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Introduction

In the recent years there has been an increasing interest in dynamical systems on networks, in connection with problems of data transmission, traffic flows and consensus (see [START_REF] Garavello | Traffic Flow on Networks[END_REF], [START_REF] Engel | Vertex control of flows in networks[END_REF], [START_REF] Ren | Distributed consensus in multi-vehicle cooperative control[END_REF]). In this paper we are interested in a routing problem over a network involving a population of individuals. In fact, our problem is of jump type, but we continue to use the term routing because we built the line graph starting from a graph in which dynamics over edges are considered. Our aim is to give some conditions in order to have a uniform distribution of the population over all vertices of the network. In doing this, we rearrange the density model to recast the problem within the framework of mean-field games and optimal control theory. A similar problem is studied in [START_REF] Bauso | Density Flow over Networks via Mean-Field Game[END_REF] in which the authors consider a centralized control and a density flow for each edge dependent on the density of the whole population. This implies that each player minimizes a common cost functional which depends on the whole population's density. Differently from [START_REF] Bauso | Density Flow over Networks via Mean-Field Game[END_REF], we consider a decentralized control (as in [START_REF] Bauso | The linear saturated decentralized strategy for constrained flow control is asymptotically optimal[END_REF], [START_REF] Como | Distributed robust routing in dynamical networks-Part I: Locally responsive policies and weak resilience[END_REF], [START_REF] Como | Distributed robust routing in dynamical networks-Part II: strong resilience, equilibrium selection and cascaded failures[END_REF]) hence, the density of each node is controlled locally. In general in the routing/jump problem there are three different approaches regarding the structure of the control function. The first one consists in controlling the probability to jump from a node to another one (or to flow along the edges). The second one consists in controlling the transition rate from nodes (or edges) and the last one in assigning the product among the probability and the relative transition rate. An example of the first approach is [START_REF] Bauso | Density Flow over Networks via Mean-Field Game[END_REF] in which the authors control the probability to flow over the edges incident to a generic node i. As for the second approach, an example is [START_REF] Kelly | Rate control for communication networks: Shadow prices, proportional fairness and stability[END_REF] in the context of communication networks. As in [START_REF] Basna | An Epsilon Nash Equilibrium For Non-Linear Markov Games of Mean-Field-Type on Finite Spaces[END_REF], in this paper we use the last approach, in particular we control the product between the probability to jump from one node to an adjacent one and the relative transition rate. As it has been done in some inverse control problems [START_REF] Bagagiolo | Objective function design for robust optimality of linear control under state-constraints and uncertainty[END_REF], we provide an explicit expression of the current cost function in order to obtain our desired optimal feedback control. Providing an expression for the optimal control is a further contribution to the control theory for nonlinear dynamical systems. Since we take a decentralized control, the problem is about stabilizing the system under the assumption that each agent ignores both the controls of the far agents and the network topology. We formulate the problem as follows: from a microscopic point of view, each player jumps from a node to an adjacent one according to a continuous-time Markov process. From a macroscopic point of view each node is characterized by a dynamics describing the time-evolution of the density. Such dynamics depends on a decentralized control. We rearrange the problem as a mean-field game and then via a state-space extension approach as an optimal control one. The state space extension procedure is reminiscent of the McKaen-Vlasov control problem, in which the statistical distribution is encoded by our density. Similarities and differences between the McKean-Vlasov and the Mean-Field framework are analyzed in [START_REF] Carmona | Control of McKean-Vlasov dynamics versus mean field games[END_REF]. Furthermore, we prove the convergence to a local equilibrium which is characterized by an equal density on the neighbor nodes. Finally, we prove a similar convergence result for the global equilibrium where a uniform distribution of the density over all nodes is guaranteed. After that, we introduce a hysteresis operator acting on the optimal feedback decentralized control. A similar model was already discussed in [START_REF] Ceragioli | Discontinuities and hysteresis in quantized average consensus[END_REF]. The authors make a rigorous treatment of continuous-time average consensus dynamics with uniform quantization in communications. The consensus is reached by quantized measurement which are transmitted using a delay thermostat. Instead we use another hysteresis operator, the play operator, that can be considered as a concatenation of delayed thermostats. Moreover, we apply it to our control in a nonlinear equation. Because of the presence of hysteresis every player has a distorted information about the differences among his density and the ones of his neighbors. This implies a different global equilibrium set for the density equation. We focus on the different type of equilibria and finally provide a result of convergence to the global equilibrium.

