ON COMPLETE REDUCIBILITY IN CHARACTERISTIC p

Vikraman Balaji, Pierre Deligne, A J Parameswaran, Zhiwei Yun

To cite this version:

Vikraman Balaji, Pierre Deligne, A J Parameswaran, Zhiwei Yun. ON COMPLETE REDUCIBILITY IN CHARACTERISTIC p. 2016. hal-01394210

HAL Id: hal-01394210

https://hal.science/hal-01394210

Preprint submitted on 8 Nov 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ON COMPLETE REDUCIBILITY IN CHARACTERISTIC
 p

V. BALAJI, P. DELIGNE, AND A.J. PARAMESWARAN, WITH AN APPENDIX BY ZHIWEI YUN
in memoriam Vikram Mehta.

Contents

1. Introduction
1
2. Saturation and Innitesimal saturation
3. Completion of proof of the structure theorem 2.5
4. Semi-simplicity statements
2
5. tale slices in positive characteristics 15
A ppendix A. Coxeter number and root systems, Zhiwei Y un 23 References2729

1. Introduction

We work over an algebraically closed eld k of characteristic p"0. In [S1], Serre showed that if semi-simple representations $\quad V_{i}$ of a group i are such that $\left(\operatorname{dim} V_{i} i 1\right) \cdot p$, then their tensor product is semisimple. In [S2], he more generally considers the case where $\quad i$ is a subgroup of $G(k)$, for G a reductive group, and where i is $G-c r$, meaning that whenever i is contained in a parabolic gubgroup P, it is already contained in a Levi subgroup of P. For $G{ }^{-} G L\left(V_{i}\right)$, this is equivalent to the semi-simplicity of the representations $\quad \mathrm{V}_{\mathrm{i}}$ of i . For a representation V of G , one can then ask under what conditions does $\quad \mathrm{V}$ becomes semisimple, when considered as a representation of i. Serre ([S2, Theorem 6 , page 25]) shows this is the case when the Dynkin height $\ldots{ }^{\text {ht }}{ }_{6}(V)$ is less than p. For $G^{\circ} G L\left(V_{i}\right)$ and $V^{\wedge}{ }^{\prime} V_{i}$, one has $h t_{G}(V)^{\sim}\left(\operatorname{dim} V_{i} i 1\right)$.

In [D], the results of [S1] were generalized to the case when the V_{i} are semi-simple representations of a group scheme . In this paper, we consider the case when is a subgroup scheme of a reductive group G and generalize [S2] (see 4.11) and [D] (see 2.5). As in [D], we rst

Date: 7 November, 2016.
The research of the rst author was partially supported by the J.C. B ose Research grant.
have to prove a structure theorem (2.5) on doubly saturated (see 2.4) subgroup schemes of reductive groups G. The proof makes crucial use of a result of Zhiwei Y un on root systems. The appendix contains the result.

In Section 5, we consider a reductive group acting on an afne variety X and a point X of X whose orbit $G . x$ is closed in X. We prove a schematic analogue of [BR, Proposition 7.4,7.6] under some conditions on the characteristic of \quad. More precisely, if X embeds in a G-module V of low height, then we obtain, as a consequence of 2.5(2), an analogue of Luna's \varnothing tale slice theorem (5.1,5.6). In [BR] the language of schemes was not used and as a consequence the orbit G.x had to be assumed separable". A n orbit $G . x$ is separable if and only if the stabilizer G_{x} is reduced.

2. Saturation and Infinitesimal saturation

2.1. Let G be a reductive algebraic group over k. Our terminology is that of [SGA 3]: reductive implies smooth, and connected and an algebraic group will mean an afne group scheme of nite type over k. Fix a maximal torus T_{G} and a Borel subgroup containing T_{G} which determines a root system $\quad R$ and a set of positive roots R. Let h, i be the natural pairing between the characters and co-characters and for each root fi, and let fi^{-}be the corresponding coroot.

If the root system R associated to G is irreducible, the Coxeter number ${ }_{G}$ of R and of G, admits the following equivalent descriptions:
(1) It is the order of the Coxeter elements of the Weyl group W. This shows that R and the dual root system R - have the same Coxeter number.
(2) Let fi ${ }_{0}$ be the highest root and P combination of the simple roots. One has:

$$
\begin{equation*}
G^{-x} 1^{-x} \tag{2.1.1}
\end{equation*}
$$

(3) A pplying this to the dual root system, one gets

$$
\sigma^{-h} \%_{\mathrm{pf}} \mathrm{fl}^{-1} 1
$$ where \%ois half the sum of positive roots and fl^{-}is the highest coroot. Indeed, \%ds also the sum of the fundamental weights ! ${ }_{i}$, and $h!{ }_{i}, \mathrm{fi}_{\mathrm{j}} \mathrm{j}^{\mathrm{j}}{ }^{-}{ }_{\mathrm{ij}}$.

For a general reductive group G, dene the Coxeter number ${ }_{G}$ to be the largest among the ones for the irreducible components of R.

It follows from (2) above that if G is a reductive group, U the unipotent radical of a Borel subgroup, and $\quad:$ Lie(U), the descending central
series of , dened by $Z^{1} \circ$ and $Z^{i} \circ\left[, Z^{i_{i} 1}\right]$, satises

$$
\begin{equation*}
Z^{G}()^{\sim} 0 \tag{2.1.2}
\end{equation*}
$$

For the group U, similarly $Z^{G}(U)^{\circ}$ (1).
The Lie algebra of G is a p-Lie algebra. If n in is nilpotent and if $p,{ }_{G}$, then $n^{p} 0$. To check this, we may assume that n is in the Lie algebra of the unipotent radical U of a Borel subgroup. For each positive root fi, let $X_{\text {fif }}$ be a basis for the root subspace .f. Express n as ${ }_{f i 2 R}-a_{f i} \cdot X_{f i}$. Each $X_{f i}$ is the innitesimal generator of an additive group. It follows that $X_{f i}^{p} 0$ for each fi. Observe that

$$
\begin{equation*}
n^{p} X_{\text {fi2R }}^{-} a_{f i}^{p} \cdot X_{f i}^{p}\left(\text { modulo } Z^{p}\right) \tag{2.1.3}
\end{equation*}
$$

and $Z^{p}{ }^{p} 0$, as $p,{ }_{\mathrm{G}}$. (see [Mc 1, page 10]).
2.2. Let ${ }_{\text {nilp }}$ (resp. G^{u}) be the reduced subscheme of Lie(G) (resp. G) with points the nilpotent (resp. unipotent) elements. Let U be the unipotent radical of a Borel subgroup. For $\mathrm{p},{ }_{\mathrm{G}}$, the CampbellHausdorff group law - makes sense in characteristic $\quad \mathrm{p}$ and turns : $\mathrm{Lie}(U)$ into an algebraic group over k. This is so since $Z^{p}{ }^{p} 0$. Further, there is an unique isomorphism

$$
\begin{equation*}
\exp :(\operatorname{Lie}(U),-) i i^{\prime \prime} \quad U \tag{2.2.1}
\end{equation*}
$$

equivariant for the action of B and whose differential at the origin is the identity. If in addition the simply connected covering of the derived group of G is an Øtale covering (which is the case for p " ${ }_{G}$, and could fail when $p^{\text {c }}{ }_{\text {G }}$ due to the presence of $\operatorname{SL}(p)$ as factors in the covering), then there is a unique G-equivariant isomorphism ([S2, Theorem 3 , page 21]:

$$
\begin{equation*}
\exp : \text { nilp } G^{u} \tag{2.2.2}
\end{equation*}
$$

which induces (2.2.1) on each unipotent radical of a B orel subgroup. Let $\log : G^{u}$! nilp denote its inverse.

For u a unipotent element of $G(k)$, one denes the t-power map" $t 7$! u^{t}, from G_{a} to G, by

$$
\begin{equation*}
\mathrm{t} 7!\exp (\mathrm{t} \log \mathrm{u}) . \tag{2.2.3}
\end{equation*}
$$

For $G{ }^{\circ} G L(V)$ such a map $t 7!u^{t}$ is more generally dened for any in G such that $u^{p}{ }^{1}$. It is given by the truncated binomial expression ([S1, 4.1.1, page 524]):

Similarly, X in $E n d(V)$ such that $\quad X{ }^{p} 0$ denes a morphism $t 7$! $\exp (t X)$ from G_{a} to $G L(V)$ given by the truncated exponential series:

$$
\begin{equation*}
t 7!1^{-} t X^{-} \frac{(t X)^{2}}{2!}-\cdots-\frac{(t X)^{p_{i} 1}}{(p ; 1)!} \tag{2.2.5}
\end{equation*}
$$

Until the end of $\S 3$, we make the following assumptions on the reductive group G.
AsSUMPTION 2.3. Let © be the simply connected covering of the derived group G^{0}. We assume that $p,{ }_{G}$ and that the map $\mathcal{G}!G^{0}$ is \emptyset tale.

In particular, by 2.1 and 2.2 , the exponential map (2.2.2) is dened, every unipotent element in $\quad G(k)$ is of order p, and every nilpotent in $\mathrm{Lie}(G)$ is a p-nilpotent. One can then dene the notions of saturation and innitesimal saturation of subgroup schemes $\% G$ as follows (see Remark 2.19 for the case when $\left.G{ }^{\circ} \operatorname{PGL}(p)\right)$.

Definition 2.4. ([S1, §4], [D, Denition 1.5])
(1) A subgroup scheme $\% G$ is called saturated if for every u in (k) which is unipotent, the homomorphism $t \quad 7!u^{t}(2.2 .3)$ from G_{a} to G factors through
(2) A subgroup scheme $\% G$ is called innitesimally saturated if for every nilpotent X in Lie (), the morphism t 7! $\exp (t X)$ (2.2.2) from G_{a} to G factors through .
(3) is doubly saturated if it is saturated and innitesimally saturated.

