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Abstract: This paper emphasizes the design methodology for active tonal noise feedback cancellers
starting from data collected on the system. To design such control systems, an accurate dynamic model
of the system is necessary. Physical modeling can provide qualitative results but fails to yield enough
accurate models for control design. The main point in the methodology is identification of primary path
(noise propagation) and secondary path (compensation) models from data. The procedure is investigated
in details starting with transfer functions’ order estimations, continuing with parameters estimation
and model’s validation. The second aspect is the design of a noise canceller using the Internal Model
Principle and the sensitivity function shaping in order to reduce the ”water-bed” effect. The estimated
model’s quality for control design is illustrated by the experimental performance of a tonal noise
feedback canceller implemented on a test bench.

Keywords: Active noise control, System Identification, Internal model principle, Band stop filters,
Sensitivity functions.

1. INTRODUCTION

Active noise control (ANC) has been under research for many
years and applied in various kind of applications. In most cases
feed-forward broadband noise compensation is currently used
for ANC when a disturbance’s image is available (correlated
measurement with the disturbance). See Elliott and Nelson
(1994), Elliott and Sutton (1996), Kuo and Morgan (1999),
Zeng and de Callafon (2006).

However, these solutions, inspired by Widrows technique for
adaptive noise cancellation, see Widrow and Stearns (1985),
ignore the possibilities offered by feedback control systems
and have a number of disadvantages: they require the use of
an additional transducer, difficult choice for its location and
presence, in most cases, of a ”positive” coupling between the
compensator system and the disturbance image’s measurement,
which can cause instabilities. To achieve the disturbance’s
rejection (asymptotically) without measuring it, a feedback
solution can be considered.

Residual noise can be described as the result of acoustic waves
which pass trough the system, and the noise cancellers’ objec-
tive is to attenuate it. In many cases, these waves can be char-
acterized in the frequency domain either as tonal disturbances
or as narrow band perturbations. The common framework is
the assumption that a narrow band disturbance is the result of
a white noise or a Dirac impulse passed through the ”distur-
bance’s model.” In the case of tonal (narrow band) noise distur-
bances, the basic idea is to use the ”internal model principle”
to get a strong attenuation, combined with output sensitivity
function shaping, in order to avoid unwanted amplifications in
the tonal disturbances’ neighborhoods.
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However, the real time performance of the noise cancellers
strongly depends on the secondary path dynamic model’s qual-
ity used for designing the feedback control law. Many studies
have been carried out to develop dynamic models for control
design, starting from the basic physical equations describing
the system and trying to determine, from the systems’ geom-
etry, the values of some basic constants. See Nelson and El-
liott (1993). Zimmer and Lipshitz (2003) give a very complete
evaluation of the physical modeling in the context of active
noise control in ducts. Unfortunately on one hand the resulting
models are not very good, since it is hard for a given system
to find the correct physical constants, and on the other hand it
is a PDE model for which there are not simple control design
methods available.

What is needed in practice is a finite dimension discrete-
time model which reproduces the system’s dynamical behavior.
Once such a model is available, one can use digital control de-
sign techniques readily implementable on a real time computer.
These models can be obtained directly from data using sys-
tem identification techniques, see Ljung (1999); Landau et al.
(2016); Carmona and Alvarado (2000). However these discrete-
time models for active noise compensation present a number of
peculiarities which require to develop a specific identification
procedure. One of the major objectives of the paper is to clarify
how system identification from data should be done in the
context of active noise control. Previous identification results
given in Ben Amara et al. (1999) and Zeng and de Callafon
(2006) have been also considered.

The final quality test for an identified model is to verify how
close are the real-time experimental results obtained and the
designed controller’s performances in simulation. As shown
later, the results are very close, which indicates that the pro-
posed procedure is reliable. Two control problems have been
considered: the rejection of two tonal disturbances, and strong



attenuation of interferences, caused by tonal disturbances with
very close frequencies. The Internal Model Principle (IMP)
combined with the sensitivity functions’ shaping will be used
for control design.