Related literature

The mean-field game theory was developed in the work of M.Huang, R. Malhamé and P. Caines [START_REF] Huang | Individual and Mass Behaviour in Large Population Stochastic Wireless Power Control Problems: Centralized and Nash Equilibrium Solutions[END_REF], [START_REF] Huang | Large population cost-coupled LQG problems with non-uniform agents: individual-mass behaviour and decentralized ε-Nash equilibria[END_REF] and independently in that of J. M. Lasry and P.L. Lions [START_REF] Lasry | Jeux à champ moyen. I Le cas stationnaire[END_REF], [START_REF] Lasry | Mean field games[END_REF], where the new standard terminology of Mean Field Games (MFG) was introduced. This theory includes methods and techniques to study differential games with a large population of rational players and it is based on the assumption that the population influences the individuals' strategies through mean-field parameters (see for example [START_REF] Gomes | Mean field games models -a brief survey[END_REF]). In addition to this theory, the notion of Oblivious Equilibria for large population dynamical game was introduced by G. Weintraub, C. Benkard, and B. Van Roy [START_REF] Weintraub | Oblivious Equilibrium: A Mean Field Approximation for Large-Scale Dynamic Games[END_REF] in the framework of Markov Decision Processes. Several application domains such as economic, physics, biology and network engineering accommodate mean-field game theoretical model (see [START_REF] Achdou | Mean field games: numerical methods for the planning problem[END_REF], [START_REF] Gueant | Mean field games and applications[END_REF], [START_REF] Lasry | Mean field games[END_REF], [START_REF] Lachapelle | Computation of mean-field equilibria in economics[END_REF]). Decision problems with mean-field coupling terms have also been formalized and studied in [START_REF] Bauso | Mixed integer optimal compensation: decompositions and mean-field approximations[END_REF] and application to power grid management are recently studied in [START_REF] Bagagiolo | Mean-field games and dynamic demand management in power grids[END_REF]. The literature provides explicit solutions in the case of linear quadratic structure. In most cases, a variety of solution schemes have been recently proposed based on discretization and or numerical approximations (see [START_REF] Achdou | Mean field games: numerical methods for the planning problem[END_REF], [START_REF] Achdou | Mean field games: numerical methods[END_REF]). Since it is difficult to compute an explicit solution in the nonlinear case, many authors thought the problem as an inverse control problem, as we do, see [START_REF] Casti | On the general Inverse Problem Of Optimal Control Theory[END_REF][START_REF] Chitour | Optimal Control Models of Goal-Oriented Human Locomotion[END_REF]. Regarding hysteresis, the concept of hysteretic operator is due to Krasnoselskii and his co-worker [START_REF] Krasnoselskii | Systems with hysteresis[END_REF]. There are several physical and natural phenomena in which hysteresis occurs; for example the filtration through porous media, phase transition, superconductivity, shape memory and so on (see [START_REF] Visintin | Differential Models of Hysteresis[END_REF] for more details). Another interesting phenomena, modeled by hysteresis, is the communication delay as in [START_REF] Ceragioli | Discontinuities and hysteresis in quantized average consensus[END_REF] already cited in the introduction.

Structure of the paper

The paper is organized as follows: a mean-field game formulation of the problem is provided in Sect. 2. In Sect. 3, we introduce a state-space extension solution approach which is an alternative method to classical fixed point one and exhibit the optimal decentralized feedback control under a suitable assumption. In Sect. [START_REF] Bauso | Density Flow over Networks via Mean-Field Game[END_REF] we study the convergence to and the stability of a local Wardrop equilibrium and then its extension to a global equilibrium. In Sect. 5 we carry out numerical studies. Finally, in Sect. 6 we introduce the play operator which acts on the control function and study both the global equilibrium and the stability of the density equation subject to this operator.

Model and Problem Set-up

In this Section we provide a model of pedestrian density flow over a network with dynamics defined on each node and using a line graph as topology. Let a connected line graph L(G) = (V, E) be given, where V = {1, . . . , n} is the set of vertices and E = {1, . . . , m} is the set of edges. For each node i ∈ V , let us denote by N (i) the set of neighbor nodes of i

N (i) = {j ∈ V | {i, j} ∈ E} .
We consider a large population of players and each of them is characterized by a time-varying state X(t) ∈ V at time t ∈ [0, T ], where [0, T ] is the time horizon window. Players represent pedestrians and jump across the nodes of the graph according to a decentralized routing policy described by the vector-valued function

u(•) :R + -→ R n , t -→ u(t).
Let i ∈ V be the player's initial state. The state evolution of a single player is then captured by the following continuous-time Markov process:

{X(t), t ≥ 0} q ij (h, u ij ) =      u ij h j ∈ N (i), j = i -k∈N (i),k =i u ik h i = j, 0 otherwise, (1) 
where q ij is the microscopic dynamics from i to j and h is the infinitesimal time interval. Denote by ρ the vector whose components are the densities on vertices. This implies that the sum of the components is equal to one. Thus we have

ρ ∈ D := {ρ ∈ [0, 1] n : i∈V ρi = 1}.
The density evolution can be described by the following forward Kolmogorov

ODE ρ(t) = ρ(t)A(u), ρ(0) = ρ 0 , (2) 
where ρ is a row vector, ρ 0 is the initial condition and the matrix-valued function A : R n → R n×n is given by

A ij (u) =      u ij if j ∈ N (i), j = i, -j∈N (i),j =i u ij if i = j, 0 if j ∈ N (i).
Equation [START_REF] Engel | Vertex control of flows in networks[END_REF] establishes that the density variation on each node is a consequence of a balance between the density of the node and the density of his neighbors.

It is well known that in a graph the uniform distribution of the density over all edges, corresponds to a Wardrop equilibrium. Since we are working on a line graph, our aim is to achieve a uniform distribution of the density over all nodes. To this end, at first we prove the convergence to a local equilibrium, i.e. a uniform density on the nodes adjacent to i.