An element of Lie() is nilpotent if and only if it is nilpotent as an element of L ie(G). The reference to the exponential map (2.2.2) in (2) therefore makes sense. One way to see it is to observe that the inclusion of Lie() in Lie(G) is a morphism of p-Lie algebras and that $\quad X$ is nilpotent if and only if it is killed by an iterated p-power map, i.e. $X^{p^{n}}{ }^{0} 0$.

Let ${ }^{0}$ be the identity component of and ${ }_{\text {red }}^{0}$ the reduced subscheme of $\quad 0$.
THEOREM 2.5. Let $\%$ beak-subgroup scheme which is innitesimally saturated. A ssume that if $p \quad{ }^{\circ} \quad{ }^{\prime} \quad \begin{aligned} & \quad \\ & \text { red }\end{aligned}$ is reductive. Then
(1) The group $\quad{ }_{\text {red }}^{0}$ and its unipotent radical R $\quad{ }_{u}\binom{0}{$ red } are normal subgroup schemes of and the quotient group scheme $\quad \% \quad 0$ is of multiplicative type.
(2) If ${\underset{\text { red }}{ }}_{0}$ is reductive, there exists a central, connected subgroup scheme of multiplicative type $M \quad \%{ }^{0}$ such that the morphism $M £ \quad{ }_{\text {red }}^{0}$! realizes $\quad{ }^{0}$ as a quotient of $M \quad £ \quad{ }_{\text {red }}^{0}$.

The proof of part (2) of 2.5 will occupy most section 2 , until 2.16. Part (1) will be proven in section 3 .

By [D, Lemma 2.3], the conclusions of 2.5 hold for if and only if they hold for the identity component $\quad{ }^{\circ}$. Until the end of section 3, we will assume that is connected.

Lemma 2.6. If is an innitesimally saturated subgroup scheme of G, every nilpotent element n of Lie() is in Lie(red).
Proof. As G is reduced, the morphism $t 7!\exp (t n) \operatorname{maps} G_{a}$ to red $\% G$. The image of 1 in Lie($\left.G_{a}\right)$ is n.

Part (2) of 2.5 is a corollary of 2.6 and of the following theorem, which does not refer to G anymore.

Theorem 2.7. Let be a connected algebraic group such that
(a) red is reductive
(b) any nilpotent element of Lie () is in Lie(red).

Then, the conclusion of $2.5(2)$ hold. As a consequence, red is a normal subgroup scheme of and $/$ red is of multiplicative type.

Let T be a maximal torus of red and let H be the centralizer of T in
. One has H \ red T . It follows from (b) that any nilpotent element n of $\operatorname{Lie}(H)$ is in $\operatorname{Lie}(T)$, hence vanishes. By the following lemma, H is of multiplicative type, and in particular commutative.

Lemma 2.8. Let H be a connected algebraic group over k. If all the elements of Lie (H) are semi-simple, then H is of multiplicative type.

Proof. (see also ([DG, IV, §3, Lemma 3.7])) Lie(H) is commutative : Fix x in Lie(H), and let us show that it is central in Lie(H). As adx is semisimple, it sufces to show that if y is in an eigenspace of adx, i.e. $[x, y]^{\sim}$, y, then x and y commute, i.e. , 0 . Let W be the vector subspace of $\operatorname{Lie}(H)$ generated by the $y^{\left[p{ }^{\prime}\right]}\left({ }^{\prime}, 0\right)$. The $y^{\left[{ }^{\left[{ }^{\prime}\right]}\right.}$ commute. The map $z 7!z^{p}$ therefore induces a p-linear map from W to itself, injective by assumption. It follows that W has a basis $e_{i},(1 \cdot i \cdot N)$ consisting of elements such that $e_{i}^{p}{ }^{e_{i}}$, and $\left({ }^{P} a^{i} e_{i}\right)^{p} \backsim{ }^{P}\left(a^{i}\right)^{p} e_{i}$.
Lemma 2.9. For $b^{\circ}\left(b_{i}\right)$ in k^{N}, dene $b^{p}:^{\circ}\left(b_{i}^{p}\right)$. Then, any b in $k{ }^{N}$ is a linear combination of the $b{ }^{\left[p^{\prime}\right]}$ for ' , 1 .
Proof. The $b^{\left[p^{\mathrm{a}]}\right.}(\mathrm{a}, 0)$ are linearly dependent. A linear dependence relation can be written

$$
\begin{equation*}
{ }_{j, m}^{X} c_{j} b^{p^{j}} 0 \tag{2.9.1}
\end{equation*}
$$

with $c_{m} 6 \breve{0}$. Extracting p^{m}-roots, we get

$$
\begin{equation*}
\left({ }_{j, 0}^{X} d_{j} b^{p^{j}}\right)^{\sim} 0 \tag{2.9.2}
\end{equation*}
$$

where $d_{j}{ }^{\circ} c_{m}{ }^{1 / p^{m}}$. In particular, $\quad d_{0} 6^{\sim} 0$, proving the lemma.

End of proof of commutativity From the lemma above, y is a linear combination of the $y^{\left[p^{\prime}\right]}\left(،^{\prime \prime} 0\right)$. The bracket $\left[y^{\left[p p^{\prime}\right]}, x\right]$ vanishes for (" 0). Indeed, it is $(\operatorname{ady})^{\left[p^{\prime}\right]}(x)$ which vanishes because $[y,[y, x]]^{\wedge}[y, i, y]^{\wedge} 0$. It follows that $[y, x]$ vanishes too.

The p-Lie algebra Lie(H) determines the kernel of the Frobenius morphism $F: H!H^{(p)}$, where $H^{(p)}$ is obtained from H by extension of scalars , $7!,{ }^{p}, k!k$. As Lie (H) is commutative semi-simple, this kernel of the Frobenius morphism is of multiplicative type. The same holds for $H^{(p)}$, which is obtained from H using an automorphism of k. The same holds for each $H^{\left(p^{\prime}\right)}$.

For any n, the kernel K_{n} of the iterated Frobenius map $F^{n}: H!H^{\left(p^{\prime}\right)}$ is an iterated extension of subgroups of the kernel of the Frobenius of the $H^{\left(p^{i}\right)}, i \cdot n$. It is hence of multiplicative type, being an iterated extension of connected groups of multiplicative type ([SGA 3, XVII, 7.1.1]).

The K_{n} form an increasing sequence. By the proof of [D, Proposition 1.1], there exist subgroup of multiplicative type $\quad M$ of H containing all K_{n}. As H is connected and as M contains all innitesimal neighbourhoods of the identity element, one has $\quad M^{`} H$.

Whenever a group M of multiplicative type acts on a group K, its action on Lie(K) denes a weight decomposition:

$$
\begin{equation*}
\left.\operatorname{Lie}(K)^{n^{\prime}} \quad \text { f2x(M)} \text { Lie(K }\right)^{f} \tag{2.9.3}
\end{equation*}
$$

If $v 2 \operatorname{Lie}(K)^{f}$, then v^{p} is in Lie($\left.K\right)^{p . f f}$. Indeed, after any extension of scalars R / k, if m is in $M(R)$,

$$
\begin{equation*}
m\left(v^{p}\right)^{\sim}(m(v))^{p} \smile(f(m) v)^{p} \smile f(m)^{p} v^{p} \tag{2.9.4}
\end{equation*}
$$

Lemma 2.10. With the above notations, if $f l$ is not torsion, Lie $(K)^{f f}$ consists of nilpotent elements.

Proof. Indeed, if fl is not torsion, the p fl are all distinct and Lie(K$)^{\mathrm{p}}$ fl must vanish for ' 0 . It follows that the elements of Lie($K)^{f}$ are nilpotent.

Let us apply this to the action of T on by inner automorphisms.
Lemma 2.11. If fl in $\mathrm{X}(\mathrm{T})$ is not zero, the weight spaces Lie ()$^{\text {fl }}$ equals Lie(red $)^{\text {fi }}$.
Proof. Indeed, Lie() $)^{f 1}$ consists of nilpotent elements. By our assumption 2.7(b), it is contained in Lie(red).

Let B a Borel subgroup of red containing T, and let U be its unipotent radical.

Lemma 2.12. Under the assumption of 2.7 , H normalizes U .
Proof. Let C in $X(T)$ > R be the cone generated by the positive roots, relative to B and dene

$$
\begin{equation*}
C^{\prime}: C \backslash\{0\} \tag{2.12.1}
\end{equation*}
$$

Asin 2.11, we let T act on by conjugation (t acts by $\mathrm{g} 7!\mathrm{tg}^{\mathrm{i}}{ }^{1}$). This action induces actions on $\quad:$ Lie(), the afne algebra A of , its augmentation ideal (dening the unit element), and the dual _- ${ }^{2}$ of . Similarly T acts on U, its Lie algebra , its afne algebra A_{U} and its augmentation ideal $\quad u$. For the action on afne algebras, $\quad t$ in T transforms $f(g)$ into $f\left(t^{i 1} g t\right)$. From these actions, we get $\quad X(T)$-gradings. By 2.7(b)

$$
\begin{equation*}
\mathrm{fl}_{\mathrm{fl2}} \mathrm{M}^{\mathrm{M}} \text {. } \tag{2.12.2}
\end{equation*}
$$

It follows that - $\quad l_{\quad}^{2}$ is the sum of the $(\quad-)^{f}$, for fl in the negative i C^{\prime} of C^{\prime}. For n " 0 , the weights by which T acts on ${ }_{u}^{n} /{ }_{u}^{n-1}$ are in i C^{\prime}. As U is connected, the intersection of the $\quad{ }_{j}^{n}$ is reduced to 0 , and the weights by which $\quad \mathrm{T}$ acts on $\quad u$ are also in i^{μ}.

Let I be the ideal of A generated by the graded components fl of
for fl not in i C^{\prime}, and put $A_{1}:$ A/I. The image in u of $a{ }^{\text {fl }}$ as above is contained in ${ }_{\mathrm{f}}$, hence vanishes. It follows that U is contained in the closed subscheme $U_{1}{ }^{`}$ Spec A_{1} of dened by I. As the graded component dened ${ }^{0}$ of is contained in 1 , the graded component A_{1}^{0} of A_{1} (the T-invariants) is reduced to the constants. As T is connected it follows that U_{1} is connected. As the image of \int_{u}^{f} in $/^{2}$ is $\left(/^{2}\right)^{n}$, the image of I in $/^{2}$ - is the orthogonal of $\%$ and the tangent space at the origin of $\quad U_{1}$ is .