2. EXPERIMENTAL SETUP

The test bench used for the experiments is shown in Fig. 1, and
its detailed scheme is given in Fig. 2. The speaker used as the
source of disturbances is labeled as 1, the control speaker is
2 and finally, at pipe’s open end, the microphone that measures
the system’s output (residual noise) is denoted as 3. The transfer
function between the disturbance’s speaker and the microphone
(1→3) is denominated Primary Path, while the transfer func-
tion between the control speaker and the microphone (2→3) is
denominated Secondary Path. Both speakers are connected to a
xPC Target computer with Simulink Real Timer environment
through a pair of high definition power amplifiers and a data
acquisition card. The current signals u(t) and p(t) are amplified
and reach the speakers’ voice coils and displace them, gener-
ating movement in the diaphragms and thus, sound waves. In
Fig. 2, y(t) is the system’s output (residual noise measurement).
Both primary and secondary paths have a double differentiator
behavior, since as input we have the voice coil displacement,
and as output the air acoustic pressure. A second computer is
used for development, design and operation with Matlabr.

Fig. 1: Noise control test bench (Photo).

Fig. 2: Noise control test bench diagram.

PVC pipes of 0.10 m diameter are used in this test bench, with
couplings of 135◦ for the control speaker. Distances between
disturbance speaker and microphone are 1.65 m, and to control
input 0.80 m. Speakers are isolated inside wood boxes filled
with special foam in order to create anechoic chambers and
reduce the radiation noise produced.

3. SYSTEM DESCRIPTION

The linear time invariant (LTI) discrete-time model of the
secondary path, or plant, used for controller design is

G(z−1) =
z−dB(z−1)

A(z−1)
=

z−dB′(z−1)

A(z−1)
DF(z−1), (1)

where DF(z−1) is a double differentiator filter and
A(z−1) = 1+a1z−1 + · · ·+anAz−nA , (2)

B′(z−1) = b1z−1 + · · ·+bnB′ z
−nB′ , (3)

with d as the plant pure time delay in number of sampling
periods 1 . The system’s order is

n = max(nA,nB′ +d) (4)

Fig. 3: Feedback regulation scheme.

Figure 3 shows the closed loop feedback regulation scheme,
where the controller K is described by

K(z−1) =
R
S
=

r0 + r1z−1 + · · ·+ rnRz−nR

1+ s1z−1 + · · ·+ snS z−nS
. (5)

The plant’s output y(t) and the input u(t) may be written as (see
Fig. 3):

y(t) =
q−dB(q−1)

A(q−1)
·u(t)+ p(t), (6)

S(q−1) ·u(t) =−R(q−1) · y(t). (7)

In (6), p(t) is the disturbances’ effect on the measured output 2

and R(z−1), S(z−1) are polynomials in z−1 having the following
expressions:

R = HR ·R′ = HR · (r′0 + r′1z−1 + . . .+ r′nR′
z−nR′ ), (8)

S = HS ·S′ = HS · (1+ s′1z−1 + . . .+ s′nS′
z−nS′ ), (9)

where HS(z−1) and HR(z−1) represent prespecified parts of the
controller (used for example to incorporate the internal model
of a disturbance, or to open the loop at some frequencies) and
S′(z−1) and R′(z−1) are solutions of the Bezout equation:

P = (A ·HS) ·S′+
(

z−dB ·HR

)
·R′. (10)

In (10) P(z−1) represents the characteristic polynomial, which
specifies the desired closed loop poles of the system.

The transfer functions between the disturbance p(t) and the
system’s output y(t) and the control input u(t), denoted respec-
tively output sensitivity and input sensitivity functions, are given
by

Syp(z−1) =
A(z−1)S(z−1)

P(z−1)
(11)

1 The complex variable z−1 is used to characterize the system’s behavior in the
frequency domain and the delay operator q−1 for the time domain analysis.
2 The disturbance passes through the primary path, and p(t) is its output.



and

Sup(z−1) =−A(z−1)R(z−1)

P(z−1)
, (12)

4. DATA DRIVEN SYSTEM IDENTIFICATION

Model identification from experimental data is a well estab-
lished methodology (see Landau et al. (2016); Ljung (1999)).
Identification of systems is an experimental approach for deter-
mining a system’s dynamic model. It includes four steps:

1. Input-output data acquisition under an experimental pro-
tocol and data pre-processing.

2. Estimation of the model complexity.
3. Estimation of the model parameters.
4. Validation of the identified model (complexity of the

model and values of the parameters).