For each player, consider a running cost (•) :

V × [0, 1] n × R n → [0, +∞[, and an exit cost g(•) : V × [0, 1] n → [0, +∞[ of the form below (i, ρ, u) = j∈N (i),j =i u 2 ij 2 γ ij (ρ), (3) 
g(i, ρ) = dist(ρ, Mi ). ( 4 
)
where γ ij is a suitable coefficient yet to be designed. In (4) the dist(ρ, Mi ) denotes the distance of the vector ρ from the manifold Mi , where Mi is the local consensus manifold/local Wardrop equilibrium set for the player i defined as

Mi = {ξ ∈ R n |ξ j = ξ i ∀ j ∈ N (i)}. ( 5 
)
The problem in its general form is then the following:

Problem 1: Design a decentralized routing policy to minimize the output disagreement, i.e., each player solves the following problem:

         inf u(•) J(i, u(•), ρ[•](•), •), J(•) = T t (X(τ ), ρ(τ ), u(τ ))dτ + g(X(T ), ρ(T )), {X(t), t ≥ 0} as in (1), X(t) = i, (6) 
where u is a measurable function taking value in R n for any t ∈ [0, T ] and ρ evolves as in [START_REF] Engel | Vertex control of flows in networks[END_REF]. Note that every player minimizes a cost functional which depends on the density of his neighbours. Thus, the microscopic (1) and macroscopic (2) representations of the system are strongly intertwined which makes the problem different from classical optimal control.

Mean-field formulation

This subsection presents a mean-field formulation of problem [START_REF] Como | Distributed robust routing in dynamical networks-Part I: Locally responsive policies and weak resilience[END_REF]. Let v(i, t) be the value function of the optimization problem (6) starting from time t in state i. We can establish the following preliminary result.

Lemma 2.1. The mean-field system for the decentralized routing problem in Problem 1 takes the form:

         v(i, t) + H(i, ∆(v), t) = 0 in V × [0, T [, v(i, T ) = g(i, ρ(T )), ∀x ∈ V, ρ(t) = ρ(t)A(u * ), ρ(0) = ρ 0 , (7) 
where

H(i, ∆(v), t) = inf u∈U j∈N (i) q ij (v(j, t) -v(i, t)) + (i, ρ, u) . (8) 
In the expression above, ∆(v) denotes the difference of the value function computed in two successive vertices and q ij is given in 1. The optimal time-varying control u * (i, t) is given by

u * (i, t) ∈ arg min u j∈V q ij (v(j, t) -v(i, t)) + (i, ρ, u) . (9) 
Proof.: To prove the first equation of 7 we know from dynamic programming that

v(i, t) + inf u j∈N (i) q ij (v(j, t) -v(i, t)) + (i, ρ, u) = 0 in V × [0, T [.
We obtain the first equation, by introducing the Hamiltonian in 8. Since 1 depends on the routing policy u, then the latter is obtained minimizing the Hamiltonian as expressed by 9. The second equation is the boundary condition on the terminal cost. The third and fourth equation are the forward Kolmogorov equation and the corresponding initial condition. The mean-field game [START_REF] Como | Distributed robust routing in dynamical networks-Part II: strong resilience, equilibrium selection and cascaded failures[END_REF] appears in the form of two coupled ODEs linked in a forward-backward way. The first equation in [START_REF] Como | Distributed robust routing in dynamical networks-Part II: strong resilience, equilibrium selection and cascaded failures[END_REF] is the Hamilton-Jacobi-Bellman (HJB) equation with variable v(i, t) and parametrized in ρ(•). Given the boundary condition on final state and assuming a given population behaviour captured by ρ(•), the HJB equation is solved backwards and returns the value function and the optimal control (9). The Kolmogorov equation is defined on variable ρ(•) and parametrized in u * (i, t). Given the initial condition ρ(0) = ρ 0 and assuming a given individual behaviour described by u * , the density equation is solved forward and returns the population time evolution ρ(t).

State space extension

We solve Problem 1 and the related mean-field game [START_REF] Como | Distributed robust routing in dynamical networks-Part II: strong resilience, equilibrium selection and cascaded failures[END_REF] through state space extension used also in [START_REF] Bauso | Density Flow over Networks via Mean-Field Game[END_REF]; namely we review ρ as an additional state variable.

Then the resulting problem is of the form inf

u(•) J(i, u(•), ρ[•](•), •), subject to {X(t), t ≤ 0} as in (1), ρ(t) = ρ(t)A(u).
We are looking for a value function Ṽ (i, ρ, t) which depends on i and on the density vector ρ as a state variable, rather than as a parameter as in [START_REF] Como | Distributed robust routing in dynamical networks-Part I: Locally responsive policies and weak resilience[END_REF]. The problem can be rewritten as follow.

