
HAL Id: hal-01394336
https://hal.science/hal-01394336

Submitted on 9 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reproducing DNS 10Gbps flooding attacks with
commodity-hardware

Santiago Ruano Rincon, Sandrine Vaton, Stéphane Bortzmeyer

To cite this version:
Santiago Ruano Rincon, Sandrine Vaton, Stéphane Bortzmeyer. Reproducing DNS 10Gbps
flooding attacks with commodity-hardware. IWCMC 2016 : 12th International Wireless Com-
munications & Mobile Computing Conference, Sep 2016, Paphos, Cyprus. pp.510 - 515,
�10.1109/IWCMC.2016.7577110�. �hal-01394336�

https://hal.science/hal-01394336
https://hal.archives-ouvertes.fr

Reproducing DNS 10Gbps flooding attacks with
commodity-hardware

Santiago Ruano Rincón∗, Sandrine Vaton∗, Stéphane Bortzmeyer†
∗Institut Mines-Télécom - Télécom Bretagne - 29238 Brest Cedex 3 - France
†AFNIC - Immeuble International - 78181 Saint-Quentin-en-Yvelines - France

Email:{santiago.ruano-rincon,sandrine.vaton}@telecom-bretagne.eu, bortzmeyer@nic.fr

Abstract—Being DNS an essential service for Internet reliabil-
ity, it is an attractive target for malicious users. The constantly
increasing Internet traffic rate challenges DNS services and their
attack detection methods to handle actual queries while being
flooded by tens of millions of malicious requests per second.
Moreover, state of the art on hostile actions evolve fast. DNS
administrators continuously face new kinds of attacks and they
regularly need to evaluate their detection systems. We have
studied different approaches to develop a tool able to reproduce
state-of-the-art attacks, aiming to make it easy to evaluate coun-
termeasure strategies. We have focused on commodity-hardware,
DPDK and MoonGen to build a flexible flood query generator.
The described tool can saturate a 10Gbps link, sending more
than 12 million attack-like random DNS requests per second.

I. INTRODUCTION

It is well-know that DNS is an Internet critical service.
Internet architecture makes high-level services require DNS
to identify resources associated to specific domain names.
Out-of-service DNS servers easily yield to partially blackout
Internet, and low-performance DNS servers slow down the
rest of network activity depending on them. It is then an
attractive target to act against Internet resilience, especially
at nation-wide context when random qnames attacks address
a specific country Top Level Domain (TLD) [1]. Moreover,
DNS servers have been susceptible to be used as attacking
sources, via reflect-and-amplify methods [2]. To that extend,
DNS administrators need monitoring tools that help to detect
and classify state-of-the-art flooding attacks, and to identify
and understand zero-day vulnerabilities.

Also, increasing traffic challenges the current infrastructure,
and it is common that detection systems cannot hold the CPU-
intensive analysis under actual flooding, and even crash before
the server they protect does so [3].

In this paper we study different supports to build a DNS
flooding generator. In Section II we describe the state of the art
on attacks against DNS and currently identified countermea-
sures. Considering that flexibility is an important requirement,
we have chosen to rely on commodity-hardware and packet
dispatching controlled by software. Then, in Section III we
study different commodity-hardware network frameworks, and
in Section IV, different existing traffic generators relying on
them.

In Section V, we describe how we have built a DNS flooding
tool based on the MIT-Licensed MoonGen [4], that focuses on
Lua scripting and the underlying Data Plane Development Kit

(DPDK) technology. Finally, we evaluate our tool’s perfor-
mance in Section VI.

The developed generator represents the first element on a
testbed aimed to analyse countermeasure strategies against
DNS flooding attacks. As we describe in the paper, using a
single CPU core, this tool is able to saturate a 10Gbps link
at wire-rate with structured DNS ∼74-byte packets, similar
to random qnames flooding or reflect-and-amplify queries.
DNS administrators might use this generator to stress their at-
tack detection systems and evaluate countermeasure strategies.
French legislation, mainly the 323-3-1 article from the Penal
code, makes it legally impossible to openly publish software
especially able to act against computer infrastructure, unless
legitimate reasons such as research on security. Nevertheless,
the DNS protocol support that we were required to create
for MoonGen is currently available in its upstream sources.
We invite interested security researchers to contact us to gain
access to the full code.

