i )=j,X t i =k
is a random variable. The Q function of the EM algorithm introduced in Eq. 7 has the following expression:

Q(θ, θ ) = i,j,k log(θ i,j,k ) Ni,j,k (10) 
where Ni,j,k represent the expected count of number of records where the value of node X i is k and the set of values of its parent nodes pa(X i ) is j:

Ni,j,k = E( T t=1 1I pa(X t i )=j,X t i =k |X o , θ ).
In this equation X o is the set of measurement data. As the expectation E(•) is linear and as the expected value of the indicator function of a random event equals the probability of this event, it holds that Ni,j,k = T t=1 γ t i,j,k where γ t i,j,k = P(pa(X t i ) = j, X t i = k|X o,t ; θ ). This last quantity represents the probability that X t i = k and pa(X t i ) = j conditionally to the measured nodes in the t-th observation of the Bayesian network.

The M step is the maximization of k log(θ i,j,k ) Ni,j,k under constraint k θ i,j,k = 1 for all values of (i, j). The result of the M step updates the probabilities θ i,j,k as follows:

θ r+1 i,j,k = Ni,j,k k Ni,j,k (11) 

B. E step

The E step computes, for each node X i of the Bayesian network, the conditional joint probabilities of X i and its parents γ t i,j,k = P(pa(X t i ) = j, X t i = k|X o,t ; θ r ) as well as the expected counts Ni,j,k = T t=1 γ t i,j,k . The computation of the conditional joint probability γ t i,j,k is based on the algorithm of propagation of evidence X o,t on the junction tree [START_REF] Lauritzen | Graphical models[END_REF] [START_REF] Madsen | Lazy propagation: a junction tree inference algorithm based on lazy evaluation[END_REF] [19] representation of the Bayesian network. This inference algorithm allows us to run EM on the Bayesian network without worrying about loops. A potential is associated to each clique C p and C q of the junction tree and their common separator S pq . A potential is a value associated to the random variables belonging to a clique (or separator).

The initial value of potentials is set as follows:

φ Spq = 1 φ Cp = Xi∈Cp,pa(Xi)⊂Cp∨pa(Xi)=∅ P(X i |pa(X i ); θ ) (12 
) where the product is taken over all the random variables X i that belong to the clique C p and whose parents pa(X i ) also belong to C p (or do not have parents because they are root nodes).

The algorithm of propagation of the evidence X o,t on the junction tree updates the potential of all cliques C p and C q and their common separator S pq . Assume the potential of a clique C p is already updated, i.e. the propagation of evidence already reached the clique C p but not yet the clique C q . The propagation algorithm proceeds as follows: the potential of the separator S pq is updated by marginalization, and then the potential of the clique C q is updated by applying a multiplicative factor:

φ * Spq = Cp\Spq φ * Cp φ * Cq = φ Cq φ * Spq φ Spq (13) 
In the equation above the notation C p \ S pq represents the set of variables of the clique C p which do not belong to the separator S pq . Propagation starts by recomputing the potentials of observed cliques., that is to say cliques where at least one random variable is observed. After that, updating operations are done in two recursive stages. The first stage (called collect) is performed by collecting evidence from leave cliques to root cliques. The second stage (called distribute) is performed by distributing evidence from root cliques to leave cliques.

At the end, the updated potential φ * Cp of a clique C p equals the joint probability of evidence X o,t and of random variables belonging to clique C p : φ * Cp = P(C p , X o,t ; θ r ) Note that for any family f = {X i ∪ pa(X i )} of variables there is at least one clique C z such that f ⊆ C z . Therefore the joint probability of the family f given measurement data X o,t can be computed by marginalization:

γ t i,j,k = P(pa(X t i ) = j, X t i = k|X o,t ; θ ) ∝ Cz\f φ * Cz ( 14 
)
where ∝ means "proportional to" and the proportionality factor can be obtained by normalization.

V. APPLICATION OF EM ALGORITHM TO GPON-FTTH ACCESS NETWORK

We applied in this section, the EM algorithm in order to learn the conditional probability distributions of the GPON-FTTH network model proposed in [START_REF] Tembo | A 3-layered selfreconfigurable generic model for self-diagnosis of telecommunication networks[END_REF], based on a Bayesian network. Before doing this, we first talk about our motivations, i.e. the reason for which we need the EM algorithm.

A. Context

In [START_REF] Tembo | A 3-layered selfreconfigurable generic model for self-diagnosis of telecommunication networks[END_REF], we proposed a model of the architecture and fault propagation of the GPON-FTTH access network [10] [11]. The GPON-FTTH network is made up of several PONs (Passive Optical Network). A PON has a tree-like topology which connects an Optical Line Terminal (OLT) with a maximum of 64 Optical Network Terminals (ONTs) in our example (see figure 2). Each ONT is connected to a RG (Residential Gateway) via an Ethernet link. A PON is a point-to-multipoint link through the ODN (Optical Distribution Network). The ODN can be decomposed into several splitting levels and each splitting level contains several splitters. Since there is no interaction between PONs, and all PONs have the same behavior, we have modeled one single PON. This model can be replicated to any PON of a GPON-FTTH access network. The model of the GPON-FTTH network proposed in [START_REF] Tembo | A 3-layered selfreconfigurable generic model for self-diagnosis of telecommunication networks[END_REF] is a Bayesian Network (BN) which encodes expert knowledge acquired from ITU-T standards [10] [11]. The detailed description of nodes and dependencies of the GPON-FTTH model depicted by the figure 3 is given in [START_REF] Tembo | A 3-layered selfreconfigurable generic model for self-diagnosis of telecommunication networks[END_REF]. From this expert knowledge we have built a causal graph of the full chain of dependencies between faults or root causes, intermediate faults and observed alarms. We have turned this graph into a Bayesian network by determining an order of magnitude of conditional probabilities which quantify the strength of dependencies between nodes in the graph.