Claim : The subscheme U_{1} of is a subgroup scheme, i.e. the coproduct $\$: A!A>A, f(g) 7!f(g h)$ maps \mid to $I>A^{\prime} A>I$. Indeed, $\&$ respects
the gradings; for k \%oA the constants, one has $A^{\circ} k^{\prime}$, and $\$$ maps to $(k>)^{\prime}(, k)^{\prime}(>)$, and hence fl maps to

AsiC' is stable by addition, if $\mathrm{fl}^{\circ} \mathrm{fl}^{0-} \mathrm{fl}^{00}$ and that fl is not in i^{\prime}, one of fl^{0} or fl^{00} is not in C^{\prime}, and the corresponding $\quad{ }^{\mathrm{fl}}$ or ${ }^{\mathrm{f}}{ }^{000}$ is contained in I. The claim follows.

To summarize, U_{1} is connected, and the inclusion $\quad U \%_{1}$ induces an isomorphism Lie(U) i!" $\operatorname{Lie}\left(U_{1}\right)$. As U is smooth, this implies that U " U_{1}.

Since H centralizes T, the ideal I is stable by H, meaning that H normalizes U.

Corollary 2.13. Under the assumption of 2.7, H normalizes
Proof. Let B^{i} be the Borel subgroup of red containing T and opposite to B , and let U^{i} beits unipotent radical. As $\mathrm{U}^{\mathrm{i}}, \mathrm{T}$ and U are normalized by H , the big cell $\mathrm{U}^{\mathrm{i}} \mathrm{TU} \%_{\text {red }}$ is stable by the conjugation action of H , and so is its schematic closure red .

In what follows, we identify schemes with the corresponding fppf sheaves. A quotient such as / H represents the quotient of the sheaf of groups by the subsheaf H : is a H-torsor over / H.

Lemma 2.14. The morphism of schemes

$$
\begin{equation*}
\text { red } / \mathrm{T}!\quad / \mathrm{H} \tag{2.14.1}
\end{equation*}
$$

is an isomorphism.
Proof. As T is the intersection of red and $H,(2.14 .1)$, as a morphism of fppf sheaves, is injective. Testing on $\operatorname{Spec}(\quad k)$ and $\operatorname{Spec}\left(k[t] /\left(t^{2}\right)\right)$, one sees that it is bijective on points and injective on tangent space at each point. It is hence radicial and unramied, hence on some open set of
${ }_{\text {red }} / T$ an immersion. The red homogeneity then shows that it is a closed embedding.

The tangent space at the origin of red $/ \mathrm{T}$ is $\mathrm{Lie}\left({ }_{\text {red }}\right) / \mathrm{Lie}(\mathrm{T})$. For / H if J is the ideal dening H, as red is a H-torsor on red $/ H$, if - is the ideal dening the origin in red $/ \mathrm{H}$ is $\mathrm{J} / \mathrm{J}^{2}$, and \cdot / \cdot^{2} is the ber if ${ }_{\text {red }} / \mathrm{H}$, the pull-back of \cdot / \cdot^{2} to $\mathrm{J} / \mathrm{J}^{2}$ at the origin e. By [D, 1.15] applied to T acting on by conjugation, $\left.\left(\mathrm{J} / \mathrm{J}^{2}\right)_{\mathrm{e}} \mathrm{i}!^{\prime \prime} \mathrm{L}_{\mathrm{ff60}}(\mathrm{l})^{2}\right)^{\mathrm{fl}}$ (Lie(red $) /$ Lie(T))-. Thus, the closed embedding (2.14.1) is an isomorphism near the origin, hence everywhere by homogeneity, proving 2.14.

Corollary 2.15. Under the assumptions of 2.7, red is normal in , and there exists in a central connected subgroup scheme of multiplicative type M such that the morphism $M \quad £ \quad$ red ! realizes as a quotient of $M £ \quad$ red
Proof. By 2.14, the product map red $£ \mathrm{H}$! is onto, as a morphism of sheaves. As both red and H normalize red $\%$, so does

To complete the proof of 2.15 (and thereby of 2.7), we follows [D, §2.25]. Let M be the subgroup of H which centralizes red. Since red is reductive, the group scheme A ut $\quad{ }_{T}\left({ }_{\text {red }}\right)$ of automorphisms which preserve T is precisely $T^{\text {ad }}$, the image of T in the adjoint group. Hence the conjugation action of H on red gives the exact sequence:

$$
\begin{equation*}
1!\mathrm{M}!\mathrm{H}!\mathrm{T}^{\text {ad }} \text { ! } 1 \tag{2.15.1}
\end{equation*}
$$

and T surjects onto $T^{\text {ad }}$ implying that M and T generate H. Since M is generated by $M_{\text {red }} \%_{0}$ red and M^{0}, and since H and red generate we see that M^{0} and red generate. M oreover, M is central. Thus

$$
\begin{equation*}
M^{0} £ \quad \text { red }! \tag{2.15.2}
\end{equation*}
$$

is an epimorphism. This concludes the proof of 2.7 and in particular, 2.5(2).

Lemma 2.16. Suppose that H is a maximal connected subgroup scheme of multiplicative type of an algebraic group \quad. Let $Z^{0}(H)$ be the identity component of the centralizer of H in and dene $U \quad:^{\circ} Z^{0}(H) / H$. Then the sequence:

$$
\begin{equation*}
0!\operatorname{Lie}(H)!\operatorname{Lie}\left(Z^{0}(H)\right)!\operatorname{Lie}(U)!\quad 0 \tag{2.16.1}
\end{equation*}
$$

associated to the central extension

$$
\begin{equation*}
1!H!Z^{0}(H)!U!1 . \tag{2.16.2}
\end{equation*}
$$

is exact.
Proof. Left exactness of (2.16.1) is clear. The maximality of H implies that U is unipotent (see [D, §2.5, page 590]).

Embed H in G_{m}^{r} as a subgroup scheme. The quotient $H^{00} G_{m}^{r} / H$ is a torus, being a quotient of one. The central extension (2.16.2), by a push forward, gives a central extension ([SGA 3, ExposØ XVII, Lemma 6.2.4])

$$
\begin{equation*}
1!G_{m}^{r}!E \underset{9}{E!U!} 1 \tag{2.16.3}
\end{equation*}
$$

and a diagram of groups:

Since H^{00} is multiplicative every nilpotent in Lie(E) maps to 0 in Lie(H^{00} and hence comes from a nilpotent in Lie($\left.\quad Z^{0}(H)\right)$.

Since G_{m}^{r} is smooth, by [SGA 3, ExposØ VII, Proposition 8.2] the sequence (2.16.3) gives an exact sequence

$$
\begin{equation*}
0!\operatorname{Lie}\left(G_{m}^{r}\right)!\operatorname{Lie}(E)!\operatorname{Lie}(U)!\quad 0 \tag{2.16.5}
\end{equation*}
$$

Since U is unipotent, any element z in $\operatorname{Lie}(U)$ is nilpotent. Let z^{0} in Lie(E) be a lift of z. The Jordan decomposition makes sense for any pLie algebra over a perfect eld k and uses only the p-power map (see for example [W 2, Corollary 4.5.9, page 135]. Thus, by using the Jordan decomposition of the lift z^{0} in $\operatorname{Lie}(E)$ and noting that the semi-simple part gets mapped to zero in Lie(U), we can assume that z^{0} can also be chosen to be nilpotent.

Since every nilpotent in Lie(E) comes from a nilpotent in Lie($\left.Z^{0}(H)\right)$, we conclude that $\quad z$ gets lifted to a nilpotent in Lie($\left.Z^{0}(H)\right)$. This implies that (2.16.1) is also right exact.

Lemma 2.17. Suppose that is a subgroup scheme of G which is innitesimally saturated in G. Then the subgroup scheme $Z \quad{ }^{0}(H)$ is innitesimally saturated in G; in particular, every non-zero nilpotent in $\operatorname{Lie}\left(Z^{0}(H)\right)$ lies in Lie $\left(Z^{0}(H)_{\text {red }}\right)$.

Proof. If n in Lie($\left.Z^{0}(H)\right)$ is nilpotent, the map \%o: t $7!\exp (t n): G_{a}$! G factors through . Since H is central in $Z^{0}(H)$, the action of H by inner automorphisms xes n. Since the map exp" is compatible with conjugation the entire curve \%ois xed by H . Therefore, \%ofactors through $Z(H)$ and hence through $Z^{0}(H)_{\text {red }}$, since G_{a} is reduced and
connected, and hence $\mathrm{n} 2 \operatorname{Lie}\left(\mathrm{Z}^{0}(\mathrm{H})_{\text {red }}\right)$. This completes the proof of the lemma.

We have the following extension of ([D, Lemma 2.7, Corollary 2.11]).
Lemma 2.18. Let be as in 2.17. Let H \%o be a maximal connected subgroup scheme of multiplicative type. Then the central extension splits and U is a smooth unipotent group.

Proof. We claim that U is smooth. By Lemma 2.16, every element Z in Lie(U) comes from a nilpotent in n in Lie($\left.Z^{0}(H)\right)$. By 2.17, n is in $\operatorname{Lie}\left(Z^{0}(H)_{\text {red }}\right)$. Its image z is hence in Lie($\left.U_{\text {red }}\right)$. Thus, Lie(U) ${ }^{\wedge}$ Lie $\left(U_{\text {red }}\right)$ proving the claim.