II. STATE OF THE ART ON DNS FLOODING ATTACKS AND
COUNTERMEASURES

DNS servers face different kinds of flooding attacks to-
day. In this paper, we focus on two of the most important:
random qnames and reflect-and-amplify. In this section, we
characterise them and describe some of the currently identified
countermeasures.

A. Random qnames attack

The Distributed Denial of Service (DDoS) random qnames
are commonly used to attempt against the availability of au-
thoritative servers of a specific domain. As its name suggests,
the attacker floods the server with queries composed of non-
existent random prefixes and a fixed domain suffix found under
the servers’ authority. As it is common in DDoS, this attack
requires the offender to control and coordinate a high number
of DNS clients able to send packets forging their source IP
addresses.

AFNIC reports a random qnames attack on September 4
2014, addressed against the Wallis-et-Futuna’s .wf domain,
that shares the TLD servers with France [5]. This attack lasted
for fourteen hours, reaching a maximum rate of one million
requests per second. DNSMON, a DNS active measurement
system [6] from the RIPE Atlas network, reports more than
99% unanswered queries from the e.ext.nic.fr server, between

11:00 and 13:10, during this attack. Offenders were then able
to partially made unavailable one of the AFNIC TLD servers.

Another random qname example is the big attack against
the DNS root in November/December 2015 [7]. Note also
that many DDoS attacks are not discussed or even announced
publicly, such as the attack against RIPE-NCC in January
2016, whose technical report made at a DNS-OARC meeting
is not public. These attacks could imply unusual packet char-
acteristics, such as transmission on TCP or IPv6, but packets
present the following general pattern.

09:12:34.802102 IP (tos 0x0, ttl 48, id 11149, offset
0, flags [none], proto UDP (17),
length 86) 74.125.43.82.48819 > 194.0.9.1.53: 12752
[1au]
A? abwvgxmfktotuh.www.dafa888.wf. (58)

Generating a synthetic random qnames attack requires then
to consider the following packet characteristics: (1) Varying
source IPv4 or IPv6 addresses, (2) DNS server’s IP as fixed
destination, (3) varying query types, i.e., A, AAAA, ANY
or TXT, and (4) varying queried qname over a fixed domain
suffix, such as randomqname.example8888.com.

B. Reflect-and-amplify attack

The second type of attack we focus on is reflect-and-
amplify, whose strategy is to make use of DNS servers to
flood a target [2]. In this case, the attacker control several
machines, making them to spoof their IP addresses with the
victim’s and to query a DNS server. Looking to produce from
it the largest possible packet answer, it is common that the
attacker takes advantage of flaws in the design of the protocol
stack and of later extensions. For example, the DNS extension
EDNS(0) [8], defined to overcome the size restrictions of
DNS messages when sent over UDP, and that was required
to exchange large DNSSEC records.

Two kind of DNS servers are commonly concerned to reflect
the DNS messages: open resolvers and TLD servers. When
using open resolvers, the attacker usually controls a domain
where it includes large resources, specially of type TXT.
TLD servers use to have better resources so they are better
reflectors, but in general, they are better protected so it is more
difficult to use them. To take advantage of TLDs and look
for the largest amplification as possible, the attacker might
request ANY type of resources, especially on DNSSEC signed
domains, and advertise large UDP buffer size in EDNS’s OPT-
pseudo records. As we explain latter, the Shield of Perseus
(SOP) generator [2] is able to send well-structured reflect-
and-amplify queries, such as the following:

09:39:38.229993 IP (tos 0x0, ttl 20, id 16640,
offset 0, flags [none], proto UDP (17), length 68)

192.168.24.1.mdns > 192.168.24.2.domain:
[udp sum ok] 55309+ [1au] ANY? example.com. ar: .
OPT UDPsize=9000 OK (40)

Reproducing reflect-and-amplify attacks needs to take into
account following packet characteristics: (1) Fixed victim’s
spoofed address as source IP; (2) public open DNS resolvers
or TLD servers IP addresses; (3) commonly, query type

ANY; (4) fixed or randomized qname; (5) include an EDNS0
additional record advertising a large buffer size, e.g. 9000
bytes as in most attacks in 2011-2012, a value which never
appears in real requests, where the typical buffer size is 4096
bytes; (6) indicate the resolver handles DNSSEC security
records.