Lemma 3.1. The mean-field system for the decentralized routing problem in Problem 1 takes the form:

∂ t Ṽ (i, ρ, t) + H(i, ρ, ∆( Ṽ ), ∂ ρ Ṽ , t) = 0 in V × [0, 1] n × [0, T [, Ṽ (i, ρ, T ) = g(i, ρ(T )), ( 10 
)
where for the Hamiltonian we have

H(i, ρ, ∆( Ṽ ), ∂ ρ Ṽ , t) = inf u j∈N (i) q ij ( Ṽ (j, ρ, t)-Ṽ (i, ρ, t))+∂ ρ Ṽ (i, ρ, t)(ρA(u)) T + (i, ρ, u) , (11) 
and the optimal time-varying control u * (i, ρ, t) is given by

u * (i, ρ, t) ∈ arg min u j∈N (i) q ij ( Ṽ (j, ρ, t)-Ṽ (i, ρ, t))+∂ ρ Ṽ (i, ρ, t)(ρA(u)) T + (i, ρ, u) . (12) 
Proof: From dynamic programming we obtain

∂ t Ṽ (i, ρ, t)+inf u j∈V q ij ( Ṽ (j, ρ, t)-Ṽ (i, ρ, t))+∂ ρ Ṽ (i, ρ, t)(ρA(u)) T ρ(t)+ (i, ρ, u) = 0.
By introducing the Hamiltonian H(i, ρ, ∆( Ṽ ), ∂ ρ Ṽ , t) given in [START_REF] Carmona | Control of McKean-Vlasov dynamics versus mean field games[END_REF], the first equation is proven. To prove [START_REF] Ceragioli | Discontinuities and hysteresis in quantized average consensus[END_REF], observe that the optimal control is the minimizer in the computation of the extended Hamiltonian. Finally, the second equation in [START_REF] Bagagiolo | Objective function design for robust optimality of linear control under state-constraints and uncertainty[END_REF] is the boundary condition.

Remark 3.2. The use of the state space extension approach reduces our initial problem to an optimal control problem. Therefore from now on we will no longer consider the mean field formulation.

Now, our aim is to review the optimal control problem as an inverse problem.

Our aim is to find a suitable γ ij (see [START_REF] Ren | Distributed consensus in multi-vehicle cooperative control[END_REF]) such that the optimal control u * ij , which is the argmin of the extended Hamiltonian, is

u * ij = ρ i (t) -ρ j (t) ρ i (t) > ρ j (t), j ∈ N (i), 0 otherwise. ( 13 
)
In [START_REF] Bauso | Density Flow over Networks via Mean-Field Game[END_REF] for the infinite horizon problem, the authors take the value functions as V (ρ) = dist(ρ, M ), where M is the global equilibrium manifold. Therefore in our finite horizon problem we suppose

V (i, ρ) = dist(ρ, M i ) = j∈N (i) ρ j - k∈N (i) ρ k #N (i) 2
which satisfies the boundary condition in [START_REF] Bagagiolo | Objective function design for robust optimality of linear control under state-constraints and uncertainty[END_REF], according to our choice of the exit cost g (see ( 4)). We can write (2) for the generic component i as

ρi (t) = j∈N (i),j =i ρ j (t)u ji - j∈N (i),j =i ρ i (t)u ij .
From the Hamiltonian [START_REF] Carmona | Control of McKean-Vlasov dynamics versus mean field games[END_REF], by computing its derivative with respect to u ij and setting it equal to zero we have

∂ H ∂u ij = u ij γ ij (ρ) + ρ i ρ j -ρ 2 i dist(ρ, Mi ) + dist(ρ, Mj ) -dist(ρ, Mi ) = 0. ( 14 
)
Substituting in the last expression our desired control u * ij we have

(ρ i -ρ j )γ ij (ρ) + ρ i ρ j -ρ 2 i dist(ρ, Mi ) + dist(ρ, Mj ) -dist(ρ, Mi ) = 0. ( 15 
)
Therefore γ ij becomes

γ ij (ρ) = ρ 2 i -ρ i ρ j -dist(ρ, Mj )dist(ρ, Mi ) + dist(ρ, Mi ) 2 (ρ i -ρ j )dist(ρ, Mi ) , (16) 
which leads to a current cost

(i, ρ, u) = j∈N (i), j =i ρi>ρj u 2 ij 2 ρ 2 i -ρ i ρ j -dist(ρ, Mj )dist(ρ, Mi ) + dist(ρ, Mi ) 2 (ρ i -ρ j )dist(ρ, Mi ) γij (ρ) . (17) 
Therefore with the control (13), we can rewrite the evolution of ρ as ρi (t) = j =i,j∈N (i):ρj >ρi

ρ j (t)(ρ j (t) -ρ i (t)) - j∈N (i):ρi>ρj ρ i (t)(ρ i (t) -ρ j (t)) ∀i (18 
) Now our aim is to study the stability properties of the last dynamical system [START_REF] Weintraub | Oblivious Equilibrium: A Mean Field Approximation for Large-Scale Dynamic Games[END_REF], in other words if using the optimal control u * ij the system converges to an equilibrium.

Wardrop equilibrium

In this section we will show how to obtain a uniform distribution of the density ρ, at first on a node and its neighbors and then throughout the graph. The right-hand side of equation ( 18) is zero only when ρ i = ρ j ∀i ∈ V and j ∈ N (i), which leads to a uniform density over the nodes. The following assumption establishes that for a given feasible target manifold, there always exists a decentralized routing policy u(t) which drives the density ρ toward the relative manifold Mi (see [START_REF] Bauso | The linear saturated decentralized strategy for constrained flow control is asymptotically optimal[END_REF]). This assumption will be used later on to prove the convergence to a local Wardop equilibrium. 

