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1. INTRODUCTION

We work over an algebraically closed �eld k of characteristic p ¨ 0.
In [S1], Serre showed that if semi-simple representations Vi of a group

¡ are such that
P

(dim Vi ¡ 1) ˙ p , then their tensor product is semi-
simple. In [S2], he more generally considers the case where ¡ is a sub-
group of G(k ), for G a reductive group, and where ¡ is G-cr, meaning
that whenever ¡ is contained in a parabolic subgroup P, it is already
contained in a Levi subgroup of P. For G ˘

Q
GL(Vi ), this is equivalent to

the semi-simplicity of the representations Vi of ¡ . For a representation
V of G, one can then ask under what conditions does V becomes semi-
simple, when considered as a representation of ¡ . Serre ([S2, Theorem
6, page 25]) shows this is the case when the Dynkin height ht G(V ) is less
than p . For G ˘

Q
GL(Vi ) and V ˘ › Vi , one has ht G(V ) ˘

P
(dim Vi ¡ 1).

In [D], the results of [S1] were generalized to the case when the Vi

are semi-simple representations of a group scheme G. In this paper, we
consider the case when G is a subgroup scheme of a reductive group
G and generalize [S2] (see 4.11) and [D] (see 2.5). As in [D], we �rst

Date: 7 November, 2016.
The research of the �rst author was partially supported by the J.C. Bose Research

grant.
1



have to prove a structure theorem (2.5) on doubly saturated (see 2.4)
subgroup schemes G of reductive groups G. The proof makes crucial
use of a result of Zhiwei Yun on root systems. The appendix contains
the result.

In Section 5, we consider a reductive group acting on an af�ne vari-
ety X and a point x of X whose orbit G.x is closed in X . We prove a
schematic analogue of [BR, Proposition 7.4,7.6] under some conditions
on the characteristic of k . More precisely, if X embeds in a G-module V
of low height, then we obtain, as a consequence of 2.5(2), an analogue
of Luna’s Øtale slice theorem ( 5.1, 5.6). In [BR] the language of schemes
was not used and as a consequence the orbit G.x had to be assumed
�separable". An orbit G.x is separable if and only if the stabilizer Gx is
reduced.

2. SATURATION AND I NFINITESIMAL SATURATION

2.1. Let G be a reductive algebraic group over k . Our terminology is
that of [SGA3]: reductive implies smooth, and connected and an alge-
braic group will mean an af�ne group scheme of �nite type over k . Fix
a maximal torus TG and a Borel subgroup containing TG which deter-
mines a root system R and a set of positive roots R¯ . Let h , i be the
natural pairing between the characters and co-characters and for each
root fi , and let fi

_
be the corresponding coroot.

If the root system R associated to G is irreducible, the Coxeter number
hG of R and of G, admits the following equivalent descriptions:

(1) It is the order of the Coxeter elements of the Weyl group W . This
shows that R and the dual root system R_ have the same Coxeter
number.

(2) Let fi 0 be the highest root and
P

n i fi i its expression as a linear
combination of the simple roots. One has:

hG ˘ 1¯
X

n i (2.1.1)

(3) Applying this to the dual root system, one gets hG ˘ h ‰,fl
_
i ¯ 1

where ‰is half the sum of positive roots and fl
_

is the highest
coroot. Indeed, ‰is also the sum of the fundamental weights ! i ,
and h! i ,fi

_

j
i ˘ –i j .

For a general reductive group G, de�ne the Coxeter number hG to be the
largest among the ones for the irreducible components of R.

It follows from (2) above that if G is a reductive group, U the unipo-
tent radical of a Borel subgroup, and u :˘ Lie(U ), the descending central
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series of u, de�ned by Z
1
u ˘ u and Z

i
u ˘ [u,Z

i ¡ 1
u], satis�es

Z
hG (u) ˘ 0 (2.1.2)

For the group U , similarly Z
hG (U ) ˘ (1).

The Lie algebra g of G is a p -Lie algebra. If �n�in g is nilpotent and
if p ‚ hG , then �n�p ˘ 0. To check this, we may assume that �n�is in the
Lie algebra u of the unipotent radical U of a Borel subgroup. For each
positive root fi , let Xfi be a basis for the root subspace gfi . Express �n�asP

fi 2R¯ afi .Xfi . Each Xfi is the in�nitesimal generator of an additive group.

It follows that X
p

fi
˘ 0 for each fi . Observe that

�n�
p

˘
X

fi 2R¯

a
p

fi
.X

p

fi
(modulo Z

p
u) (2.1.3)

and Z
p
u ˘ 0, as p ‚ hG . (see [Mc 1, page 10]).