The design of a flexible DNS generator requires to allow the
user to set up different packet characteristics, including fixed
and varying fields. Although, it should not be limited to the
attacks that we have described here, but rather make it easy
to take into account other scenarios, packet fields and further
DNS extensions.

C. DNS monitoring and measures against flooding attacks

Besides the common and classic Nagios [9], there are free
software tools that can be used by DNS administrators, such
as the Ripe Atlas Network DNSMON [6], or the components
of DNSwitness, DNS delve and DNSmezzo [10].

DNSMON and DNSdelve are active measurement tools.
DNSMON uses the RIPE Atlas measurement network to
provide an up-to-date service overview of DNS root and
different TLD servers. It continuously measures the perfor-
mance between RIPE anchor probes and the DNS servers.
DNSMON makes it possible to query historical data, as the
status of .fr servers during the random qnames attack described
above. DNSdelve allows the user to ask DNS servers explicit
questions related to the content of the zone, such as: “how
many domains have at least an IPv6 Web server?” or “how
many domains have SPF enabled?”

In contrast, DNSmezzo is a framework to capture and
analyse DNS packets and perform passive measurement. DNS-
mezzo stores data in relational databases to allow long-term
surveys. It makes it possible to query for example, the most
requesting clients or “how many queries use EDNS0 and for
which sizes?”

It is important to note there are already identified actions
to countermeasure DDoS flooding attacks. For example, DNS
server implementations allow to set a Response Rate Limit
(RRL) [11], and Linux’s netfilter can drop ANY type queries.
In a broader scope, Best Current Practices RFCs [12], [13]
recommend different measures including to deny packets with
forged IP addresses, close open resolvers, or authenticate
DNS clients by signature. These can have a larger positive
impact, but require global coordination and action from several
Internet actors, especially network providers.

Despite the existing monitoring tools and standardised best
practices, we can affirm that the DDoS problem is not solved
yet, and research is still required for implementing tools that
prevent making DNS servers unavailable.

III. NX10GBPS TRAFFIC PROCESSING FRAMEWORKS

We can categorise the existing traffic generators accord-
ing to their base: hardware appliances, FPGA and software.
Hardware-based devices, such as those produced by Xena,
commonly carry out high-speed generation and are highly
accurate to control packet rates and timestamping. They are

focused on benchmarking according to standard methodolo-
gies such RFC 2544, RFC 2889 or RFC 3918. Xena also
provides scripting interface to control packet generation and
capture. However, these devices are not easily affordable given
their costs. At their turn, NetFPGA cards are built on open
source hardware and software, and are especially designed for
research and teaching, being also less expensive than hardware
appliances. NetFPGA cards are able to achieve highly-accurate
packet generation in terms of rates and inter packet gaps.

Software solutions are based on general-purpose computers
and specialized network cards produced by Intel and Melanox,
among other providers. Even though these solutions relate
to specific hardware, they are more affordable than FPGA-
based approaches. Software-based solutions depend on the
framework that delivers the packets to the hardware interface.
The current version of the standard Linux network framework,
the New API (NAPI), is poorly efficient in 10Gbps links. The
need to provide an alternative has been largely identified by
academic and industrial research. Moreno [14], Gallenmüller
et al. [15] have studied the NAPI’s characteristics that create
limitations and bottlenecks. Example of such characteristics
are per-packet management of resources, serialized access to
traffic for further analysis on a single point, among others.

Different network frameworks such as DPDK [16], HPCAP
[17] PFQ [18], and PF RING [19], have been developed
to overcome these limits. While they implement different
strategies to take advantage of modern network interfaces
capabilities, we can find some similarities among them. For
example, they provide multicore support, they manage mem-
ory more efficiently, create direct parallel paths between hard-
ware queues and high-level applications, avoid intermediate
copies mapping memory regions for direct access, and process
batches or streams instead of single packets.