Now we have a central extension (2.16.2) with the added feature that U is smooth. By [SGA3, ExposØ XVII, Theorem 6.1.1] it follows that (2.16.2) splits (uniquely) and

$$
\begin{equation*}
Z^{0}(H)^{\sim} H £ U . \tag{2.18.1}
\end{equation*}
$$

Remark 2.19. Recall that in 2.2, for the existence of an exponential map (2.2.2) we assumed that the covering morphism © ! G^{0} is Øtale, which therefore became a part of the standing assumption (2.3). The case which gets excluded is when the simply connected cover of the derived group has factors of SL(p). For instance, when G^{0} is simple with $p^{0}{ }^{\circ}$, the only case excluded is $\quad \mathrm{G}^{00} \mathrm{PGL}(\mathrm{p})$.

Let G be a reductive group for which $p{ }^{\circ}{ }_{G}$. The tables of Coxeter numbers of simple groups show that except for type A, where ${ }_{s L(n)}{ }^{〔} n$, Coxeter numbers are even greater than 2. It follows that \mathcal{E} is a product of SL (p)'s and other simple factors with p larger than their Coxeter numbers. Even when the morphism $\quad \in!G^{0}$ is not \emptyset tale, we can still dene the notions of saturation (resp innitesimal saturation) of subgroup schemes $\% G$ as follows.

Say \%oG is saturated (resp innitesimally saturated) if the inverse image of in \mathcal{C} is saturated (resp innitesimally saturated). With this denition, Theorem 2.5 remains true for p, \quad.

This notion of saturation (resp innitesimal saturation) can also be seen in terms of suitably dened $\quad t$-power maps and exponential maps. We restrict ourselves to the case when $\quad G^{0-} \operatorname{PGL}(p)$. At the level of Lie algebras, the induced morphism:

$$
\begin{equation*}
(p)!\quad(p) \tag{2.19.1}
\end{equation*}
$$

is a radicial map on the locus of nilpotent elements. If A 2 (p) is a matrix representing an element of $\quad(p)$, it is nilpotent if all but
the constant coefcients of the characteristic polynomial vanishes, i.e.
$\operatorname{Tr}\left(\wedge^{i}(A)\right){ }^{\wedge} 0,81 \cdot \mathrm{i}^{\cdot} \mathrm{p}$ and the characteristic polynomial reduces to $T^{p} i \operatorname{det}(A)$. This condition is stable under $A 7!A^{-}, . l$ as $\left(T_{i},\right)^{p} i$ $\operatorname{det}(A)^{\wedge} T^{p} i\left(\operatorname{det}(A)^{-},{ }^{p}\right)^{\wedge} T^{p} i \operatorname{det}\left(A^{-}, I\right)$.

We get the unique lift $\mathbb{A} 2(p)$ by taking $\mathbb{A}:^{-} A_{i} \operatorname{det}(A)^{1 / p}$. I. Now one has $\operatorname{Tr}\left(\wedge^{i}(\mathbb{A})\right)^{\wedge} 0$ for $1 \cdot i \cdot p$ and hence we can dene the exponential morphism $G_{a}!P G L(p)$ as:

$$
\begin{equation*}
\text { t 7! } \exp (t A):^{\sim} \exp (t \mathbb{A}) . \tag{2.19.2}
\end{equation*}
$$

Likewise, in the case of unipotents in the group PGL(\quad), the restriction of this map to the locus of unipotent elements:

$$
\begin{equation*}
S L(p)^{u}!\operatorname{PGL}(p)^{u} \tag{2.19.3}
\end{equation*}
$$

is radicial. Thus, any unipotent $u 2 \mathrm{PGL}(\mathrm{p})$ has a unique unipotent lift ๒ $2 S L(p)$ and one can dene the t-power map $G_{a}!P G L(p)$ as:

$$
\begin{equation*}
\mathrm{t} 7!u^{\mathrm{t}}:{ }^{\mathrm{v}} \text { image }\left(\uplus^{\mathrm{t}}\right) \tag{2.19.4}
\end{equation*}
$$

With the notions of t-power map and exponential morphisms in place, we can dene the notions of saturation (resp innitesimal saturation) of subgroup schemes $\quad \% G^{0}$ exactly as in Denition 2.4 using (2.19.4) (resp (2.19.2)) and these coincide with the denitions made above.

We note however that these punctual " maps, i.e. dened for each nilpotent A (resp each unipotent u), are not induced by a morphism from $(p)_{\text {nilp }}$ to $\operatorname{PGL}(p)^{u}$ (resp. $A^{1} £ \operatorname{PGL}(p)^{u}!\operatorname{PGL}(p)^{u}:(t, u) 7!u^{t}$ is not a morphism).

3. Completion of proof of the structure theorem
 2.5

We begin by stating a general result on root systems whose proof is given in the appendix.

Proposition 3.1. Let R be an irreducible root system with Coxeter number and let X be the lattice spanned by R. Let $\quad: X!R / Z$ be a homomorphism. Then there exists a basis B for R such that if fi $2 R$ satises - (fi) $2^{1} 0,1 / \bmod Z$, then fi is positive with respect to B.
3.2. A ssumption 2.3 on the reductive group G continues to be in force. Let be a subgroup scheme of G, and H a maximal connected subgroup scheme of multiplicative type of . For the existence of H see [D, Proposition 2.1].

Let $\mathrm{X}(\mathrm{H})$ be the group of characters of H . The action of H on Lie() by conjugation gives an $\quad X(H)$-gradation Lie() ${ }^{\prime} \operatorname{Lie}\left(Z^{0}(H)\right)^{\prime}$ ${ }_{\text {fi60 }}$ Lie() ${ }^{\text {fi }}$.

Corollary 3.3. (cf. [D, Lemma 2.12]) Let M be a connected subgroup scheme of multiplicative type of G and suppose that $p \quad{ }^{\circ}$. The acfion of M on Lie (G) by conjugation gives an $X \quad(M)$-gradation Lie (G) " fir $^{2 \times(M)} \operatorname{Lie}(G)^{\text {fi }}$. If fi $6^{\breve{0}} 0$, then for $2 \mathrm{Lie}(G)^{\text {fi }}$ one has ${ }^{\rho}{ }^{\circ} 0$. In particular, if $M{ }^{\circ} H$ and 2 Lie() we have ${ }^{\rho}{ }^{\circ} 0$.

Proof. In a smooth algebraic group, the maximal connected subgroups of multiplicative type are (maximal) tori. Indeed, if $\quad \mathrm{T}$ is such a maximal subgroup, its centralizer $\quad Z_{G}(T)$ is smooth, being the xed locus of a linearly reductive group acting on a smooth variety (see for example [DG, Theorem 2.8, Chapter II, §5]). Dene $\quad U::_{G}(T)^{0} / T$. The group scheme U is smooth, as a quotient of $Z_{G}(T)^{0}$ which is smooth, and is unipotent by maximality of T. By [SGA3, ExposØ XVII, Theorem 6.1.1], we have a splitting $Z_{G}(T)^{0} T £ U$, and hence T is smooth.

In our case M is hence contained in a maximal torus T of G. By the assumption 2.3 on G, it sufces to prove that is nilpotent. Suppose rst that M is isomorphic to ${ }_{\rho p}$. In that case, the non-trivial character fi of M induces an isomorphism from M to ${ }_{p}$. Let ${ }^{\text {© }: ~} X(T)!X(M)^{\text {fi }}$ $X\left({ }_{n}\right)^{\sim} Z / p$ be induced by the inclusion of M into T. Then, the M weight space $L i e(G)^{\text {fi }}$, is the sum of T-weight spaces Lie($\left.G\right)^{f 1}$ for fl a root such that `(fl) 1 . By 3.1 , applied to \(\frac{1}{\mathrm{p}}\) `, with values in $\frac{1}{\mathrm{p}} \mathrm{Z} / \mathrm{Z} \% \mathrm{R} / \mathrm{Z}$, this sum is contained in the Lie algebra of the unipotent radical of a B orel subgroup of G. In particular, it consists of nilpotent elements.

For the general case, if M is trivial, the claim is empty. If M is not trivial, pick $A \% M$ isomorphic to \ldots_{p}. If the restriction of fi to A is nontrivial, one applies 3.3 to the al ready proven case of A and the restriction of fi to A. If the restriction of $f i$ to A is trivial, one considers $M / A \%$ $Z_{G}\left({ }_{p}\right)^{0} /{ }_{\mu p}$ and repeat the argument.
3.4. The proof of 2.5 now follows [D, page 594-599] verbatim with a sole alteration; recall that in [D] the group $\quad \mathrm{G}$ was the linear group $\mathrm{GL}(\mathrm{V})$ and the condition on the characteristic was $\quad \mathrm{p}$ " $\operatorname{dim}(\mathrm{V})$. For an arbitrary connected reductive G, this condition now gets replaced by $P^{\prime \prime}{ }_{6}$, which makes 3.3 applicable.
Remark 3.5. If $G ` \mathrm{GL}(\mathrm{V})$ one has ${ }_{\mathrm{G}}{ }^{\circ} \operatorname{dim}(\mathrm{V})$. In the case $\mathrm{G}^{-} \mathrm{Q} \mathrm{GL}\left(V_{i}\right)$ with for each i, p" $\operatorname{dim}\left(V_{i}\right)$, the case $p^{*}{ }_{G}$ of Theorem 2.5 gives us [D, Theorem 1.7].
Example 3.6. (Brian Conrad) Here is an example in any characteristic p " 0, of a connected group of multiplicative type M acting on a reductive group G, and of a non-trivial character fi of M, such that the weight space Lie(G) ${ }^{\text {fi }}$ contains elements which are not nilpotent. We
take $G{ }^{`} S L_{p}$ (so that $G^{`} p$) and M " $\quad p^{2}$, and for fi the character $\ddagger 7!\ddagger^{p}$ 。

We embed M in the maximal torus of diagonal matrices of $S L \quad p$ by

$$
\ddagger 7!\operatorname{diag}\left(\ddagger^{0}, \ddagger^{i p}, \ddagger^{i 2 p}, \ldots, \ddagger^{i(p i) p p}\right)
$$

The restriction to $\quad \mathrm{M}$ of each simple root and of the lowest root is the character fi : $\ddagger 7!\ddagger^{p}$, and Lie(G) $)^{\text {fi }}$ is the sum of the corresponding root spaces. In the standard visualization of $S L \quad p$ this weight space inside $\mathrm{Lie}(\mathrm{G}){ }^{\wedge} \quad \mathrm{is}$ the span of the super-diagonal entries and the lower-left entry.

