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This paper shows how we can study real life problems in economics, biology and engineering with tools from differential geometry. Section 1 emphasizes the S-shaped time evolutions and underlines that the torse forming vector field reflects economical phenomena. Section 2 analyzes the geometric dynamics on infinite dimensional Riemannian manifolds produced by first order ODEs and the Euclidean metric. Section 3 introduces and studies a least-curvature principle. Section 4 defines and studies the geometric dynamics on infinite dimensional Riemannian manifolds produced by second order ODEs and by the Euclidean metric. Section 5 analyzes the least-curvature principle of Gauss and Hertz in a general setting. Section 6 explores the controllability of the neoclassical growth geometric dynamics and underlines that the theory can be extended to infinite dimensional manifolds. Section 7 contains conclusions.

S-shaped time evolutions

S-shaped (or sigmoid) time evolutions [START_REF] Jarne | Fatas-Villafranca, S-shaped Economic Dynamics, The Logistic and Gompertz Curves Generalized[END_REF] are frequently observed in some dynamic economic phenomena (product life cycles, the gradual diffusion of technological innovations or long-term fluctuations in income, productivity growth etc). It is also useful in biology and demography dynamics. These S-shaped evolutions are usually incorporated into formal models using autonomous ODE systems such as ẋ(t) = X(x(t)), where a solution x(t) has an inflection point x 0 = x(t 0 ). In other words x(t) must satisfy ẍ(t 0 ) = µ ẋ(t 0 ) or D X X(x(t 0 )) = µX(x(t 0 )) and x (t 0 ), x (t 0 ) are linearly independent vectors. This means that X(x(t 0 )) is a proper vector of the Jacobian matrix DX(x(t 0 )) with respect to the proper value µ.

The S-shaped evolutions degenerate in two ways: (i) D X X(x(t)) = µ(t)X(x(t)), ∀t ∈ I ⊂ R, where x(t) is a solution of [START_REF] Jarne | Fatas-Villafranca, S-shaped Economic Dynamics, The Logistic and Gompertz Curves Generalized[END_REF]; in this case the solution x(t) of ( 1) is a straight line;

(ii) D X X(x(t)) = µ(x(t))X(x(t)), for any t ∈ I ⊂ R and for any solution x(t) of [START_REF] Jarne | Fatas-Villafranca, S-shaped Economic Dynamics, The Logistic and Gompertz Curves Generalized[END_REF]; in this case any solution x(t) of ( 1) is a straight line. This remark suggests to introduce a vector field X characterized by the relation D X X(x) = µ(x)X(x), ∀x ∈ R n . Note that a torse forming vector field has this property. Indeed, such a field is defined by [START_REF] Udris ¸te | Geometric Dynamics[END_REF] D

Z X = aZ + (Y, Z)X,
where Z is an arbitrary C ∞ vector field, a is a given C ∞ real function and Y is a given C ∞ vector field.

On the other hand, in the case of torse forming vector field, the relation

D X X = aX + (Y, X)X
is true everywhere, showing the collinearity between D X X and X. In this way, a torse forming vector field used till now only in differential geometry may reflect phenomena from economics, biology, demographics etc (Open Problems).

Geometric dynamics on infinite dimensional Riemannian manifolds produced by first order ODEs

The geometric dynamics [START_REF] Udris ¸te | Geometric Dynamics[END_REF]- [START_REF] Udris ¸te | Queue geometric dynamics[END_REF] induced by a flow

ẋ(t) = X(x(t), t), (1) 
and by the Euclidean metric is described by the first order Lagrangian

L 1 (x, ẋ, t) = 1 2 || ẋ -X(x, t)|| 2 . Let F = 1 2 ||X|| 2
be the potential energy associated to X. The second order Euler-Lagrange ODE system associated to L 1 , i.e.,

∂L 1 ∂x - d dt ∂L 1 ∂ ẋ = 0 or ẍ(t) = DX(x(t)) -DX T (x(t)) ẋ(t) +∇F (x(t)) + ∂X ∂t , (2) 
is an Euler-Lagrange prolongation of the system (1).