Assumption 1

Let Mi be given by ( 5), r > 0 and S i = {ρ : dist(ρ, Mi ) < r}. For all ρ ∈ S i \ Mi there exists an element in the projection, ξ(i, ρ) ∈ Π Mi ρ, such that the value val[λ i ] is negative for every [START_REF] Achdou | Mean field games: numerical methods for the planning problem[END_REF] where ∂ ρ ξ(i, ρ) is a constant matrix since ξ(i, ρ) is a linear function of ρ.

λ i = (ρ(t) -ξ(i, ρ)), namely ∀i, val[λ i ] = inf u {λ i • [(I -∂ ρ (ξ(i, ρ))) ρT + j∈N (i) (ξ(j, ρ) -ξ(i, ρ))q ij ]} < 0,
In the proof of the next theorem, we review the value function of (10) as a Lyapunov function. 

Proof : Let ρ be a solution of (2) with initial value ρ(0) ∈ S i \ Mi . Set τ = {inf t > 0 : ρ(t) ∈ Mi } ≤ ∞ and let V (i(t), ρ(t)) = dist(ρ(t), Mi ). For all t ∈ [0, τ ] and ξ ∈ Π Mi (ρ(t)). We want to compute V (i(t), ρ(t)) as the limit of the incremental ratio, thus at first we write its numerator, where X(t) is the Markov process giving the evolution of the index i(t), that is:

V (i(t), ρ(t + dt)) -V (i(t), ρ(t)) + V (i(t + dt), ρ(t)) -V (i(t), ρ(t)) = ρ(t + dt) -ξ(ρ(t + dt), X(t)) -ρ(t) -ξ(ρ(t), X(t)) + ρ(t) -ξ(ρ(t), X(t + dt)) -ρ(t) -ξ(ρ(t), X(t)) = ρ(t) + ρ(t)dt -ξ(ρ(t), X(t)) -∇ ρ ξ(ρ(t), X(t)) ρ(t)dt -ρ(t) -ξ(ρ(t), X(t)) + |dt|ε(dt)+ ρ(t) -ξ(ρ(t), X(t)) -∂ X ξ(ρ(t), X(t)) Ẋ(t)dt + o(dt) -ρ(t) -ξ(ρ(t), X(t))
where lim dt→0 ε(dt) = 0 and lim dt→0 o(dt) = 0. Hence

V (i(t), ρ(t)) = lim dt→0 1 dt ρ(t) + ρ(t)dt -ξ(ρ(t), X(t)) -∇ ρ ξ(ρ(t), X(t)) ρ(t)dt 2 ρ(t) + ρ(t)dt -ξ(ρ(t), X(t)) -∇ ρ ξ(ρ(t), X(t)) ρ(t)dt - ρ(t) -ξ(ρ(t), X(t)) 2 ρ(t) -ξ(ρ(t), X(t)) + |dt|ε(dt) + ρ(t) -ξ(ρ(t), X(t)) -∂ X ξ(ρ(t), X(t)) Ẋ(t)dt 2 ρ(t) -ξ(ρ(t), X(t)) -∂ X ξ(ρ(t), X(t)) Ẋ(t)dt - ρ(t) -ξ(ρ(t), X(t)) 2 ρ(t) -ξ(ρ(t), X(t)) + o(dt) = lim dt→0 1 dt ρ(t) + ρ(t)dt -ξ(ρ(t), X(t)) -∇ ρ ξ(ρ(t), X(t)) ρ(t)dt 2 ρ(t) -ξ(ρ(t), X(t)) + O( √ dt) - ρ(t) -ξ(ρ(t), X(t)) 2 ρ(t) -ξ(ρ(t), X(t)) + |dt|ε(dt) + ρ(t) -ξ(X(t)) -∂ X ξ(ρ(t), X(t)) Ẋ(t)dt 2 ρ(t) -ξ(ρ(t), X(t)) + O( √ dt) - ρ(t) -ξ(ρ(t), X(t)) 2 ρ(t) -ξ(ρ(t), X(t)) + o(dt) = 1 ρ(t) -ξ(ρ(t), X(t)) d dt ρ(t) -ξ(ρ(t), X(t)) 2 ≤ 2 ρ(t) -ξ(i, ρ) (ρ(t) -ξ(i, ρ)) (I -∇ ρ (ξ(i, ρ))) ρ(t) T + j∈N (i) (ξ(j, ρ) -ξ(i, ρ))q ij .
Using now Assumption 1 we have that the second member of the last product is lower than zero, hence V (i(t), ρ(t)) < 0. This proves not only a Wardrop equilibrium but also that the solution ρ of the dynamics ( 2) is locally asymptotically stable for the Lyapunov theorem. The next step is to prove the asymptotic convergence of ρ, solution of (2), to the global consensus manifold M defined as follows

M = {ρ ∈ D : ρ = 1 1 n }, ( 21 
)
where n is the number of nodes. It follows that for any sequence (t m ) m∈N such that t m → +∞ we have that

ρ i → β ρ j → β ∀ j ∈ N (i) ρ k → β ∀ k ∈ N (j) s.t j ∈ N (i) . . . ( 22 
)
By doing this, since the graph is connected, we can conclude that

ρ i (t m ) → β = 1 n ∀i ∈ V.
Then, there exists a subsequence (t m ) ∈N such that

ρ i (t m ) → 1 n ∀i ∈ V.
This proves that ρ(t) → 1 n for t → +∞ and thus lim t→+∞ d(ρ(t), M ) = 0.