A sum of nonzero elements in those root lines contributing to Lie(G) ${ }^{\text {fi }}$ is a $p \notin p$-matrix $X 2 \quad p$ which satises

Iterating p times gives X^{p} diag (t, \ldots, t), with $t:{ }^{Q} t_{j} 6{ }^{\circ} 0$. Hence, $X 2$ Lie(G) ${ }^{\text {fi }}$ is not nilpotent.

Example 3.7. A variant of the above example leads to an example of an innitesimally saturated group scheme $\quad \% S L(V)$ with $\operatorname{dim}(V){ }^{\circ} p$ and such that V is an irreducible representation and such that red is a unipotent group. This in particular implies that red is not normal in.

Let V be the afne algebra of $\quad{ }_{p}$, that is

$$
\begin{equation*}
V^{\sim} O\left({ }_{n p}\right):-\frac{k[u]}{\left(u^{p} i 1\right)} \tag{3.7.1}
\end{equation*}
$$

The vector space V admits the basis $\left\{u^{i} j i 2 Z / p\right\}$.
The multiplicative group $O\left({ }_{p}\right)$ acts by multiplication on V. For f 2 $\left.O\left({ }_{n}\right)^{\prime}\right)^{\prime}, f^{p}$ is constant. Dene $\quad N f$ to be the constant value of $\quad f^{p}$. It is in fact the norm of f. The action of $O\left({ }_{p p}\right)^{\prime}$ on V induces an action of the subgroup $N \%\left(_{n p}\right)^{\prime}$ for which $N f{ }^{-} 1$.

On V we have also the action of $\quad{ }_{p}$ by translations and this action normalizes the group $O\left({ }_{n p}\right)^{\prime}$ and its subgroup N. Consider the group scheme:

$$
\begin{equation*}
\because{ }_{n p} n N \tag{3.7.2}
\end{equation*}
$$

We make a few observations on
(1) is innitesimally saturated;
(2) contains the group generated by the rst factor $\quad{ }_{p}$ and $\left\{u^{i} j i 2\right.$ $Z / p\}^{\prime} Z / p$. This group is a Heisenberg type central extension of ${ }_{\mu}$ n Z/p by ${ }_{\ldots}$.
(3) the representation V is irreducible as a -module since it is so for the Heisenberg type subgroup, being simply its standard representation.
(4) The reduced group red can be identied with the unipotent group $\left\{\mathrm{f} 20\left({ }_{n}{ }_{\mathrm{p}}\right)^{\prime} \mathrm{jf}(1)^{\text {" }} 1\right.$ \}.
(5) The subgroup red is not normal as the point 1 of ${ }_{p}$ is not invariant by translations.

4. SEmi-simplicity statements

Let G be a reductive group. Let C be an algebraic group and $\%$ © ${ }^{\circ}$ G be a morphism.

Definition 4.1. ([S2, Page 20]) One says that \%ds cr if, whenever \%factors through a parabolic P of G, it factors through a Levi subgroup of P.

When G ${ }^{\circ} \mathrm{GL}(\mathrm{V})$, \%ois cr if and only if the representation V of C is completely reducible (or equivalently, semi-simple) and hence the terminology.

The property of \%obeing cr depends only on the subgroup scheme of G which is the (schematic) image of $\quad C$. It in fact only depends on the image of C in the adjoint group $G^{\text {ad }}$. Indeed, the parabolic subgroups of G are the inverse images of the parabolic subgroups of $\quad G^{\text {ad }}$, and similarly for the Levi subgroups. A subgroup scheme of G will be called cr if its inclusion in G is so.

For an irreducible root system $\quad R$, let fi_{0} be the highest root and $\quad{ }^{P} n_{i} f_{i}$ its expression as a linear combination of the simple roots. The characteristic p of k is called good for R if p is larger than each n_{i}. For a general root system R, p is good if it is so for each irreducible component of R.

Proposition 4.2. Suppose C is an extension

$$
\begin{equation*}
1!B!C!A!1 \tag{4.2.1}
\end{equation*}
$$

with $A{ }^{\circ}$ of multiplicative type and A / A° a nite group of order prime to p, and suppose that p is good. Let $\%{ }^{\circ} C!G$ be a morphism. If the restriction of \%oto B is cr, then \%ds cr.

We don't know whether the proposition holds without the assumption that p is good.

Proof. Let P be a parabolic subgroup, U its unipotent radical, and the Lie algebra of U. The parabolic P is said to be restricted if the nilpotence class of U is less than p. If P is a maximal parabolic corresponding to a simple root fi, the nilpotence class of U is the coefcient of $f i$ in the
highest root. It follows that p is good if and only if all the maximal parabolic subgroups are restricted. By [Sei, Proposition 5.3] (credited by the author to Serre), if P is restricted, one obtains by specialization from characteristic 0 , a P-equivariant isomorphism:

$$
\begin{equation*}
\exp :(,-)!" U \tag{4.2.2}
\end{equation*}
$$

from endowed with the Campbell-Hausdorff group law, to U.
We will rst show that whenever \%ofactors through a restricted parabolic subgroup P as above, if the restriction of \%oto B factors through some Levi subgroup of P, the \%oitself factors through some Levi subgroup of P.

The group $U(k)$ acts on the right on the set $L(k)$ of Levi subgroups of P by

$$
u \text { in } U(k) \text { acts by } L 7!u^{i 1} L u
$$

This action turns $L(k)$ into a $U(k)$-torsor. This expresses the fact that two Levi subgroups are conjugate by a unique element of $\quad U(k)$. The group $P(k)$ acts on $L(k)$ and on $U(k)$ by conjugation. This turns $L(k)$ into an equivariant $\quad U(k)$-torsor.

We will need a scheme-theoretic version of the above. Fix a Levi subgroup L_{0}. Let L be the trivial U-torsor (i.e. U with the right action of U by right translations). We have the family of L evi subgroups $\quad L_{u}:{ }^{\sim} u^{i 1} L_{0} u$ parametrized by $L{ }^{-} U$. We let P act on U by conjugation, and on L as follows: $p^{`} V^{\prime}$ in $P^{`} U L_{0}$ acts on $L{ }^{`} U$ by $u 7!v^{i 1}$.pup ${ }^{i 1}$. This turns L into an equivariant U-torsor. When we pass to k-points, and attach to u in L the Levi subgroup $u L{ }_{0} u^{i 1}$, we recover the previously described situation.

The morphism \%o: C! P turns L into an equivariant U -torsor. A point x of L corresponding to a L evi subgroup L_{x} is xed by C (schemetheoretically) if and only if \%ofactors through L_{x}. This expresses the fact that a Levi subgroup is its own normalizer in P.

We want to prove that if B has a xed point in L, so does C. Let U^{B} be the subgroup of U xed by B, for the conjugation action. If B has a xed point in L, the xed locus $L_{B}{ }^{B}$ is a U^{B}-torsor. As B is a normal subgroup of C, C acts on L^{B} and U^{B}, and the action factors through A.

The isomorphism exp:(,-)! U is compatible with the action of B by conjugation. Hence it induces an isomorphism from ($\left.{ }^{B},-\right)!U^{B}$. Let $Z^{i}\left({ }^{B}\right)$ be the central series of $\quad{ }^{B}$, and dene $Z^{i}\left(U^{B}\right):^{\sim} \exp \left(Z^{i}\left({ }^{B}\right)\right)$. The isomorphism exp induces an isomorphism between the vector group
$G r_{z}^{i}\left({ }^{B}\right)$ and $Z^{i}\left(U^{B}\right) / Z^{i-1}\left(U^{B}\right)$, compatible with the action of A. On $\operatorname{Gr}_{z}^{\mathrm{F}}\left({ }^{\mathrm{B}}\right)$, this action is linear.

The assumption on A amounts to saying that A is linearly reductive, that is, all its representations are semi-simple. Equivalently, if k is the trivial representation, any extension

$$
\begin{equation*}
0!V!^{a} E!^{b} k!0 \tag{4.2.3}
\end{equation*}
$$

splits. Passing from E to $b^{i 1}(1)$, such extensions correspond to Aequivariant V-torsors, and the extension splits if and only if $\quad \mathrm{A}$ has a scheme-theoretic xed point on the corresponding torsor.

Dene U_{i}^{B} to be $U^{B} / Z^{i}\left(U^{B}\right)$, and $L_{i}{ }_{i}^{B}$ to be the U_{i}^{B}-torsor obtained from L by pushing by $U^{B}!U_{i}^{B}$. We prove by induction on i that A has a xed point on $L_{i}{ }^{B}$.

As U_{B}^{B} is trivial, the case $i^{-} 1$ is trivial. If x is a xed point of A in $L_{i}{ }^{B}$, the inverse image of x in $L_{i=1}^{B}$ is an equivariant A-torsor on $\operatorname{Gr}_{z}{ }^{i}\left({ }^{B}\right)$ » $Z^{i}\left(U^{B}\right) / Z^{i-1}\left(U^{B}\right)$. By linear reductivity, A has a xed point on the inverse image. As the central descending series of , and hence of ${ }^{B}$ terminates, this proves 4.2 for restricted parabolic subgroups.

We now prove 4.2 by induction on (the dimension) of G. Suppose that \%factors through a proper parabolic subgroup P. Asp is good, there exists a restricted proper parabolic $\quad Q$ containing P, and P is the inverse image by the projection $Q!Q / R_{u}(Q)$ of a parabolic P^{0} of $Q / R_{u}(Q)$. Let L be a Levi subgroup of Q through which \%ofactors and let P_{L}^{0} be the parabolic subgroup of L obtained as the inverse image of $\quad P^{0}$ by the isomorphism $L!" Q / R_{u}(Q)$. Levi subgroups of P_{L}^{0} are Levi subgroups of P, and it remains to apply the induction hypothesis to L, for which p is good too.