We can also identify some of their particularities. For
example, DPDK [16] provides a set of data plane libraries
and drivers. Being mainly developed by Intel, DPDK has a
strong focus on specific network interfaces and architectures.
DPDK proposes an Environment Abstraction Layer (EAL)
that interfaces between the hardware environment and the
application relying on it. Its main advantages are its stable
status and that it counts with an important support from Intel’s
6WIND and other providers.

HPCAP is a promising network engine developed by Vı́ctor
Moreno, focusing strongly on packet capture [14]. According
to Moreno, HPCAP design took into account goals not consid-
ered by other frameworks: accurately timestamping incoming
packets, controlling packet capture on non-volatile media, and
dropping duplicated packets. HPCAP focuses to Intel 82599
network interfaces, providing a kernel driver related to the
Intel’s ixgbe. To ease the interface with C user applications,
HPCAP provides the M3OMon library framework. However,
these tools lack of a mature and stable release.

Nicola Bonelli et al. designed the PFQ [18] network frame-
work, especially optimized for multi-core architectures and
multiple hardware queue network interfaces. In contrast to
other approaches, PFQ provides a kernel driver that connects

against any standard network interface kernel driver, then it has
less restrictions in terms of hardware. It relies on parallelism
to saturate a 10Gbps link using the Intel ixgbe vanilla driver.
It also provides a programming language framework for C,
C++ and Haskell, as well as pfq-lang, a functional language
designed to process packets at in-kernel early stage.

Luca Deri et al. have developed the PF RING [19] frame-
work, designed for Intel network interfaces, that improves
the rates achieved using the Linux NAPI. It includes a Zero
Copy (ZC) framework version, inspired by the predecessor
PF RING Direct NIC Access (DNA), able to achieve line-
rate on 10Gbps links. This ZC API provides building blocks
to perform zero copy operations across threads and user-space
applications. However, the PF RING ZC’s non-free license
limits the use of this framework version.

IV. SOFTWARE-BASED TRAFFIC GENERATORS

It is possible to find software-based traffic generators, but
we focus here on those especially designed for high perfor-
mance on 10 Gbps links.

A. General purpose generators

For example, Bonelli et al. designed a generator [20] that,
relying on parallelism and a new PF DIRECT socket for the
standard Linux network framework, is able to send 13 million
64-byte packets per second, near to line-rate, and to saturate
a 10 Gbps link with 128-byte packets. Concerning PF RING,
the zsend generator is able to achieve line-rate with the zero-
copy module. But the non-free license limited our tests. As
far as we understand, HPCAP lacks a packet generation tool,
documentation on how to build it, or a high-level framework
that allows to well format packets.

We can find different DPDK-based traffic generators avail-
able, such as Wind River’s pktgen-dpdk [21], an accelerated
version of Ostinato [22] and MoonGen [4]. At the time of this
writing, none of them provided support to generate customized
DNS queries. Intel’s pktgen was designed to run over DPDK.
It is able to send or forward synthetic traffic at Nx10Gbps,
and it claims that it can be customized via Lua scripts.
However, we have been unable to reproduce traffic from script
examples included on the source, and documentation lacks
information about how to enhance it. At its turn, Ostinato was
built over PCAP and it was not designed to produce 10Gbps
traffic. However, there have been efforts to adapt it to DPDK.
Ostinato’s main particularity is a graphical front-end that aims
at making simple to customize the traffic to produce. At the
same time, its performance may be impacted by this design
choice.

MoonGen is a traffic generator that wraps DPDK and
provides network stack control by Lua user scripts. Its authors
affirm they designed MoonGen requiring that it should be as
flexible as possible, it should be able to saturate 10Gbps links
with 64-byte packets, and it must control rates and timestamp
packets with a high precision level.

From our point of view, the main MoonGen’s feature, is
that it provides the user with the ability to manage packets

via Lua scripts. MoonGen relies on LuaJIT [23], a just-in-time
compiler, and its Foreign Function Interface (FFI) library that
makes it possible for Lua to directly interact with DPDK’s C
libraries and structures. MoonGen authors chose Lua because
Snabb Switch [24] have previously demonstrated that it can
be used to process packets at high rates. MoonGen confirms
this, not only achieving full wire-rate on a single 10Gbps link,
but it also rating 178.5 Mpps at 120Gbps thanks to multiple
cores controlling six dual-port network cards. Depending on
hardware availability, authors claim that it could scale to
100GbE, considering that multiple cores can handle a single
port.