A complete identification operation must comprise the four
stages indicated above. The typical input is a PRBS, which is
a persistent excitation signal allowing unique parameter esti-
mation even for high order system. Model validation is the final
key point. It is important to emphasize that it does not exist
one single algorithm that can provide in all the cases a good
model (i.e. which passes the model validation tests). System
identification should be viewed as an iterative process which
has as objective to obtain a model which passes the model
validation test and then can be used safely for control design.
The procedure will be detailed for the secondary path’s identi-
fication. The same methodology has been used for the primary
path identification also (which is used only for simulation), and
only the final results will be given.

4.1 Data Acquisition under the experimental protocol

For design and application reasons (the objective is to reject
tonal disturbances up to 400 Hz), the sampling frequency was
selected as fs = 2500Hz (Ts = 0.0004s) i.e. approximatively
6 times the maximum frequency to attenuate, in accordance
with recommendation given in (see Landau et al. (2016)). The
theoretical band pass of the system is 1975 Hz, using formula
given in Zimmer and Lipshitz (2003).

The experimental protocol should assure persistent excitation
for the number of parameters to be estimated, thus a PRBS
has been used. This signal’s magnitude is constant allowing an
easy selection with respect to the magnitude constraint on the
plant input. One of the key points is the design of a PRBS in
order to satisfy a compromise between the frequencies range to
be covered (particularly those in the low frequencies region),
and the test duration. One should apply at least on complete
PRBS sequence, and its characteristics, including duration, will
depend on the number of cells in the registers length used for
its generation.

For identification, the signals’ characteristics used in both paths
are: magnitude = 0.15V, register length = 17, frequency di-
vider of 1, sequence length of 217 − 1 = 131,071 samples,
guaranteeing a uniform power spectrum from about 70 Hz to
1250 Hz. Since the transfer functions have a double differentia-
tor behavior, this is considered as a system’s known part and the
objective will be to identify the unknown part only. To do this,
the input sequence will be filtered by a double discrete-time
differentiator DF = (1−q−1)2 such that u′(t) = DF ·u(t). The
double differentiator will be concatenated with the identified
model of the unknown part in the final models.

4.2 Complexity Estimation

The basic idea in complexity estimation is to have, on one
hand an unbiased estimator of the system parameters, which
allows to obtain an unbiased evolution of the prediction error
quadratic criterion that tends toward zero when the correct
order is reached, and on the other hand a penalty term for
the model’s complexity. In order to get an unbiased estimation
of the error criterion, the instrumental variable approach is
used, see Landau et al. (2016); Duong and Landau (1996). As
instrumental variables, delayed inputs are used,

Z(n̂) = [U(t−L−1),U(t−1),U(t−L−2),U(t−2)...],
where L > n and

Y T (t) = [y(t),y(t−1)...]; UT (t) = [u′(t),u′(t−1)...].
Therefore the criterion used for the order estimation is:

VIV (n̂,N) = min
θ̂

1
N
||Y (t)−Z(n̂)θ̂ ||2, (13)

where N is the number of samples. Adding a term which
penalizes the model’s complexity leads to

JIV (n̂,N) =VIV (n̂,N)+2n̂
logN

N
, (14)

with
n̂ = min

n̂
JIV . (15)

When identifying finite dimensional discrete-time models, JIV
will show a minimum, function of n, allowing to define the
estimated order of the model. Once an estimated order n̂ is
selected, one can apply a similar procedure to estimate n̂A, n̂−
d̂, and n̂B′ + d̂, from which n̂A, n̂B′ and d̂ are obtained.