Numerical example

In this section we will show, throughout numerical simulations, that on a seven nodes graph we have the convergence to the equilibrium using the optimal control [START_REF] Huang | Individual and Mass Behaviour in Large Population Stochastic Wireless Power Control Problems: Centralized and Nash Equilibrium Solutions[END_REF].

Consider the following network consisting in 7 nodes and 8 edges. As expected the density converges to the global equilibrium in which all the ρ i are equal. Note that the optimal control u * ij = (ρ i -ρ j ) + satisfies Assumption 1 as by defining Then the function α i is negative for our choice of the control.

α i = λ i • [(I -∂ ρ (ξ(i, ρ))) ρ(t) T + j∈N (i) (ξ(j, ρ) -ξ(i, ρ))q ij ], ∀i = 1, • • • , 7,
According to Theorem (4.1), in Fig. 4 we show how the distance of ρ i from the relative Mi , ∀i = 1, . . . , 7. converges to zero. 

Stability with hysteresis

In the following section we are interested in studying the stability of the macroscopic evolution of the vector ρ when the optimal decentralized feedback control ( 13) is affected by a hysteresis phenomena. We introduce now a hysteresis op-erator, in particular the scalar play operator and we study how the evolution of the macroscopic equation changes when we apply it to the control u * that we suppose to be the one in [START_REF] Huang | Individual and Mass Behaviour in Large Population Stochastic Wireless Power Control Problems: Centralized and Nash Equilibrium Solutions[END_REF]. Furthermore, we will define its set of equilibrium points which consists in the union of several manifolds. Finally, although the equilibria are different from [START_REF] Lachapelle | Computation of mean-field equilibria in economics[END_REF], we provide a result of convergence. The controlled dynamical system is

         ρ(t) = ρ(t)A(w), w(t) = P [u * ] + (t), ρ(0) = ρ 0 , w(0) = w 0 , ( 24 
)
where P [•](•) is the play operator whose behavior is explained in the following subsection and ∧ + is the positive part. 

The Play operator

Ω ε := (u, v) ∈ R 2 |u -ε < v < u + ε .
The behavior of the scalar play operator v(•) := P [u](•), with its typical hysteresis loops, can be described using Figure 5. For instance, supposing that u

is piecewise monotone, if (u(t), v(t)) ∈ Ω ε then v is constant in a neighborhood of t; if v(t) = u(t) -ε and u is non increasing in [t, t + τ ] (with small τ ) then v stays constant in [t, t + τ ] ; if v(t) = u(t) -ε and u is non decreasing in [t, t + τ ] then v = u(t) -ε in [t, t + τ ]. A similar argument holds if u(t) + ε.
The same explanation of the play operator behavior can be extended to continuous inputs [START_REF] Krasnoselskii | Systems with hysteresis[END_REF][START_REF] Visintin | Differential Models of Hysteresis[END_REF]. With reference to our system (24), we consider as input of the matrix A the positive part of the play operator, applied to the control u * ij = (ρ i -ρ j ) + , i.e. w ij (t) = P [(ρ i -ρ j )] + (t). Remark 6.1. Note that, since (ρ i (0) -ρ j (0)) = -(ρ j (0) -ρ i (0)), then (ρ i (t)ρ j (t)) = -(ρ j (t) -ρ i (t)) ∀t. Thus it is not a restriction to suppose that also

P [(ρ i -ρ j )](0) = -P [(ρ j -ρ i )](0), therefore P [(ρ i -ρ j )](t) = -P [(ρ j -ρ i )](t) ∀t.
Moreover since we are taking the positive part of the play, we will have that if w ij > 0 then w ji = 0.

Equilibria

We are looking for the equilibrium points of the first equation of ( 24) considering the simple case of a network with four nodes as this 

         ρ1 (t) = -w 12 ρ 1 (t) + w 31 ρ 3 (t), ρ2 (t) = w 12 ρ 1 (t) -w 24 ρ 2 (t), ρ3 (t) = -w 31 ρ 3 (t) + w 43 ρ 4 (t), ρ4 (t) = w 24 ρ 2 (t) -w 43 ρ 4 (t), (26) 
We write only the values of w 12 , w 24 , w 31 , w 43 because their symmetric w 21 , w 42 , w 13 , w 34 are always zero according to Remark 6.1. We will use this convention from now on.

case

Assume that w 12 > 0, w 31 > 0, w 24 > 0, w 43 = 0. If |ε| > 1, then the system is zero in 0, 0, 0, 1, w 12 , w 31 w 24 , 0 .

3 case For w 12 > 0, w 31 > 0, w 24 = 0, w 43 = 0. If |ε| > max{ρ 4 , 1 -ρ 4 }, then the system is zero in 0, 1 -ρ 4 , 0, ρ 4 , w 12 , w 31 , 0, 0 .

4 case For w 12 > 0, w 31 = 0, w 24 = 0, w 43 = 0. if |ε| > max{ρ 4 , ρ 3 , 1 -ρ 4 -ρ 3 } then the system is zero in 0, 1 -ρ 4 -ρ 3 , ρ 3 , ρ 4 , w 12 .