MoonGen combines software and hardware-based methods
to mitigate timing issues and control inter-packet gaps. It also
takes advantage of hardware timestamping to measure latency
under sub-microsecond precision.

Authors have also identified some limitations, mainly given
by LuaJIT, which can lead to pause times when collecting
garbage. MoonGen disables then the garbage collector for
most experiments without risk, because all the packet buffers
are handled by DPDK, making them transparent to user scripts.

The lack of a mature and fixed release, detailed docu-
mentation and stable example scripts could be considered as
the important limitations. However, we have been able to
reproduce script examples that can saturate a 10Gbps link
with 64-byte packets or with TCP-SYN flooding. Taking into
account the high level of abstraction that it provides to control
packets, we can consider MoonGen as a sound base to build
a DNS flexible query generator.

B. DNS-specific attack generators

It is difficult to find publicly available DNS query generators
especially designed to produce flooding attacks. We have
been able to evaluate SOP [2], that focuses on DNS reflect-
and-amplify attacks. SOP gives to the user the flexibility to
generate queries from fixed qnames from static IP addresses
until random qnames from varying sources. It takes into
account EDNS(0) additional records, allowing to advertise a
UDP buffer size, and indicate if the reflector is able to handle
DNSSEC security records.

SOP relies on the Linux standard communication socket,
and as we show in the following sections, this makes it difficult
to fully take advantage of 10Gbps links. We compare our
generator with SOP in the following Section.

V. A FLEXIBLE DNS QUERIES GENERATOR BASED ON
DPDK+MOONGEN

As stated before, we have chosen MoonGen by the flex-
ibility it provides to control packets generation by high-
abstraction level Lua scripts. In our case, we needed to design
scripts that create attack-equivalent DNS flooding queries, at
the maximum possible rate. These scripts require to be easily
modifiable to provide the ability to adapt the generator to new
or further kind of attacks. In this section we describe how we
have structured the scripts, how we have evaluated them and
the results we have achieved.

A. MoonGen user scripts to generate DNS queries

As described in [4], MoonGen user scripts require a master
function that configures the running environment and then
spawns slave functions linked to a specific core and port.
These slave functions actually create the packets and send the
traffic. MoonGen’s Lua scripts run transmission loops at their
core, which deliver packet buffers to memory space. Thanks
to DPDK, network interfaces directly access those memory
spaces, avoiding the overhead produced by the standard net-
work framework of Linux, as explained in the previous section.

The base of our approach is to take advantage of the
MoonGen’s ability to format and fill the packets by using
calling functions, when allocating buffers in memory. To
clarify this, the following code snippet provides an example
about the function that create memory pools for DNS queries
inside the slave function.

1 l o c a l mem = memory . createMemPool (f u n c t i o n (buf)
2 buf : g e t D n s P a c k e t (i pv4) : f i l l {
3 i p 4 S r c =genIPv4AddSource () ,
4 i p 4 D s t = d n s S e r v e r I P ,
5 udpSrc =math . random (1 0 2 5 , 6 5 5 3 4) ,
6 ip4TTL=math . random (1 0 , 1 0 0) ,
7 udpDst =53 ,
8 dnsQDCount =1 ,
9 dnsARCount =1 ,

10 dnsMessageConten t =genBody () ,
11 p k t L e n g t h = packe tLen}
12 end)
13
14 l o c a l b u f s = mem: b u f A r r a y (MAX BURST SIZE)

In other words, mem’s createMemPool() calls functions
that can fill specific fields in the packet. As stated before,
DPDK can process batches of packets. This is related to the
bufs variable that creates a buffer, where each packet will be
formated and filled by mem’s createMemPool. Only when this
structure is defined, the main transmission loop is executed,
represented in the next simplified code.

1 w h i l e dpdk . r u n n i n g () do
2 b u f s : a l l o c (packe tLen)
3 −−o f f l o a d checksums t o NIC
4 b u f s : of f loadUdpChecksums (ipv4)
5 t o t a l S e n t = t o t a l S e n t + queue : send (b u f s)
6 end

In each iteration of this loop, the buffer allocates in memory
a burst of packets of the same specified length. Then, it
offloads the checksum calculation to the network interface and
finally the hardware queue sends the packet buffer through the
port the slave function is linked to.