Remark 4.3. For several results related to 4.2 but in the setting of reduced subgroups, see [BM R1, Theorem 3.10] and [BM R2, Theorem 1.1 and Corollary 3.7].

Fix in the reductive group G, a maximal torus T, and a system of simple roots corresponding to a Borel subgroup B containing T. Let U be the unipotent radical of B.

Definition 4.4. (cf. [Dy], [S1],[IMP],) The Pynkin height ht ${ }_{6}(\mathrm{~V})$ of a representation V of G is the largest among $\quad\left\{{ }_{\text {fii }}{ }^{h} h, \mathrm{fi}^{-} \mathrm{i}\right\}$, for, a weight for the action of T on V.

This notion and this terminology go back to Dynkin [Dy, Page 331332] where it is called height" as in [IM P], while in Serre ([S1] and [S2]), it is simply $n(V)$ ". If V is an irreducible representation, with dominant weight , and smallest weight , it is the sum of the coefcients of , i , i, expressed as linear combination of the simple roots.

It follows that the product in End ($\quad \mathrm{V}$) of the action of $\mathrm{ht}_{G}(\mathrm{~V})^{-} 1$ elements of Lie(U) vanishes and for n nilpotent in Lie(G), one has $n^{\text {ht }(V)^{-1} \text { - }}$ 0 in End (V).
4.5. The representation \%: G ! $G L(V)$ is said to be of low height if p " ht ${ }_{G}(V)$. By [S2, Theorem 6, page 25], representations of low height are semi-simple. One can show that if G admits a representation V of low height which is almost faithful , meaning that its kernel is of multiplicative type, then G satises the assumption 2.3. That $p,{ }_{G}$ results from the more precise statement that $\quad \mathrm{ht}_{\mathrm{G}}(\mathrm{V})$, ${ }_{\mathrm{g}} \mathrm{i} 1$ ([S3, (5.2.4), Page 213]). For the property that \mathbb{G} / G^{0} is \emptyset tale, one uses the fact that the nontrivial irreducible representation of PGL($\quad \mathrm{p})$ of the smallest height is the adjoint representation which is of height $2 \quad \mathrm{p}$; 2.

We now assume that V is of low height, and the assumption 2.3 on G. It follows that any nilpotent n in Lie(G) satises $n^{p}{ }^{p} 0$, and further, the exponential map (2.2.2) is dened. The image d \%bn) of n in $\operatorname{Lie}(G L(V))$ " End (V) also has a vanishing $p^{\text {th }}$-power, hence $\exp (d \% 6 n) . t)$ is dened. By [S2, Theorem 5, page 24], one has the following compatibility statement.
4.6. Compatibility If n in $\mathrm{Lie}(\mathrm{G})$ is nilpotent

$$
\begin{equation*}
\text { \%bexp(tn)) }{ }^{\text {exp(} t d \% \text { \% })) . ~} \tag{4.6.1}
\end{equation*}
$$

As a consequence, if $u^{p} \backsim 1$ in G, one has

$$
\begin{equation*}
\left.\left.\% \text { \% } u^{t}\right)^{-} \% \phi u\right)^{t} \tag{4.6.2}
\end{equation*}
$$

The following theorem is a schematic analogue of $[B T]$, for p large enough.

Theorem 4.7. Suppose that the reductive group G admits a low height almost faithful representation $\%$ © G ! $G L(V)$, and that $p{ }^{*} \quad{ }_{G}$. Then, for any non-trivial unipotent subgroup U of G, there exists a proper parabolic subgroup P of G containing the normalizer $N \quad{ }_{G}(U)$ of U, and whose unipotent radical contains U.

The condition $P^{\text {. }}{ }_{\text {G }}$ implies that G satises the assumption 2.3. If G is simple simply connected, it implies the existence of an almost faithful low height representation except for the $\quad G$ of type F_{4}, E_{6}, E_{7} or E_{8},
in which case the lowest height of a non-trivial representation and the Coxeter number are respectively 16 " 12,16 " 12,27 " 18 and 58 " 30. For these groups, we do not know whether the conclusion of the theorem is valid assuming only $\quad \mathrm{P}$ " ${ }_{\mathrm{G}}$.
Proof. Let V^{U} be the invariants of U acting on V. It is not zero, because U is unipotent. It is not V , because the representation V is almost faithful, hence faithful on U. It does not have a U-stable supplement V^{0} in V , because U would have invariants in V^{0}.

Let H be the subgroup scheme of G which stabilizes V^{U}. It contains the normalizer $\quad N_{G}(U)$ of U. It is a doubly saturated subgroup scheme $\rho^{f} G_{i+} d^{\text {Indeed, if }} h$ in $H(k)$ is of order p, by (4.6.2), $\%\left(h^{t}\right)^{\circ} \%(h)^{t}$ it $\left.{ }^{\mathrm{i}}(\% \mathrm{~m}) \mathrm{i} 1\right)^{i}$, which stabilizes V^{u}, and similarly if n in Lie(H) is nilpotent, the $\exp (\mathrm{tn})$ are in H .

Asp " ${ }_{6}$, theorem 2.5 ensures that $H_{\text {red }}^{0}$ is a normal subgroup scheme of H and that the quotient $H / H_{\text {red }}^{0}$ is an extension of a nite group of order prime to p by a group of multiplicative type. It follows that $\mathrm{U} \%$ $\mathrm{H}_{\text {red }}^{0}$.
LEMMA 4.8. $H_{\text {red }}^{0}$ is not reductive.
Proof. If it were, V would be a representation of low height of $\quad H_{\text {red }}^{0}$ ([S2, Corollary 1, page 25]), hence a semi-simple representation of $\quad H_{\text {red }}^{0}$, and V^{U} would have in V a $H_{\text {red }}^{0}$-stable supplement. As V^{U} does not admit a supplement stable under $\quad \mathrm{U} \%_{0 H_{r e d}^{0}}^{0}$, this is absurd.

Proof of 4.7 continued : If S is a doubly saturated subgroup scheme of G, we will call $R_{u}\left(S_{\text {red }}^{0}\right)$ the unipotent radical of S and denote it simply by $R_{u}(S)$. By 2.5, it is a normal subgroup of S and $S / R_{u}\left(S_{\text {red }}^{0}\right)$ does not contain any normal unipotent subgroup. This justies the terminology.

Dene $U_{1}:=R_{u}(H)$. By 4.8, it is a non-trivial unipotent subgroup of G , and we can iterate the construction. We dene for i, 1

$$
\begin{aligned}
H_{i}:= & \text { stabilizer of } V^{U_{i}} \% \mathrm{~V} \\
& U_{i-1}: R_{u}\left(H_{i}\right)
\end{aligned}
$$

One has U \% ${ }^{0} H_{\text {red }}^{0}$ and

The $H_{i, \text { red }}^{0}$ form an increasing sequence of smooth connected subgroups of G. It stablizes, hence so do the sequences of the $\quad U_{i}$ and of the H_{i}. If $\mathrm{H}_{\mathrm{i}}{ }^{`} \mathrm{H}_{\mathrm{i}-1}$, one has $\mathrm{H}_{\mathrm{i}}{ }^{`} \mathrm{~N}_{\mathrm{G}}\left(\mathrm{U}_{\mathrm{i}-1}\right)^{`} \mathrm{H}_{\mathrm{i}-1}$ and

$$
U_{i-1}{ }^{\circ} R_{u}\left(H_{i}\right)^{\wedge} R_{u}\left(H_{i-1}\right)^{\wedge} R_{u}\left(N\left(U_{i-1}\right)_{\text {red }}^{0}\right)
$$

By [BT, Proposition 2.3, page 99] (or for example [H, Section 30.3, Proposition on page 186]), this implies that $N\left(U_{i-1}\right)_{\text {red }}{ }^{`}\left(H_{i-1}\right)_{\text {red }}$ is a proper parabolic subgroup of G. Call it Q.A parabolic subgroup of G is its own normalizer scheme (cf. [SGA 3, XII, 7.9], [CGP, page 469]). As ($\left.\mathrm{H}_{\mathrm{i}-{ }^{-1}}\right)_{\mathrm{red}}$ Q is normal in $\mathrm{H}_{\mathrm{i}^{-1}}$, it follows that $\mathrm{H}_{\mathrm{i}^{-1}}{ }^{\circ} \mathrm{Q}$ and that $\mathrm{N}_{\mathrm{G}}(\mathrm{U}) \% \mathrm{Q}$.

A Levi subgroup L of Q is a reductive subgroup of G, hence satises the assumptions of 4.7. It is isomorphic to $Q / R_{u}(Q)$. If U is not contained in $R_{u}(Q)$, we can repeat the argument for the image \bar{U} of U in $Q / R_{u}(Q)$, which is isomorphic to L. One obtains a proper parabolic subgroup of $Q / R_{u}(Q)$ which contains the normalizer of \bar{U}. Its inverse image in Q is a parabolic subgroup, properly contained in $\quad \mathrm{Q}$ and containing the normalizer of U. Iterating, one eventually nds a parabolic $\quad P$ containing $N_{G}(U)$ and such that $U \%_{u}(P)$.
Remark 4.9. Let \mathbb{C} be the simply connected central extensjon of the derived group G^{0}, and let \mathbb{G}_{i} be its simple factors: $\mathcal{E}^{\circ} \mathcal{E}_{i}$. A representation of low height V of G is almost faithful if and only if its restriction to each G_{i} is not trivial. It sufces to check this for each \mathcal{G}_{i} separately. Thus we may assume G is simply connected. The existence of a nontrivial V of low height implies that p " 2 for G of type $B_{n}, C_{n}(n, 2)$ or F_{4} and p " 3 for G of type G_{2}. Let \bar{G} be the image of G in $G L(V)$. If V is non-trivial, $u: G!\bar{G}$ is an isogeny. We want to show that it is a central isogeny. If it is not, the structure of isogenies ([SGA 3, XXII, 4.2.13]) show that ker(u) contains the kernel of the Frobenius. The weights of V are the $p^{\text {th }}$-powers and $h t_{G}(V)$ is a multiple of p, contradicting the low height assumption.
4.10. If G is a reductive group for which assumption 2.3 holds, and is a subgroup scheme of G, the double saturation of is the smallest doubly saturated subgroup scheme of G containing . It is the intersection of the doubly saturated subgroup schemes containing , and is obtained from by iterating the construction of taking the group generated by , the additive groups $\exp (\mathrm{t} n)$ for n nilpotent in Lie() and u^{t} for u of order p in (k).