(30)

5 case Assume that all w ij = 0 ∀j ∈ N (i). If |ε| > max{ρ 1 -ρ 2 , ρ 2 -ρ 4 , ρ 3 -ρ 1 , ρ 4 -ρ 3 },
then the equilibrium point of the system is

(1 -ρ 2 -ρ 3 -ρ 4 , ρ 2 , ρ 3 , ρ 4 , w) = (ρ 1 , ρ 2 , ρ 3 , ρ 4 , 0), (31) 
where w denotes the vector of all eight w ij .

Remark 6.2. Note that the equilibria in cases 2, 3, 4, 5 can be obtained as limits of the equilibrium in case 1. Indeed if we let w 43 → 0 we end up with equilibrium (28) and since that respect the conservation of mass. Moreover, our choice of taking w 12 > 0, w 31 > 0, w 24 > 0, w 43 > 0 and not other w ij is completely arbitrary, indeed taking any 4 non symmetric w ij > 0 we will end up with an equilibrium of the same type of (27).

In the following numerical simulations we show the behavior of the system for two different choices of the parameter ε In Figure 7(a) choosing ε = 0.5 we can see that the densities converge to the equilibrium [START_REF] Krasnoselskii | Systems with hysteresis[END_REF]. Instead in the Figure 7(b), using ε = 0.95, the system converges to equilibrium (29).

Stability

In the following subsection we show that also in the presence of the play operator we converge for t → ∞ to the equilibrium. Before doing this we consider a new assumption since, as shown in the previous subsection, this problem admits different kind of equilibria. The global equilibrium manifold M in this case is the union of different equilib-rium manifolds

M = 5 z=1 M z , (32) 
where Mz denotes the manifold whose points are equilibria relative to the z-th case.

Assumption 2 Let M be given as in (32), s > 0 and S = {ρ : dist(ρ, M ) < s}. For all ρ = (ρ, w) ∈ S \ M , there exists ξ ∈ Π M ρ such that the value val[λ] is negative for every λ = (ρ -ξ), namely 

val[λ] = inf u {λ • (I -∂ ρ ξ(ρ(t))) ρ(t) T } < 0. ( 33 
dist(ρ, M ) = 0. ( 34 
)
Proof.: Let ρ a solution of ( 24) with initial value ρ(0

) ∈ S \ M . Set τ = {inf t > 0 : ρ(t) ∈ M } ≤ ∞ and let V (ρ(t)) = dist(ρ, M ). We compute: V (ρ(t)) = d dt ρ(t) -ξ(ρ(t)) = 1 ρ(t) -ξ(ρ(t)) ρ(t) -ξ(ρ(t)) I -∂ ρ ξ(ρ(t)) ρ(t) T < 0 by (33).
Then the solution ρ of ( 24) is asymptotically stable and we have a global equilibrium.

In the following we deal with some examples of convergence to the equilibria in different M z using the decentralized control u * ij = (ρ i -ρ j ) + . At first we suppose that ε > 1 thus for all t, w(t) satisfies the conditions in case 2. The system to study is

         ρ1 (t) = -w 12 (t)ρ 1 (t) + w 31 (t)ρ 3 (t), ρ2 (t) = w 12 (t)ρ 1 (t) + w 24 (t)ρ 2 (t), ρ3 (t) = -w 31 (t)ρ 3 (t), ρ4 (t) = w 24 (t)ρ 2 (t). ( 35 
)
From the assumption on the w ij we have

∃c > 0 : w ij (t) > c ∀t ≥ 0.
Then considering the third equation of (35) we have that ρ 3 (t) ≤ e -ct ρ 3 (0) → 0 for t → +∞. By contradiction, we suppose that ρ 1 (t) → ρ1 with ρ1 > 0. Thus,

lim t→+∞ ρ1 (t) = lim t→+∞ -w 12 (t)ρ 1 + lim t→+∞ w 31 (t)ρ 3 (t) = 0. ( 36 
)
This is a contradiction as the left hand side should be equal to zero. Hence lim t→+∞ ρ 1 (t) = 0. With similar argument also lim t→+∞ ρ 2 (t) = 0. For the mass conservation ρ 4 (t) → 1 for t → +∞ hence we obtain the equilibrium point [START_REF] Visintin | Differential Models of Hysteresis[END_REF].

Assuming now that ε > max{ρ 4 (0), 1 -ρ4(0)} and w(0) satisfies the conditions in case 3, the system becomes 

         ρ1 (t) = -w 12 (t)ρ 1 (t) + w 31 (t)ρ 3 (t), ρ2 ( 
(t) ≡ ρ 4 (0) in [0, t]. Considering ρ 3 -ρ 1 we have that, if ρ 3 -ρ 1
in [0, t[, the last difference is greater than -ρ 1 = ρ 4 -1 + ρ 3 + ρ 2 > ρ 4 -1 > -ε. This implies ε > ρ 1 and thus using the continuity argument w 31 (t) = w 31 (0) > 0 in [0, t]. Instead if ρ 3 -ρ 1 it is always less that ρ 3 < 1 -ρ 4 < ε. Then as before w 31 (t) = w 31 (0) > 0 in [0, t]. From the last one and w 43 ≡ 0 we conclude ρ 3 (t) = ρ 3 (0)e -w31(0)t in [0, t].