Introducing the gyroscopic vector field

Y (x(t), ẋ(t), t) = DX(x(t)) -DX T (x(t)) ẋ(t)+∇F (x(t))+ ∂X ∂t ,
the ODE (2) can be written in the general form of a second order dynamical system. A trajectory in the geometric dynamics (2) is fixed either by initial conditions

x(0) = x 0 , ẋ(0) = v 0
or by boundary conditions

x(0) = x 0 , x(t 0 ) = x t 0 .
If v 0 = X(x(0)), then the trajectory in geometric dynamics coincides with a field line of the vector field X, i.e., a solution of (1). If v 0 = X(x(0)), then the corresponding trajectory is transversal to the field lines. In [3, pag. 5], one asks what is the practical significance of these transversal trajectories; in the Sections 3 and 5, possible answers will be given.

We admit that the theory in [3, pag. 137] can be applied also to the first order differential systems consisting from an infinity of n-vector equations. For that we use the Riemannian (Euclidean) manifold (R n × l 2 , δ ij + δ αβ ) to transform a local flow in a geodesic motion in a gyroscopic field of forces. We start from an arbitrary local flow described by

ẋα (t) = X α (x α (t), t), x α (t) ∈ R n , α ∈ N, (3) on the Riemannian (Euclidean) manifold (R n × l 2 , δ ij + δ αβ ). We introduce the least squares La- grangian L 1 ∞ (x α , ẋα , t) = 1 2 δ ij δ αβ ( ẋi α -X i α (x α , t))( ẋj β -X j β (x β , t)) = 1 2 α || ẋα -X α (x α , t)|| 2
and the associated action on the Sobolev space W 1,2 ([a, b]). By the Euler-Lagrange ODEs, we obtain an Euler-Lagrange prolongation of the system (3),

d 2 x α dt 2 = δ βγ ∂X α ∂x β - ∂X β ∂x α dx γ dt + ∂f ∂x α + ∂X α ∂t , where f = 1 2 δ ij δ αβ X i α X j
β is a density of energy. This prolongation determines a geometric dynamics, i.e., a geodesic motion in a gyroscopic field of forces. Automatically, the least squares Lagrangian determines the Hamiltonian

H 1 ∞ (x α , ẋα , t) = 1 2 δ ij δ αβ ( ẋi α -X i α (x α , t))( ẋj β + X j β (x β , t)).
Of course, L 1 ∞ and H 1 ∞ are sums of series of functions. They ask the uniform convergence, and hence

lim α→∞ ( ẋα -X α (x α , t)) = 0 lim α→∞ ( ẋβ + X β (x β , t)) = 0
along the trajectories in geometric dynamics.

The least-curvature principle

Suppose that, for each index α ∈ N , the point x α (t) represents a particle involved in a first order dynamical system at time t and that we have constraints described by

A k (x) = 0, x = (x α ), α ∈ N, k = 1, ..., m,
where A k are C 1 functions. Admit that the particle is "sensitive" to the velocity vector field X α (x α (t), t), in the sense that without the constraints action, the particle would follow a field line. The velocity vector ẋ(t) = ( ẋα (t)) refers to any kinematically possible path, i.e. solution of the constraints system, for which coordinates at the instant considered are the same as in actual trajectory.

Definition. The least squares Lagrangian (sum of series of functions, uniform convergence)

L 1 ∞ = 1 2 α || ẋα (t) -X α (x α (t), t)|| 2
is called the kinematic curvature of the path x(t) = (x α (t)) on the Riemannian (Euclidean) space (R n × l 2 , δ ij + δ αβ ).

Theorem. From all paths consistent with the constraints, the actual trajectory is that which has the least kinematic curvature.