In the example code snippet listed above, we create packets
containing one query and one addition record. One of the most
relevant callback functions is in charge of filling the DNS data
sections. In this case, the DNS Message Content is affected
by the value returned by genBody(), responsible for correctly
filling the query and additional record sections.

B. Varying packet fields

A flooding query generator requires to fill packets with
highly irregular values to produce a traffic pattern difficult
to identify. In Section II, we have listed fields related to the

16
00

17
00

18
00

19
00

20
00

21
00

22
00

CPU Frequency (Mhz)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
P
a
ck

e
ts

 p
e
r

se
co

n
d

1e7

SOP
Our DNS flooding tool
MoonGen's ex. script

Fig. 1. Packets per second versus CPU frequency. SOP, our DNS query
flooding script and MoonGen’s tx-multi-core.lua example script.

studied attacks that the generator must produce with varying
values. If we consider also characteristics inherent to the flow
of DNS packets, we can summarize the list of fields as follows:
(1) source IP address, (2) source port, (3) packet TTL, (4) DNS
query id, (5) queried qualified name, (6) query type and buffer
size, and (7) advertised UDP buffer size.

Generating irregular values may have an important impact
on performance, which, according to MoonGen authors, de-
pends on the script itself. We can consider two methods to
constantly modify these values: using randomizing functions
or through arithmetic operators, such as increasing a counter’s
value. Even if the arithmetic operation method requires less
CPU resources, we have chosen the Lua’s random() function
as a first option for all the fields. Except from the random
qname field, the listed values can be easily represented by a
single 8-, 16-, or 32-bit integer, and then a single random()
call is required. For simplicity, we consider the random qname
as a set of 8-bit ASCII characters.

C. Scaling up to Nx10Gbps

Considering that DPDK and MoonGen can distribute the
work load of different ports among different CPU cores, it
is possible to send traffic through different ports at the same
time. As explained in Section IV, MoonGen authors claim
it can scale to 100Gbps, so we can optimise the use of our
environment and use the maximum number of ports. Our
working environment is composed of a single-processor quad-
core Intel i7-2600K machine, running Debian Jessie, with 8GB
RAM and two Intel network interfaces: a dual SFP+ port
X520-DA2 and a dual RJ45 port X520-TA2.

MoonGen requires to reserve a CPU core for the master
function. Using the three remaining free cores, our script has
been able to saturate three ports in similar conditions between
each other, achieving 30Gbps. For synthetic random qnames
and reflect-and-amplify query packets, this represents more
than 35 million requests per second.

1 2 3 4 5 6 7 8 9 10
Number of random fields per packet

1.086

1.088

1.090

1.092

1.094

1.096

1.098

1.100

1.102

P
a
ck

e
ts

 p
e
r

se
co

n
d

1e7

Fig. 2. Packets per second versus number of random fields.

VI. EVALUATING PERFORMANCE

In this section, we first assess the impact of CPU frequency
on performance, comparing how our script performs against
two different tools, running at different CPU frequencies.
Then, we evaluate how the number of varying fields affects
the performance of our script.

A. Impact of CPU frequency

To evaluate the impact of CPU frequency, we consider the
SOP DNS query generator [2] and the MoonGen tx-multi-
core.lua example script, that generates “empty” packets.

Looking for a “worst case” scenario, we minimized the size
of the packets avoiding EDNS additional records, resulting in
a 74-byte packets. For SOP and our DNS flooding script, this
means patterns of DNS random queries. We configured them
to produce queries composed of two labels: an eleven-byte
random prefix and a two-byte fixed suffix. While tx-multi-
core.lua cannot produce DNS queries, but we have modified
it to generate packets of the same length than the other tools.

Figure 1 summarises the outcome of running the three
tools to send traffic for 30 seconds for different CPU clock
multipliers. First, SOP performed a 392852 pps mean rate at
1.6Ghz and increased up to 518949 pps at 2.2Ghz. Second,
MoonGen authors affirm it is able to saturate a 10GbE link
with 64-byte packets using a 1.5Ghz core, so we expected full
wire-rate for all the tests. Third, our script sent 11.51 Mpps
mean rate at 1.6Ghz, 12.2 Mpps nearly line-rate at 1.7Ghz
and full line rate from 1.8Ghz. The difference in performance
between both scripts, the MoonGen’s tx-multi-core example
and our DNS generator, can in particular be explained by the
table handling operations and the different function calls that
correctly format and fill the DNS packets in genBody().