Corollary 4.11. Let V be alow height almost faithful representation of a reductive group G. A ssume that $p \quad{ }^{\prime}$. Let be a subgroup scheme of G, and let be its double saturation. Then the following conditions are equivalent.
(i) V is a semi-simple representation of
(ii) V is a semi-simple representation of
(iii) is Cr in G
(iv) $'$ is cr in G
(v) the unipotent radical of $\left({ }^{\prime}\right)_{\text {red }}^{0}$ is trivial

Proof. (i) (ii): If W is a subspace of V, the stabilizer in G of W is doubly saturated, as we saw in the beginning of the proof of 4.7. If
stabilizes W, it follows that also stabilizes W : the lattice of subrepresentations of V is the same for and , hence the claim.
(iii) 0 (iv): Similarly, the parabolic subgroups of G and their Levi subgroups are doubly saturated, hence contain if and only if they contain
not (v) y not (ii): Let U be the unipotent radical of (') $)_{\text {red }}^{0}$. If it is non-trivial, $V^{U} \sigma^{\vee} V$, because V is faithful on U and does not have a U-stable supplement. As U is normal in ${ }^{\prime}(2.5), V^{U}$ is a subrepresentation for the action of on V . This contradicts the semisimplicity of V .
(v) I (ii): The representation V of the reductive group ($\left.{ }^{\prime}\right)_{\text {red }}^{0}$ is of low height, hence semi-simple. By $2.5,\left(\quad{ }^{\prime}\right)_{\text {red }}^{0}$ is a normal subgroup of and the quotient A is linearly reductive. If W is a sub- '
representation of V, A acts on the afne space of ()$_{\text {red }}^{0}$-invariant retractions V ! W. It has a xed point, whose kernel is a supplement to W .
not (v) y not (iv): Let U be the unipotent radical of ($\left.{ }^{\prime}\right)_{\text {red }}^{0}$. If it is not trivial, there exists a parabolic $\quad P$ containing its normalizer, hence
', and the unipotent radical of P contains U (4.7). Thus, no Levi subgroup of P can contain
(v) y (iv): By [S2, Theorem 7, page 26], (') $)_{\text {red }}^{0}$ is Cr in G, and one applies 4.2.

Corollary 4.12. Let \%os ! GL(V) be an almost faithful low height representation, and let v in V be an element such that the G -orbit of v in V is closed. Then there exists a connected multiplicative central subgroup scheme $M \% G_{v}^{0}$ and a surjective homomorphism $M \quad £ G_{v, \text { red }}^{0}!G_{v}^{0}$.

Proof. The orbit being closed in V and hence afne, the reduced stabilizer $G_{v, \text { red }}$ is reductive ([Bo]). Since $p,{ }_{G}$ and since stabilizers are doubly saturated and $2.5(2)$ holds for $\quad G_{v}$, we get the required result.

We now observe that the results of [D, Section 6] can be obtained as a consequence of 4.11. Note that by the remarks in [D, Page 607] it sufces
to prove the semisimplicity results in the case when k is algebraically closed.

TheOREM 4.13. be an algebraic group. Let $\left(V_{i}\right)_{i 21}$ be a nite family of semi-simple -modules and let m; be integers, 0 . If
X

$$
\begin{equation*}
m_{i}\left(\operatorname{dim} V_{i} i m_{i}\right) \cdot p \tag{4.13.1}
\end{equation*}
$$

the -module ${ }^{\mathrm{N}}{ }_{\mathrm{j}} \mathrm{Vm}_{\mathrm{j}} V_{\mathrm{j}}$ is semi-simple.
Proof. Let $G^{-}{ }^{\mathrm{Q}} \mathrm{GL}\left(\mathrm{V}_{\mathrm{j}}\right)$ and $V{ }^{N}{ }^{\mathrm{N}} \mathrm{Vm}_{\mathrm{j}} V_{\mathrm{j}}$. Then, (4.13.1) is simply the inequality p " $h t_{G}(V)$. Replacing by its image in G we may and shall assume that is a subgroup scheme of G. Since V_{i} are semi-simple modules, it follows that is G-cr, for $G^{\circ}{ }_{j} G L\left(V_{j}\right)$. By [D, §6.2], we may also assume that $\mathrm{p}^{"} \operatorname{dim}\left(\mathrm{~V}_{\mathrm{j}}\right)^{\wedge} \quad \operatorname{GL(\mathrm {v}_{\mathrm {j}})} 8 \mathrm{j}$.

Hence by working with the image of $\quad G$ (and $)$ in $G L(V)$ and applying 4.11, we conclude that V is semi-simple as a -module.

Remark 4.14. If $\left(\mathrm{V}_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}}\right)$ is a non-degenerate quadratic space with $\operatorname{dim} V_{i}{ }^{\wedge} 2 d_{i}$ on which acts by similitudes, then by passing to a subgroup of index at most 2 and mapping to the group of similitudes rather than $G L\left(V_{i}\right)$, one can replace the term $\quad m_{i}\left(\operatorname{dim} V_{i} i m_{i}\right)$ by $m_{i}\left(\operatorname{dim} V_{i} i\right.$ $\left.m_{i} i 1\right)$, when $m_{i} \cdot 2 d_{i}$.

Complete reducibility in the classical case . By 4.1, a subgroup scheme
$\% G$ is called cr if for every parabolic subgroup $\quad \mathrm{P} \%$ containing there exists an opposite parabolic subgroup $\quad P^{0}$ such that $\% P \backslash P^{0}$. Suppose that char (k) $6^{\breve{ } 2}$ and let G be $\mathrm{SO}(\mathrm{V})$ (or $\mathrm{Sp}(\mathrm{V})$ in any characteristic), relative to a non-degenerate symmetric or alternating bilinear form B on V. In this situation, the notion of cr can be interpreted as follows:
is cr in G if and only if for every -submodule W \%ov which is totally isotropic, there exists a totally isotropic -submodule W^{0} of the same dimension, such that the restriction of $\quad B$ to $\mathrm{W}^{-} \mathrm{W}^{0}$ is non-degenerate (cf. [S3, Example 3.3.3, page 206]).

Lemma 4.15. Let the subgroup scheme of G be cr. Then the -module V is semi-simple and conversely.

Proof. Let W \%ov be a -submodule. Then we need to produce a complement.

Consider $W_{1}:^{`} W \backslash W^{?}$. If $W_{1}{ }^{`}(0)$, then $W^{\prime} W^{?}{ }^{\circ} V$ and we are done. So let $W_{1} 6^{\circ}(0)$. Then W_{1} is a -submodule which is totally isotropic and hence by the cr property, we have a totally isotropic submodule W_{1}^{0} of the same dimension as W_{1}, such that the form B is
non-degenerate on $\quad W_{1}{ }^{-} W_{1}^{0}$. In particular, $W_{1} \backslash W_{1}^{00}(0)$. Since $W_{1} \% d V^{?}$, we see that $W \% V_{1}^{?}$.

Let $\mathrm{w} 2 \mathrm{~W} \backslash \mathrm{~W}_{1}^{0} \% \mathrm{WW}_{1}^{?} \backslash \mathrm{~W}_{1}^{0}$ and suppose $\mathrm{w} 6{ }^{\circ} 0$. Since $\mathrm{w} 2 \mathrm{~W}_{1}^{0}$, there exists $w^{0} 2 W_{1}$ such that $B\left(w, w 96^{\circ} 0\right.$. On the other hand, since $w 2 W_{1}$, $B(w, v)^{\sim} 0$ for all $\vee 2 W_{1}$ and in particular $B\left(w, w 9^{\circ} 0\right.$ which contradicts the assumption that $w^{1} 6^{\circ} 0$. Hence it follows that $W \backslash W_{1}^{00}(0)$. Thus, $\mathrm{W}\left(\mathrm{X}^{-} \mathrm{W}^{\prime} \mathrm{W}_{1}^{0} \% \mathrm{~V}\right.$ is a -submodule. We proceed similarly and get $X_{1}{ }^{`} X \backslash X^{?}$ such that $X^{\prime} X_{1}^{0} \%$ V . If $X_{1}{ }^{`}(0)$, then $V^{`} X^{\prime} X^{\prime}$, so get a
-decomposition of V as $W^{1} W_{1}^{01} \ldots$, that is a -complement of W in V.

Conversely, let V be semi-simple as a -module. Let $\mathrm{W} \% \mathrm{~V}$ be a totally isotropic -submodule of $\operatorname{dim}(W){ }^{\wedge} d$. Note that $d \cdot \operatorname{dim}(V) / 2$. We therefore have a -submodule $Z \%_{o V}$ such $V^{*} W$ ' Z. The nondegenerate form B gives an -equivariant isomorphism \quad :V ! $V^{\prime}{ }^{\circ}$ $W^{\prime} Z^{\prime}$ and since W is totally isotropic ' $(W) \backslash W^{\prime}(0)$. Hence ` $(W) \%$ Z.

Again, since W is totally isotropic, the restriction of B to Z is nondegenerate and hence we get an isomorphism ${ }^{\wedge}: Z^{\prime}$! Z. Dene $W^{0}:^{\sim}$ ^ - ` (W).
Then it is easily seen that W^{0} is of dimension d and also totally isotropic -invariant submodule of V . Finally, B is non-degenerate on $W^{\prime} W^{0}$. Hence is cr in G .