Again if ρ 1 -ρ 2 it is greater than -ρ 2 > ρ 4 -1 > -ε. Proceeding as before we conclude that w 12 (t) = w 12 (0) > 0 in [0, t]. Instead if ρ 1 -ρ 2 reasoning as before we reach the same conclusion, i.e, w 12 (t) = w 12 (0) > 0 in [0, t]. Hence we have proven that in t, the same conditions valid in the interval [0, t[, hold. Therefore exists δ > 0 such that in [0, t + δ], w ij (t) are the same as in t = 0. This is a contradiction as t is a supremum, thus we conclude t = +∞.

We will now prove that the system converges to equilibrium (29). From the assumption on the w ij we have ρ 3 (t) = e -w31(0)t ρ 3 (0) → 0 for t → +∞. By contradiction, we suppose that ρ 1 (t) → ρ1 with ρ1 > 0. Thus, lim t→+∞ ρ1 (t) = lim t→+∞ -w 12 (t)ρ 1 = 0.

(38) This is a contradiction as it should be equal to zero. Hence lim t→+∞ ρ 1 (t) = 0. Regarding ρ 4 and ρ 2 , the first is constant and lim t→+∞ ρ 2 (t) = ρ2 > 0. From the mass conservation ρ2 = 1 -ρ4 hence we obtain an equilibrium point as in (29).

Using similar arguments if ε is like in case 4 and 5 we will converge to equilibria (30) and (31) respectively.

The above procedure can be extended to the case where ε is such that for all t we have four non symmetric w ij > 0 like in case 1.

Note also that the decentralized control u * ij = (ρ i -ρ j ) + satisfies Assumption 2, indeed the function V (ρ(t)) is strictly decreasing along the trajectories (see Figure below). Thanks to this the distance of ρ from the manifold M is a Lyapunov function and thus Theorem 6.3 holds true. The picture below displays the distance of ρ from the manifold M 1 in function of time, which is obviously decreasing. 

Conclusions

In this paper we study a decentralized routing problem on a network, and using a mean field formulation we reach consensus. Using a state space extension approach we recast the problem in the framework of optimal control. We give an explicit expression of a suitable current cost function in order to obtain a preassigned optimal decentralized control. We provide conditions for the convergence to both to local and global consensus. By introduction of the scalar play operator, we prove that the consensus is not achieved using the same control. Nevertheless we compute set of equilibria for the histeretic system and show its asymptotic stability. The performed numerical experiments are promising for further theoretical studies.
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  we have that the maximum values of α i are max ρ {α 1 } = -6.1489 • 10 -7 max ρ {α 2 } = -2.1462 • 10 -6 max ρ {α 3 } = -3.1123 • 10 -9 max ρ {α 4 } = -6.7065 • 10 -7 max ρ {α 5 } = -8.0771 • 10 -7 max ρ {α 6 } = -2.1169 • 10 -6 max ρ {α 7 } = -7.4670 • 10 -7 . (23)
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 7 Figure 7: Numerical simulations of the system converging to the equilibria in case 1 (Figure 7(a)) and case 3 (Figure 7(b))
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 8 Figure 8: The distance of ρ from the manifold M 1 .

  1 caseAssume that w 12 > 0, w 31 > 0, w 24 > 0, w 43 > 0. If

	|ε| > max ρ 4	w 43 w 12	-	w 43 w 24	, ρ 4	w 43 w 24	-1 , ρ 4	w 43 w 31	-	w 43 w 12	, ρ 4 1 -	w 43 w 31	,
	then the system to solve is									

  , w 12 , w 24 , w 31 , w 43 .

	that is zero in						
	ρ 4	w 43 w 12	, ρ 4	w 43 w 24	, ρ 4	w 43 w 31	, ρ 4

)

  Theorem 6.3. Let Assumption 2 hold true. Then ρ(t) converge asymptomatically to M , namely lim

	t→+∞

  | u * 12 +ε > w 12 (t) ≡ w 12 (0) > 0, u * 31 +ε > w 31 (t) ≡ w 31 (0) > 0, w 24 ≡ 0, w 43 ≡ 0} We will now prove that t = +∞. Let us suppose by contradiction that t < +∞. Obviously ρ 4 (t) ≡ ρ 4 (0) in [0, t[. Using the hypothesis over w ij , we have that ρ 3 (t) = e -w31(0)t ρ 3 (0) in [0, t[ and thus ρ 3 decreases. Moreover ρ 2 is increasing. Let us now focus on the differences among the densities. Since ρ 4 is constant and ρ 3 then ρ 4 -ρ 3 . This difference is always less than or equal to ρ 4 and thus it is less than ε. By the continuity of ρ, lim t→ t(ρ 4 (t) -ρ 3 (t)) < ε. Therefore w 43 does not change and remains equal to 0 in [0, t]. Let us now consider ρ 2 -ρ 4 . By (37), in [0, t[ ρ 2 , thus ρ 2 -ρ 4 increases and is less than 1 -ρ 4 < ε. By the previous continuity argument w 24 ≡ 0 in [0, t]. From the last two results we can conclude that ρ 4

	t) = w 12 (t)ρ 1 (t), ρ3 (t) = -w 31 (t)ρ 3 (t),	(37)
	ρ4 (t) = 0,	
	for all t ∈ [0, t[ where	
	t = sup{t ≥ 0	
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