Proof. Differentiating the constraints we respect to t, we obtain

∂A k ∂x i α (x(t)) ẋi α (t) = 0.
Let ẋi α be a typical component of the velocity in the path considered and ẋi α0 be the corresponding component of the velocity in the actual trajectory. Then, by the previous equality,

∂A k ∂x i α (x(t))( ẋi α (t) -ẋi α0 (t)) = 0,
i.e., a small displacement δx i α (t) of the system is proportional to ( ẋi α (t) -ẋi α0 (t)). The components of the velocities exercised by the curvature are typified by ( ẋi α0 (t) -X i α (x α0 (t), t)). Since these components must be normal to the submanifold defined by the constraints, we have (orthogonality condition)

δ ij δ αβ ( ẋi α0 (t) -X i α (x α0 (t), t))( ẋj β (t) -ẋj β0 (t)) = 0.
This relation can be written as follows

α || ẋα (t) -X α (x α0 (t), t)|| 2 = α || ẋα0 (t) -X α (x α0 (t), t)|| 2 + α || ẋα (t) -ẋα0 (t)|| 2 . Consequently α || ẋα (t) -X α (x α0 (t), t)|| 2 > α || ẋα0 (t) -X α (x α0 (t), t)|| 2 .
Now, the result from the statement of the theorem follows. This result shows that the trajectories of the Euler-Lagrange prolongation (2), which are not field lines of (1), can be trajectories of the dynamical system ẋ(t) = X(x(t), t) subject to some constraints.

Geometric dynamics on infinite dimensional Riemannian manifolds produced by second order ODEs

The general form of a second order dynamical system (Newton Law) is

ẍ(t) = Y (x(t), ẋ(t), t). (4) 
A trajectory of this second order dynamical system is fixed either by initial conditions

x(0) = x 0 , ẋ(0) = v 0
or by boundary conditions

x(0) = x 0 , x(t 0 ) = x t 0 .
The second order ODEs (4) suggests that giving a vector field Y (x(t), ẋ(t), t), we can introduce a second order least squares Lagrangian

L 2 = 1 2 ||ẍ(t) -Y (x(t), ẋ(t), t)|| 2 ,
using the Euclidean metric. The fourth order Euler-Lagrange equations produced by L 2 , i.e.,

∂L 2 ∂x - d dt ∂L 2 ∂ ẋ + d 2 dt 2 ∂L 2 ∂ ẍ = 0
are Euler-Lagrange prolongations of a system of type (4). To simplify, we accept

Y (x(t), ẋ(t), t) = Y (x(t))
and we denote F = 1 2 ||Y || 2 . Then the Euler-Lagrange prolongation of the system (4) is

x (4) (t) = DX(x(t)) -DX T (x(t)) ẍ(t) + ẋT (t) (Hess(Y )(x(t))) ẋ(t) -∇F (x(t)).
This prolongation determines a geometric dynamics.

We admit that the theory in [3, page. 137] can be applied also to the second order differential systems consisting from an infinity of n-vector equations. For that we use the Riemannian (Euclidean) manifold (R n × l 2 , δ ij + δ αβ ) to transform a Newton law in an Euler-Lagrange prolongation of fourth order. We start from an arbitrary local second order dynamical system described by

ẍα (t) = Y α (x α (t), ẋα (t), t), (5) 
x α (t) ∈ R n , α ∈ N, on the Riemannian (Euclidean) manifold (R n × l 2 , δ ij + δ αβ ).
We introduce the second order least squares Lagrangian

L 2 ∞ (x α , ẋα , ẍα , t) = 1 2 δ ij δ αβ (ẍ i α -Y i α (x α , ẋα , t))(ẍ j β -Y j β (x β , ẋβ , t)) = 1 2 α ||ẍ α -Y α (x α , ẋα , t)|| 2
and the associated action on the Sobolev space W 1,2 ([a, b]). By the Euler-Lagrange ODEs, we obtain an Euler-Lagrange prolongation of the system (3), which is a fourth order system. This prolongation determines a geometric dynamics. Automatically, the geometric dynamics determines the Hamiltonian

H 2 ∞ (x α , ẋα , ẍα , t) = 1 2 δ ij δ αβ (ẍ i α -Y i α (x α , ẋα , t))(ẍ j β + Y j β (x β , ẋβ , t)).
Of course, L 2 ∞ and H 2 ∞ are sums of series of functions. They ask the uniform convergence, and hence

lim α→∞ (ẍ α -Y α (x α , ẋα , t)) = 0 lim α→∞ (ẍ β + Y β (x β , ẋα , t)) = 0
along the trajectories in geometric dynamics.