Results for the secondary path order estimation (without the
double differentiator) are shown in Fig. 4 where both non-
penalized and penalized criteria VIV , JIV are represented. As it
can be seen, the minimum is very flat (which is understandable
since we are trying to approximate an infinite-dimensional sys-
tem). It is therefore necessary to explore the model’s properties
for n between 36 and 41, in order to decide what order to take.
Two additional criteria will be used to decide upon the best
order estimation: I) comparison of the Power Spectral Density
(PSD) of the identified model output, and that of the real data
(in order to see if the identified model captures all the vibrations
modes in the frequency range of operation) and II) comparison
of the validation tests for the various models. To do this it is
necessary to estimate the values of nA, nB′ and d for each order n
selected, and to proceed with parameter estimation. To illustrate
the details of orders estimations, the model with n = 40 is
considered. The procedure for other values of n is similar.

For the secondary path, Fig.4b shows that the minimum for
n−d is 32. From Fig.4c one can see that the minimum for nA is
given by nA = 38. From Fig.4d one concludes that nB′ +d = 38.
Taking in account the definition of order n, one concludes that
nA = 38, nB′ = 30 and d = 8, therefore the effective estimated
order of this model is ne = 38. Similarly for the model with
n = 38, one gets nA = 37, nB′ = 30, d = 8 (which means an
effective order ne = 38) 3 .

4.3 Parameters Estimation

The algorithms used for parameter estimation will depend on
the assumptions made on the measurements’ noise character-
istics, which have to be confirmed by the model validation.
3 Complete model’s nB = nB′ +2, due to the double differentiator addition.
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Fig. 4: Secondary path, Instrumental Variable order estimation.

It is important to emphasize that no one single plant + noise
structure exists that can describe all the situations encountered
in practice. It is the validation stage which will allow to decide
what method (and implicitly what noise model) has to be used.
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(b) Model with n = 38.

Fig. 5: Whiteness validation tests for the secondary path.

Among the various identification methods used, it was found
that Output Error with Extended Prediction Model (XOLOE)
identification algorithm gives the best results in terms of val-
idation for a given order model (see Landau et al. (2016)).
It was concluded that the ARMAX model best represents the
plant + noise model.

4.4 Model Validation

The validation procedure associated with the identification of
ARMAX models is based on a whiteness test.

Whiteness test: Let {ε(t)} be the centered (measured value
minus average) sequence of the residual prediction errors. One
computes estimations of the normalized autocorrelations as:

R(i) =
1
N

N

∑
t=1

ε(t)ε(t− i) (16)

R(0) =
1
N

N

∑
t=1

ε
2(t) ; RN(i) =

R(i)
R(0)

(17)

i = 1,2,3, . . . ,nA, . . . ,n

One considers as a validation criterion (extensively tested on
applications):

RN(0) = 1 ; |RN(i)| ≤ 2.17√
N

; i≥ 1. (18)

Fig. 5 shows the validation results (whiteness test) for the
unknown part model with n = 40 (effective ne = 38) and
n = 38 (ne = 38). The results are summarized in Table 1.
Model n = 40 leads to better results, which is confirmed in
Fig. 6 where the PSD of real data’s measures is compared
with the two complete models outputs’ PSD (including the
double differentiator). Therefore the XOLOE model n = 40 is
chosen. It has 18 oscillatory modes with damping comprised
between 0.0097 and 0.3129; also 13 pairs of oscillatory zeros
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Fig. 7: Frequency characteristics of the identified primary and
secondary paths models

with damping comprised between −0.0159 and 0.5438. The
presence of these low damped zeros make the control system’s
design difficult. Fig. 7 gives the frequency characteristics of
the identified complete models for the primary and secondary
paths.