5. tale slices in positive characteristics

We begin this section with the following (linear) analogue of the Luna \emptyset tale slice theorem in positive characteristics.

Theorem 5.1. Let V be a G-module with low height i.e. such that p " $\quad h t_{G}(V)$. Let v in V be an element such that the orbit $G \quad . v$ is a closed orbit in V. Then there exists a G ${ }_{v}$-invariant linear subspace S of V giving rise to a commutative diagram:

and G-equivariant open subsets $U \quad \% d G £^{G_{v}}$ S) containing the closed orbit $G . v$ and an open subset $U \quad{ }^{0}$ of V containing v, for which (5.1.1) induces a
cartesian diagram

such that the morphism ' j_{U} is Øtale.
Remark 5.2. The above theorem was stated in the note [M P] whose proof contained serious gaps (as was pointed to the authors by Serre in a private correspondence).

We note that $\quad \mathrm{G} / \mathrm{G}_{\mathrm{v}}$ is constructed in ([DG, III, Proposition 3.5.2]). It represents the quotient in the category of fppf sheaves. Furthermore if ...v : G! V, g 7! g.v, the image im(...v), as a locally closed sub-scheme of V with its reduced scheme structure, can be identied with the scheme G / G. We call this locally closed sub-scheme, the orbit G .v and have the identication G/G ' G.v (see also [DG, Proposition and Denition 1.6, III, §3, page 325]).

Proposition 5.3. Let V be an arbitrary G-module. Let $v 2 \mathrm{~V}$ and suppose that there exists a G ${ }_{v}$-submodule S of the tangent space $T{ }_{v}(V)$, such
 Then the G-morphism ' $: G £ S!V$ given by $(\mathrm{g}, \mathrm{s}) 7$! $\mathrm{g} . \mathrm{v}^{-} \mathrm{g} . \mathrm{s}$ descends to a G-morphism

$$
\begin{equation*}
\because G f^{G_{v}} S!V \tag{5.3.1}
\end{equation*}
$$

which is Øtale at ($\mathrm{e}, 0$), e being the identity of G .
Proof. To check the morphic properties, we need to check for all Avalued points of G_{v} where A is a k-algebra and we will suppress the $\quad A$.

We will check that it is constant on the $\quad G_{v}$-orbits. Let fi in G_{v} act on
 g.fi.v ${ }^{-}$g.fi.fi ${ }^{1}$.s ${ }^{-}$g.v ${ }^{-}$g.s (since fi xes v). Therefore it is constant on the G_{v}-orbits. Since the action of G_{v} on $G £ S$ is scheme-theoretically free, ' descends to a morphism $\quad: G £^{G_{V}} S!V$. Clearly the actions of G and G_{v} on $G £ S$ commute and hence the descended morphism is also a G-morphism.

Observe that the quotient morphism $G!G / G_{v}$ is a torsor for the group scheme G_{v}, locally trivial under the fppf topology. Since the action of G_{v} on S is linear, we see that the associated bre space ${ }^{\wedge}: G f^{G_{v}}$ $S!G / G_{v}$ is a locally free sheaf of rank $\quad{ }^{\circ} \operatorname{dim}(S)$. In particular, $G £^{G_{v}} S$ is a smooth k-scheme of nite type. Observe further that under the
morphism `, the zero section of the vector bundle \(\quad\) : \(G £^{G_{v}} S!G / G_{v}\) canonically maps onto the orbit G.v \%oV, while the bre \(\wedge^{i 1}\left(\mathrm{e} . \mathrm{G}_{\mathrm{v}}\right)\) of the identity coset e. \(G_{v} 2 \mathrm{G} / \mathrm{G}_{\mathrm{v}}\) maps isomorphically to the afne subspace \(\mathrm{S}^{-} \mathrm{v} \% \mathrm{ov}\). Since \(\mathrm{T}_{v}(\mathrm{~V})^{2} \mathrm{~T}_{v}(\mathrm{G} . \mathrm{v})^{\prime} \mathrm{S}\) by assumption, it follows that the differential \(d^{\prime}{ }_{z}\), at \(z^{`}(e, 0)\), is an isomorphism.

We now apply [D, Lemme 2.9], to conclude that the morphism - $: G £^{G_{v}} S!V$ is Øtale at $z^{\circ}(e, 0)$.

Proposition 5.4. Let V be a G-module such that $p \quad$ " $h_{G}(V)$, and let v in V be an element such that the G -orbit of v in V is closed. Then there exists a G_{v}-submodule $S \quad \%$ such that $V{ }^{\circ} \mathrm{T}_{v}(G . v)$ ' S as a G_{v}-module. In particular, the consequences of 5.3 hold good.

Proof. One has the exact sequence:

$$
\begin{equation*}
1!G_{v}^{0}!G_{v}!\ldots{ }_{0}\left(G_{v}\right)!1 \tag{5.4.1}
\end{equation*}
$$

the quotient. $.0\left(G_{v}\right)$ being the group of connected components. Further, we note that $j \quad G_{v} / G_{v}^{0}{ }_{j}{ }^{\sim} j \quad G_{v, \text { red }} / G_{v, \text { red }}^{0} j$. Note also that since $G_{v, \text { red }}$ is a saturated subgroup of G, by [S2, Property 3, Page 23] the index $j G_{v, \text { red }} / G_{v, \text { red }}^{0}$ jis prime to p. Thus, ... $\left(G_{v}\right)$ is linearly reductive.

Since G.v is a closed orbit, by 4.12 we see that $\quad G_{v, \text { red }}^{0}$ is reductive and by $2.5(1)$, we have the exact sequence:

$$
\begin{equation*}
1!G_{v, \text { red }}^{0}!G_{v}^{0}!i!1 \tag{5.4.2}
\end{equation*}
$$

where i is a multiplicative group scheme.
Since $G_{v, \text { red }}^{0}$ is a reductive saturated subgroup of G, by [S2, Corollary 1 ,
 height, V is semi-simple as a $G_{v, \text { red }}^{0}$-module,.

Further, since $¿$ is multiplicative (and hence linearly reductive), by [D, Lemma 4.2] and 5.4.2, we deduce that $\quad V$ is semi-simple as a $G_{v}{ }^{0}$-module. Using 5.4.1, we conclude that $\quad \mathrm{V}$ is semi-simple as a G_{v}-module as well.

In particular, we have a G_{v}-supplement S for the G_{v}-invariant subspace $T_{v}(G . v) \% T_{v}(V)^{\vee} V$, i.e. we have a G_{v}-decomposition $S^{\prime} T_{v}(G . v)$ for V.

We recall the Fundamental Iemma of Luna" which holds in positive characteristics as well and which is essential to complete the proof of Theorem 5.1.

Lemma 5.5. ([GIT, Page 152]) Let S:X! Y be a G-morphism of afne G-schemes. Let F \%oX be a closed orbit such that:
(1) S is \emptyset tale at some point of F
(2) $S(F)$ is closed in Y
(3) S is injective on F
(4) X is normal along F.
then there are afne G-invariant open subsets $U \quad \%_{0} X$ and $U{ }^{0} \% Y$ with $F \% U$ such that $s, G: U, G!U^{0}, G$ is \emptyset tale and $\left(s, p_{U}\right): U$! $U^{0} f_{U 0, G} U, G$ is an isomorphism (where $p \quad{ }_{U}: U!U, G$ is the quotient morphism).

Proof. (of 5.1) A s a rst step, we need to show that the categorical quotient $G £^{G_{v}} S, G$ exists as a scheme. As we have seen in 5.3 , action of G on $G £ S$ (via g. $(\mathrm{a}, \mathrm{s})^{\text {n }}$ ($\mathrm{g} . \mathrm{a}, \mathrm{s}$) and the (twisted) action of $\quad \mathrm{G}_{\mathrm{v}}$ on $\mathrm{G} £ \mathrm{~S}$ commute and hence

$$
\begin{equation*}
k\left[G £^{G_{v}} S\right]^{G} \sim\left(k[G £ S]^{G_{v}}\right)^{G} \sim\left(k[G £ S]^{G}\right)^{G_{v}} \sim k[S]^{G_{v}} . \tag{5.5.1}
\end{equation*}
$$

Thus it is enough to show that $\mathrm{k}[\mathrm{S}]^{G_{v}}$ is nitely generated and we would have

$$
\begin{equation*}
G £^{G_{v}} S, G^{\prime} S, G_{v} . \tag{5.5.2}
\end{equation*}
$$

As we have observed in the proof of $5.4, \quad G_{v}^{0} \% G_{v}$ is a normal subgroup of nite index. Thus, the nite generation of $\quad k[S]^{G_{v}}$ is reduced to checking nite generation of $k[S]^{G_{v}^{0}}$. We may therefore replace G_{v} by G_{v}^{0} in the proof. Further, since G.v is a closed orbit, $G_{v, \text { red }}$ is reductive. Therefore, by 4.12, we have a surjection $M £ G_{v, \text { red }}!G_{v}$. Since M in G_{v} is central $k[S]^{G_{v}} k[S]^{G_{v, \text { red }} / M}$.

A gain, since $G_{v, \text { red }}$ is reductive, the ring of invariants $k[S]^{{ }^{6}, \text { red }}$ is a nitely generated k-algebra. Since M is a group of multiplicative type over an algebraically closed eld, it is a product of $\quad G_{m}$'s and a nite group scheme. Therefore, by [G/TT, Theorem 1.1] and [AV, Page 113], the ring of invariants $k[S]^{G_{v, r e d ~}}$ is also nitely generated. This proves the nite generation of $k[S]^{6 v}$.

The commutativity of the diagram (5.1.1) now follows by the property of categorical quotients by the group G.

Now we check the conditions of Lemma 5.5. We consider the given closed G-orbit $F^{\circ} G ⿷^{G_{v}}\{v\} \% G ⿷^{G_{v}}$ S. Then we need to check that ' (F) is a closed orbit in V.In fact, ` (F) is precisely the closed orbit G .' (v)" G.v \%oV. Thus we have veried conditions (2) and (3) of Lemma 5.5.