We have used this model to perform self-diagnosis of the GPON-FTTH network. In order to assess the performance of self-diagnosis with this BN model we have used two different approaches. A first approach described in [START_REF] Tembo | A 3-layered selfreconfigurable generic model for self-diagnosis of telecommunication networks[END_REF] was to set up a physical testbed with a PON with two ONTs. Different faults were emulated, and alarms as well as counters were collected. The diagnosis of the root cause of alarms was performed with the BN approach. Seven usual fault scenarios were considered. Diagnosis results were inspected manually in order to assess their reliability. This demonstrated that self diagnosis based on a BN model was a reliable and promising approach.

In a second phase, a database of 10611 real diagnosis cases collected by Orange on a commercial GPON-FTTH network in july-august 2015 was analysed. Two tools have been compared: PANDA, the self-diagnosis tool based on the BN approach described in this paper, and DELC, a selfdiagnosis tool based on deterministic decision rules. DELC is currently used to diagnose faults in the operational network. The different diagnosis were: no default (i.e. nominal GPON-FTTH network), faulty ONT, attenuating drop fiber, broken drop fiber, faulty or shutdown power supply, broken feeder fiber and unknown root cause. Over 10611 cases, DELC and PANDA took the same decision in 9768 cases (with 7393 cases of "no default"). We analysed into details the cases where the diagnosis of DELC and PANDA were not the same. Interestingly, there were 766 cases out of 10611 where DELC was not able to produce a diagnosis whereas PANDA diagnosed most of the time that there was no default (716 cases) or located a particular default (50 cases: either faulty ONT, or attenuating drop fiber or power supply shutdown). DELC was not able to diagnose those cases because they were complicated and did not correspond to any of its decision rules. Maintaining a rule based decision system is a tedious task and it is almost impossible to take into account any possible combination of faults and alarms.

Nevertheless, we think that we can improve these selfdiagnosis results if the parameters, i.e. the conditional probability distributions of the GPON-FTTH model are fine tuned by a machine learning algorithm from the tremendous amount of data generated by the components of this network. The GPON-FTTH network data contain alarms, transmitted and received power of network components, transmission error counters, currents, voltages, temperatures and so on. Our dataset corresponds to two months of measurement on a commercial PON of the Orange FTTH access provider in julyaugust 2015. In pratice, there is always some situations where the network management system fails to get some values from some network components. These situations may be due for example to the filtering policy of network data applied by the network operator, or due to the communication loss between the network management system and one or many network components or due to some older devices that may not generate some facts. These situations lead to missing variables. That is why we have used the EM algorithm in order to As explained in section III, the EM algorithm is initialized with a value θ 0 of the parameters vector. In our case θ 0 has been determined from operational expertise in diagnosing GPON-FTTH networks.

Figure 3 is a model of a PON of the GPON-FTTH network. A PON may contain up to 64 ON T s. All PONs have the same behaviour and there is no interaction between PONs. All ON T s also have the same behaviour. Therefore we have chosen to run the EM algorithm on a Bayesian network which models a PON containing only one ON T . The parameters of this ON T can be generalized to all ON T s connected to any PON. Note that if the GPON-FTTH changes, i.e. new nodes are added into the PON model, only the parameters of these new nodes and former nodes whose the parents set is updated, will be revaluated by the EM algorithm. We do not need to retrain completely the Bayesian network model.

B. Results of the application of EM algorithm for parameters learning of the GPON-FTTH network model

In this section, we assess the benefits of fine tuning the parameters by the EM, with respect to a diagnosis based on a BN which parameters have been set by an expert. For doing so we compare the diagnosis results of PANDA over 5481 experimental cases in two situations: the model parameters have been set by an expert, or they have been moreover fine tuned with an EM by mining the whole dataset.

Figure 4 displays the evolution along the first iterations of the EM algorithm of the log-likelihood value of the 5130 real diagnosis cases collected by Orange in july 2015 on an operational GPON-FTTH network. As stated by Equation 9 one can observe on Figure 4 that the log-likelihood of measurement data increases at each iteration of the EM algorithm. The loglikelihood stabilizes at a maximum value after 7 or 8 iterations, and the algorithm then converges. From a practical point of view it is important to mention that we have encountered a few numerical problems with real measurement data. These problems appear when data do not perfectly fit to the theoretical model (which bounds to happen when one deals with real data), for example if the dataset contains outliers. One problem that we have encountered concerns the update of some parameters by the M-step of the EM algorithm. In some cases it occurred that the value of a few expected counts Ni,j,k was equal to 0. This must be interpretated as some combinations of events being considered by the E-step as absolutely impossible (taking into account measurement data). This causes numerical problems when one seeks to update the corresponding parameters by Equation [11] (divide by zero error). In those infrequent cases we have decided that the corresponding parameter should not be updated, that is to say that it is considered as a constant which is not estimated from data but set from expert knowledge.