Table 1: Summary of Whiteness tests validations
Method Model Error Maximum RN(i)

energy RN(i) over limit
XOLOE n = 40 1.3307e-06 0.0154 15
XOLOE n = 38 1.3337e-06 0.0177 14

5. CONTROLLER DESIGN

The basic specifications are that the attenuation of two tonal
disturbances located at 170 Hz and 285 Hz must be at least
−40 dB, and the maximum amplification at other frequencies
be less than 7 dB. In order to strongly attenuate the two tonal
disturbances the IMP has been used. This requires that the con-
troller’s fixed part Hs incorporates the disturbance’s model. See
(Landau et al., 2016). The tonal disturbances can be modeled
by:

p(t) =
Np(q−1)

Dp(q−1)
·δ (t), (19)

with δ (t) as a Dirac impulse. Dp has roots on the unit circle. In
practice, the contribution of Np is negligible for steady state
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analysis in comparison with Dp. So the IMP requires that
the controller contains a disturbance’s model, i.e. HS(q−1) =
Dp(q−1). For this specific case considered, HS =HS1HS2 where:

HSi(q
−1) = 1−2cos

(
2π

fi

fs

)
q−1 +q−2, (20)

with f1 = 170Hz and f2 = 285Hz. Also, since the system
has a zero gain at 0 Hz and a very low gain at 1250 Hz,
the loop has been opened at these frequencies by choosing
HR = (1+q−1)(1−q−1). Furthermore, in order to improve ro-
bustness, the input sensitivity function should be below−20 dB
at frequencies over 600 Hz (beyond the system’s bandpass). The
dominant closed loop poles have been chosen equal to those of
the secondary path.

Fig. 8 shows the resulting output sensitivity function Syp (curve
IM +Hr). The specifications for maximum gain are violated.
To overcome this, 30 auxiliary real poles with value pi = 0.25
have been added in the form PF(z−1) = (1− piz−1)nF , without
augmenting the controller’s order (curve IM +Hr+Pol). The
resulting sensitivity function is improved but the limit is still
violated. To further shape the sensitivity function, Band-Stop
Filters (BSF) have been used (Landau et al. (2016)); 3 on Syp,
and 3 on Sup to obtain a correct behavior (see table 2). The
resulting output sensitivity function is shown in Fig. 8. Also the
resulting input sensitivity function is shown in Fig. 9.

Table 2: Band-Stop Filters for sensitivity functions.
Freq.[Hz] Ampli.[dB] Freq.[Hz] Ampli.[dB]

90 -6.00 600 -6.00
Syp 231 -8.00 Sup 800 -1.00

370 -5.00 945 +5.00



Fig. 10 displays the system’s output for a simulation using
the models estimated for the primary and secondary paths. A
pair of sinusoidal signals at 170 Hz and 285 Hz were used as
disturbances p(t) from 1 s to 11 s. Control starts at 6 s and ends
at 11 s. A global attenuation of 86.4 dB was achieved, with
attenuations of −88.6 dB at 170 Hz, and −94 dB at 285 Hz.
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Fig. 10: Simulation results.

6. EXPERIMENTAL RESULTS

The experimental results have been obtained by implementing
the designed controller on the test-bench described in Section 2.

Fig. 11 shows the result for a real time test. Two tonal sinusoidal
signals at 170 Hz and 285 Hz were used as disturbances p(t)
from 1 s to 11 s. Control starts by closing the loop at 6 s and
ends at 11 s. Performances during the first second and the
last one are used as a reference for the ambient noise (no
control, no disturbance). A global attenuation of 76.88 dB was
achieved, with disturbance attenuations of −94.5 dB at 170 Hz,
and −94 dB at 285 Hz. These results are very close to those
obtained in simulation. Fig. 12 displays the effective residual
PSD estimation, calculated as a difference between the open-
loop PSD and the closed-loop PSD of the residual noise.
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Fig. 11: Real-time experiment results: tonal disturbances.

Fig. 13 displays the results for a second real-time test. Two
pairs of sinusoidal interference signals (170 Hz+170.5 Hz and
285 Hz+285.5 Hz) with amplitude of 0.14 V were used as
disturbances p(t) from 1 s to 20 s. Control starts by closing the
loop at 10 s and ends at 20 s. Performances during first and last
second are used as a reference for ambient noise again. A global
attenuation of 59.55 dB was achieved.
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