B. Impact of random packets on performance

To evaluate how generating fully random packets impacts
performance, we have run our script against different numbers
of varying fields. Following a similar 74-byte packet structure

than the previous evaluation, we have set down CPU frequency
to 1600Mhz. As Figure 2 shows, variations between generating
1-random and 10-random field packets is not substantial. As
shown above, differences in performance disappear when CPU
frequency is at least 1800Mhz.

VII. CONCLUSION

We have studied different software network frameworks and
traffic generation tools, and chosen MoonGen to build a DNS-
flooding tool, since it provides the highest possible abstraction
level. Our implemented tool makes it possible to demonstrate
that commodity-hardware can provide a robust and flexible
support to simulate malicious traffic against DNS, similar to
aggressive DDoS at Nx10Gbps. Our tool is able to saturate
high-speed links with ∼70-byte DNS queries on a single Intel
i7-2600K CPU core, running at 1800Mhz.

Since attacks evolve fast, taking advantage of different
protocol characteristics, the flexibility is a strong requirement
for a generator. Our developed tool makes it easy to control the
query and additional record sections in DNS packets, allowing
to reproduce qrandom and reflect-and-amplify attacks. It can
also create fully random packets without impacting transmis-
sion rates. This tool strongly relies on the MoonGen generator
and, in turn, on Intel DPDK. In consequence, it requires
specific network interfaces, although this hardware is more
affordable compared to FPGA- or hardware-based solutions.
The high-abstraction level provided by MoonGen and the Lua
scripts it is based on, guarantees the highest possible level on
flexibility. Any change required to, for example, consider a
new kind of attack or new extensions to the DNS protocol,
can be applied at scripting level. We have also shown that it
can scale up to multiples of 10Gbps, especially depending on
the number of available cores.

We consider this generator as a useful tool that helps
to evaluate strategies to protect DNS servers. 10Gbps-able
defense tools are currently needed, so our future work focuses
on evaluating the limits of commodity hardware to analyse
incoming traffic. While we can identify some similar require-
ments in tools that generate flood attacks on one side, and
tools that detect them on the other, the analysis of traffic
addressed to actual DNS servers needs to be highly precise.
DNS servers must guarantee to answer to any request, so
protection tools must avoid dropping actual queries. This
particular requirement challenges general-purpose hardware
and the software it relies on. Further work include evaluating
if DPDK+MoonGen is still a sound support or if a capture
focused-framework could be more suitable.

ACKNOWLEDGMENT

The authors would like to thank the developers of Moon-
Gen, upon whose high-abstraction level and giant shoulders
we stand. We also thank Télécom Bretagne student Nicolas
Tollenaere, who helped to evaluate the generation tools.

REFERENCES

[1] “Rapport 2014 sur la résilience de l’Internet français,” Agence Nationale
de la Sécurité des Systèmes d’Information, Tech. Rep., 2014.

[2] S. Bortzmeyer, “Persée et la Gorgone : attaques par déni
de service utilisant le DNS, et les contre- mesures,”
in Les Journées Réseaux (JRES), 2013. [Online]. Available:
http://www.bortzmeyer.org/files/jres2013-dos-article.pdf

[3] R. Dobbins, “State of Danger - talk at AusNog,” 2011,
last accessed on: February 26th 2016. [Online]. Avail-
able: http://www.ausnog.net/sites/default/files/ausnog-05/presentations/
ausnog-05-d02p05-roland-dobbins-arbor.pdf

[4] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and
G. Carle, “MoonGen: A Scriptable High-Speed Packet Generator,” in
Proc. IMC’15, Tokyo, Japan, Oct. 2015.