2.2. Let gni l p (resp. G
u
) be the reduced subscheme of Lie( G) (resp.

G) with points the nilpotent (resp. unipotent) elements. Let U be
the unipotent radical of a Borel subgroup. For p ‚ hG , the Campbell-
Hausdorff group law – makes sense in characteristic p and turns u :˘
Lie(U ) into an algebraic group over k . This is so since Z

p
u ˘ 0. Further,

there is an unique isomorphism

exp : (Lie(U ),–) »¡! U (2.2.1)

equivariant for the action of B and whose differential at the origin is
the identity. If in addition the simply connected covering of the derived
group of G is an Øtale covering (which is the case for p ¨ hG , and could
fail when p ˘ hG due to the presence of SL( p ) as factors in the cover-
ing), then there is a unique G-equivariant isomorphism ([S2, Theorem
3, page 21]:

exp : gni l p ! G
u

(2.2.2)

which induces (2.2.1) on each unipotent radical of a Borel subgroup. Let
log : G

u
! gni l p denote its inverse.

For u a unipotent element of G(k ), one de�nes the � t -power
map" t 7! u t , from Ga to G, by

t 7! exp(t log u ). (2.2.3)

For G ˘ GL(V ) such a map t 7! u t is more generally de�ned for any u
in G such that u

p
˘ 1. It is given by the truncated binomial expression

([S1, 4.1.1, page 524]):

t 7! u t :˘
X

i ˙ p

ˆ
t
i

!

(u ¡ 1)
i
. (2.2.4)
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Similarly, X in End( V ) such that X
p

˘ 0 de�nes a morphism t 7! exp(t X )
from Ga to GL(V ) given by the truncated exponential series:

t 7! I ¯ t X ¯
(t X )

2

2!
¯ . . .¯

(t X )
p ¡ 1

(p ¡ 1)!
. (2.2.5)

Until the end of §3, we make the following assumptions on the reductive
group G .

ASSUMPTION 2.3. Let eG be the simply connected covering of the derived
group G0. We assume that p ‚ hG and that the map eG ! G0 is Øtale.

In particular, by 2.1 and 2.2, the exponential map (2.2.2) is de�ned,
every unipotent element in G(k ) is of order p , and every nilpotent in
Lie(G) is a p -nilpotent. One can then de�ne the notions of saturation
and in�nitesimal saturation of subgroup schemes G ‰G as follows (see
Remark 2.19 for the case when G ˘ PGL(p )).

DEFINITION 2.4. ([S1, §4], [D, De�nition 1.5] )
(1) A subgroup schemeG ‰G is called saturated if for every u in G(k )

which is unipotent, the homomorphism t 7! u t (2.2.3) from Ga to
G factors through G.

(2) A subgroup schemeG ‰G is called in�nitesimally saturated if for
every nilpotent X in Lie (G), the morphism t 7! exp(t X ) (2.2.2)
from Ga to G factors through G.

(3) G is doubly saturated if it is saturated and in�nitesimally satu-
rated.

An element of Lie( G) is nilpotent if and only if it is nilpotent as an
element of Lie( G). The reference to the exponential map (2.2.2) in (2)
therefore makes sense. One way to see it is to observe that the inclusion
of Lie(G) in Lie( G) is a morphism of p -Lie algebras and that X is nilpo-

tent if and only if it is killed by an iterated p -power map, i.e. X
p

n

˘ 0.
Let G

0
be the identity component of G and G

0

red
the reduced sub-

scheme of G
0
.

THEOREM 2.5. Let G ‰G be a k-subgroup scheme which is in�nitesimally
saturated. Assume that if p ˘ hG , G

0

red
is reductive. Then

(1) The group G
0

red
and its unipotent radical R u (G

0

red
) are normal

subgroup schemes ofG and the quotient group scheme G
0
/ G

0

red
is of multiplicative type.

(2) If G
0

red
is reductive, there exists a central, connected subgroup

scheme of multiplicative type M ‰G
0

such that the morphism
M £ G

0

red
! G

0
realizes G

0
as a quotient of M £ G

0

red
.
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The proof of part (2) of 2.5 will occupy most section 2, until 2.16. Part
(1) will be proven in section 3.

By [D, Lemma 2.3], the conclusions of 2.5 hold for G if and only if
they hold for the identity component G

o
. Until the end of section 3, we

will assume that G is connected.

LEMMA 2.6. If G is an in�nitesimally saturated subgroup scheme of G,
every nilpotent element �n�of Lie(G) is in Lie (Gred ).

Proof. As Ga is reduced, the morphism t 7! exp(t �n�) maps Ga to Gred ‰G.
The image of 1 in Lie( Ga ) is �n�. �

Part (2) of 2.5 is a corollary of 2.6 and of the following theorem, which
does not refer to G anymore.

THEOREM 2.7. Let G be a connected algebraic group such that
(a) Gred is reductive
(b) any nilpotent element of Lie (G) is in Lie (Gred ).

Then, the conclusion of 2.5(2) hold. As a consequence,Gred is a normal
subgroup scheme ofG and G/ Gred is of multiplicative type.