The least-curvature principle of Gauss and Hertz

Suppose that, for each index α ∈ N , the point x α (t) represents a particle involved in a second order dynamical system at time t. Admit that the constraints are described by Pfaff equations

δ αβ A αki (x)dx i β = 0, x = (x α ), α, β ∈ N, k = 1, ..., m, i = 1, ..., n,
where the coefficients A αki are C 1 functions. We add the external force Y α (x α (t), ẋα (t), t) which acts on the particle. The acceleration vector ẍ(t) = (ẍ α (t)) refers to any kinematically possible path, i.e. solution of the previous Pfaff system, for which coordinates and velocities at the instant considered are the same as in actual trajectory. Definition. The least squares Lagrangian (sum of series of functions, uniform convergence)

L 2 ∞ = 1 2 α ||ẍ α (t) -Y α (x α (t), ẋ(t), t)|| 2
is called the Gauss-Hertz curvature [START_REF] Whittaker | A Treatise on the Analytical Dynamics of Particles and Rigid Bodies[END_REF] of the path

x(t) = (x α (t)) on the Riemannian (Euclidean) space (R n × l 2 , δ ij + δ αβ ).
Theorem. From all paths consistent with the constraints, the actual trajectory is that which has the least Gauss-Hertz curvature.

Proof. Differentiating the constraints

δ αβ A αki (x(t)) ẋi β = 0
we respect to t, we obtain

δ αβ A αki (x(t))ẍ i β (t) + ∂A αki ∂x j γ (x(t)) ẋi β (t) ẋj γ (t) = 0.
Let ẍi α be a typical component of the acceleration in the path considered and ẍi α0 be the corresponding component of the acceleration in the actual trajectory. Then, by the previous equality,

δ αβ A αki (x(t))(ẍ i β (t) -ẍi β0 (t)) = 0,
i.e., a small displacement δx i α (t) of the system is proportional to (ẍ i α (t) -ẍi α0 (t)). The components of the forces exercised by the Gauss-Hertz curvature are typified by (ẍ i α0 (t) -Y i α (x α0 (t), ẋα0 (t), t)). Since these forces do no work, we must have (orthogonality condition)

δ ij δ αβ (ẍ i α0 (t) -Y i α (x α0 (t), ẋα0 (t), t)) (ẍ j β (t) -ẍj β0 (t)) = 0.
This relation can be written as follows

α ||ẍ α (t) -Y α (x α0 (t), ẋα0 (t), t)|| 2 = α ||ẍ α0 (t) -Y α (x α0 (t), ẋα0 (t), t)|| 2 + α ||ẍ α (t) -ẍα0 (t)|| 2 . Consequently α ||ẍ α (t) -Y α (x α0 (t), ẋα0 (t), t)|| 2 > α ||ẍ α0 (t) -Y α (x α0 (t), ẋα0 (t), t)|| 2 .
Now, the result from the statement of the theorem follows.

Neoclassical growth geometric dynamics

We start with the neoclassical growth flow

k(t) = X(k(t)) -δk(t) -c(t), k(0) = k 0 > 0,
where k = (k 1 , ..., k n ) is the capital intensity vector, c = (c 1 , ..., c n ) is the control vector and δ is a real number. The Jacobian matrix of the growth vector field is DX -δI. Therefore, the geometric dynamics induced by the growth vector field and the Euclidean metric is described by the second order ODE system k(t) = DX(k(t)) -DX T (k(t)) k(t) +∇F (k(t)) -ċ(t),

where F = 1 2 ||X(k) -δk -c|| 2 .
Obviously, the geometric dynamics is controlled by the command c(t) and its derivative ċ(t). Now, we underline that the growth flow can be analyzed as in Sections 2-5 (see also [START_REF] Udris ¸te | Economic Geometric Dynamics[END_REF]), but the sense of index α is still an open problem.

Conclusions

The S-shaped evolutions, the geometric dynamics on infinite dimensional Riemannian manifolds, the leastcurvature principles and the neoclassical growth flow are suitable mathematical objects and models for describing the real life problems in economics, biology and engineering with tools from differential geometry.

As example, the least-curvature principles, in fact the distance between a point and a subset, can describe the evolution of a dynamical system subject to some constraints.
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