[5] S. Balakrichenan, “Disturbance in the DNS - talk at DNS-OARC,” 2014,
last accessed on: February 26th 2016. [Online]. Available: https://indico.
dns-oarc.net/event/20/session/3/contribution/37/material/slides/0.pdf

[6] RIPE NCC, “DNS Monitoring Service (DNSMON),” Last accessed
on: March 10th 2016. [Online]. Available: https://atlas.ripe.net/
dnsmon;https://frama.link/DNSMON-FR-2016-09-04

[7] M. Weinberg, “Review and analysis of attack traffic against A-root and
J-root on November 30 and December 1, 2015 - talk at DNS-OARC,”
2015. [Online]. Available: https://indico.dns-oarc.net/event/22/session/
4/contribution/7/material/slides/0.pptx

[8] J. Damas, M. Graff, and P. Vixie,
Extension Mechanisms for DNS (EDNS(0)), IETF, Apr. 2013. [Online].
Available: https://www.ietf.org/rfc/rfc6891.txt

[9] Nagios Enterprises, LLC, “Nagios.” [Online]. Available: https:
//www.nagios.org

[10] AFNIC, “DNSWitness.” [Online]. Available: http://www.dnswitness.net
[11] P. Vixie, “DNS Response Rate Limiting - ISC-TN-2012-1-Draft1,”

ISC, Tech. Rep., Apr. 2012. [Online]. Available: http://ss.vix.su/∼vixie/
isc-tn-2012-1.txt

[12] P. Ferguson and D. Senie, “Network Ingress Filtering: Defeating
Denial of Service Attacks which employ IP Source Address
Spoofing,” IETF, Tech. Rep., May 2000. [Online]. Available:
https://www.ietf.org/rfc/rfc2827.txt

[13] J. Damas and F. Neves,
Preventing Use of Recursive Nameservers in Reflector Attacks, IETF,

Oct. 2008. [Online]. Available: https://www.ietf.org/rfc/rfc5358.txt
[14] V. Moreno, “Harnessing low-level tuning in modern architectures for

high-performance network monitoring in physical and virtual platforms,”
Ph.D. dissertation, Universidad Autónoma de Madrid, 2015.

[15] S. Gallenmüller, P. Emmerich, F. Wohlfart, D. Raumer, and G. Carle,
“Comparison of Frameworks for High-Performance Packet IO,” in
Proc. ANCS’15. IEEE Computer Society, 2015, pp. 29–38. [Online].
Available: http://dl.acm.org/citation.cfm?id=2772722.2772729

[16] DPDK, “Data Plane Development Kit,” Last accessed on: February
18th 2016. [Online]. Available: http://dpdk.org

[17] V. Moreno, J. Ramos, P. S. del Rio, J. Garcia-Dorado, F.J.Gomez-
Arribas, and J.Aracil, “Commodity Packet Capture Engines : Tuto-
rial, Cookbook and Applicability,” IEEE Comunications Surveys and
Tutorials, 2015.

[18] N. Bonelli, A. D. Pietro, S. Giordano, and G. Procissi, “On Multi-
gigabit Packet Capturing with Multi-core Commodity Hardware.” in
Proc. PAM 2012, vol. 7192. Springer, 2012, pp. 64–73. [Online]. Avail-
able: http://dblp.uni-trier.de/db/conf/pam/pam2012.html#BonelliPGP12

[19] PF RING, “High-speed packet capture, filtering and analysis.”
Last visited on: February 18th 2016. [Online]. Available: http:
//www.ntop.org/products/packet-capture/pf ring

[20] N. Bonelli, A. Di Pietro, S. Giordano, and G. Procissi, “Flexible High
Performance Traffic Generation on Commodity Multi—core Platforms,”
in Proc. TMA’12. Springer-Verlag, 2012, pp. 157–170. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-28534-9 17

[21] W. R. Systems, “Pktgen,” last accessed on: February 22th 2016.
[Online]. Available: http://dpdk.org/browse/apps/pktgen-dpdk/refs

[22] S. P., “DPDK-Accelerated Ostinato prototype,” last accessed on:
February 19th 2016. [Online]. Available: https://github.com/pstavirs/
dpdk-ostinato

[23] LuaJIT, “Lua Just in Time Compiler,” last accessed on: February 19th
2016. [Online]. Available: http://luajit.org

[24] L. Gorrie, “Snabb Switch.” [Online]. Available: https://snabb.co