C. Diagnosis results

At that point we had two models: the expert model and the learned model. We have performed the diagnosis on the same cases separately with the two models. Table I shows a 2-dimensions confusion matrix which compares self-diagnosis results of the two models. The rows and columns of this matrix respectively represent self-diagnosis carried out with the expert model and with the learned model. Fine tuning the parameters of the model changed the diagnosis results in 185 cases out of the 5481 cases. This means that the order of magnitude of the parameters had been evaluated correctly by the expert. However it is interesting to analyze into more details cases where the diagnosis was different with a finely tuned BN, i.e. the cases corresponding to non-zero values outside the diagonal of the confusion matrix.

Each table from II to VI compares the two models for each instance of those cases (i.e. each non null element outside of the diagonal of the confusion matrix). The title of each of these tables is a short description of observations collected on the operating GPON-FTTH network for the considered case. 
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TABLE I 2

 I -DIMENSIONS CONFUSION MATRIX OF SELF-DIAGNOSIS RESULTS

Table II shows that, on a P ON of forty ON T s, when the upstream received power of an ON T denoted by ON T 1 is low while the downstream received power of ON T 1 is nominal, the expert model does not detect any fault. This is a wrong diagnosis carried out by the expert model since the upstream optical channel between the OLT and ON T 1 is experiencing attenuation. On the other hand, the learned model computes the appropriate diagnosis, i.e. attenuation of the drop fiber F iberDB 1 of ON T 1 . Note that OK, AT and BR denote Table III shows a case for which the received power levels of ON T 1 are nominal while those of neighbors of ON T 1 are low. In this situation the expert model diagnoses that the drop fiber of each neighbor of ON T 1 experiences attenuation. Doing so, the expert model assumes that when the received power levels of at least one ON T on the PON are nominal, then the feeder fiber (denoted by F iberT ) shared by all ON T s connected on the PON cannot experience attenuation although the received power levels of other ON T s are low. This reasoning is not always true since for this diagnosis case it is the feeder fiber that attenuates. But this attenuation has not affected ON T 1 since its received power levels were very high before the beginning of the feeder fiber attenuation. On the other hand, the received power levels of neighbors of ON T 1 were nominal but very close to the lower bound of the range of nominal power values. We have observed 9 occurences of this case. Table IV illustrates a case for which the learned model diagnoses that the power supply of ON T 1 (denoted by AltON T 1 ) is faulty since the transmitted power level of this ON T is low although all received power levels are nominal. On the contrary the expert model did not understand this strange situation and diagnosed that there was no default. Table V shows a situation for which LOF [START_REF] Gruschke | Integrated event management: Event correlation using dependency graphs[END_REF] (Loss of Frame) alarm is observed for ON T 1 and the received powers of this ON T are missing. The expert model diagnoses that the drop fiber F iberDB 1 of ON T 1 is broken. This is wrong since the loss of frames between OLT and ON T 1 is not due to the cut of the fiber but rather due to the poor quality of signal transmitted on this fiber, i.e, to fiber attenuation. The learned model performs an appropriate diagnosis. This situation occurred in 14 cases in the test dataset. Table VI shows a situation of communication loss between the OLT and the unique ON T connected to the considered PON. In this case, no information about neighbors of ON T 1 help the expert model to discriminate between three root causes, feeder fiber attenuation (denoted by F iberT ), cut of the drop fiber or a faulty ON T 1 . The expert model does not identify one root cause as being much more likely than the two others. The learned model diagnoses that ON T 1 is faulty but in practice it is impossible to decide this diagnosis is really more appropriate than the two other ones. We have observed this situation 149 times during our evaluation.

VI. CONCLUSION

We have studied into details the EM algorithm in the case of Bayesian networks. Basics of parameter estimation with a ML approach have been reminded. Then the EM algorithm has been described into details. It makes it possible to fine tune the parameters of a probabilistic model from incomplete data. The case of EM for Bayesian networks has been described, in particular evidence propagation over the junction tree representation that forms the E step.

This has been applied to faults self diagnosis in GPON-FTTH networks. We have analyzed a dataset of around 10000 diagnosis cases over a commercial network. 5000 cases, representing one month of data, have been used to fine tune the parameters of the Bayesian network model with an EM algorithm. 5000 cases, representing the next month of data, have been used to diagnose faults. We have compared the diagnosis results when parameters have been set by an expert, and when they have been trained with an EM. The few cases where the diagnosis was not the same have been looked into details. The learned model reasonably improves self-diagnosis previously carried out by the expert model.

As future work we plan to automatically fine tune the graph of causal dependencies of the Bayesian network model i.e. learn or prune dependencies by mining real diagnosis cases.