Let T be a maximal torus of Gred , and let H be the centralizer of T in
G. One has H \ Gred ˘ T . It follows from (b) that any nilpotent element
�n�of Lie( H ) is in Lie( T ), hence vanishes. By the following lemma, H is
of multiplicative type, and in particular commutative.

LEMMA 2.8. Let H be a connected algebraic group over k. If all the ele-
ments of Lie(H ) are semi-simple, then H is of multiplicative type.

Proof. (see also ([DG, IV, §3, Lemma 3.7])) Lie(H ) is commutative : Fix
x in Lie( H ), and let us show that it is central in Lie( H ). As adx is semi-
simple, it suf�ces to show that if y is in an eigenspace of adx , i.e. [x , y] ˘
‚ y, then x and y commute, i.e. ‚ ˘ 0. Let W be the vector subspace

of Lie( H ) generated by the y
[p ‘ ]

(‘ ‚ 0). The y
[p ‘ ]

commute. The map
z 7! z

p
therefore induces a p -linear map from W to itself, injective by

assumption. It follows that W has a basis ei , (1 • i • N ) consisting of
elements such that e

p

i
˘ ei , and (

P
a

i
ei )

p
˘

P
(a

i
)

p
ei .

LEMMA 2.9. For b ˘ (bi ) in k N , de�ne b
p

:˘ (b
p

i
). Then, any b in k N is a

linear combination of the b
[p ‘ ]

for ‘ ‚ 1.

Proof. The b
[pa ]

(a ‚ 0) are linearly dependent. A linear dependence re-
lation can be written

X

j ‚ m

cj b
p j

˘ 0 (2.9.1)
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with cm 6˘0. Extracting p
m

-roots, we get

(
X

j ‚ 0

d j b
p j

) ˘ 0 (2.9.2)

where d j ˘ c1/ pm

m¯ j . In particular, d0 6˘0, proving the lemma.
�

End of proof of commutativity From the lemma above, y is a linear

combination of the y
[p ‘ ]

(‘ ¨ 0). The bracket [ y
[p ‘ ]

,x ] vanishes for ( ‘ ¨ 0).

Indeed, it is ( ad y)
[p ‘ ]

(x) which vanishes because [ y, [y,x ]] ˘ [y,¡ ‚ y] ˘ 0.
It follows that [ y,x ] vanishes too.

The p -Lie algebra Lie( H ) determines the kernel of the Frobenius mor-
phism F : H ! H

(p )
, where H

(p )
is obtained from H by extension of

scalars ‚ 7! ‚
p
, k ! k . As Lie(H ) is commutative semi-simple, this ker-

nel of the Frobenius morphism is of multiplicative type. The same holds
for H

(p )
, which is obtained from H using an automorphism of k . The

same holds for each H
(p ‘ )

.
For any n , the kernel Kn of the iterated Frobenius map F

n
: H ! H

(p ‘ )

is an iterated extension of subgroups of the kernel of the Frobenius of

the H
(pi )

, i ˙ n . It is hence of multiplicative type, being an iterated ex-
tension of connected groups of multiplicative type ([SGA3, XVII, 7.1.1]).

The Kn form an increasing sequence. By the proof of [D, Proposition
1.1], there exist subgroup of multiplicative type M of H containing all
Kn . As H is connected and as M contains all in�nitesimal neighbour-
hoods of the identity element, one has M ˘ H . �

Whenever a group M of multiplicative type acts on a group K , its ac-
tion on Lie( K ) de�nes a weight decomposition:

Lie(K ) ˘ ' fl 2X (M )Lie(K )
fl

(2.9.3)

If v 2 Lie(K )
fl
, then v

p
is in Lie( K )

p.fl
. Indeed, after any extension of

scalars R/ k , if m is in M (R),

m (v
p
) ˘ (m (v ))

p
˘ (fl (m )v )

p
˘ fl (m )

p
v

p
(2.9.4)

LEMMA 2.10. With the above notations, if fl is not torsion, Lie (K )
fl

consists
of nilpotent elements.

Proof. Indeed, if fl is not torsion, the p
‘
fl are all distinct and Lie( K )

p
‘

fl

must vanish for ‘ À 0. It follows that the elements of Lie( K )
fl

are nilpo-
tent. �
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Let us apply this to the action of T on G by inner automorphisms.

LEMMA 2.11. If fl in X (T ) is not zero, the weight spaces Lie(G)
fl

equals
Lie(Gred )

fl
.

Proof. Indeed, Lie( G)
fl

consists of nilpotent elements. By our assump-
tion 2.7(b), it is contained in Lie( Gred ). �

Let B a Borel subgroup of Gred containing T , and let U be its unipo-
tent radical.

LEMMA 2.12. Under the assumption of 2.7, H normalizes U.

Proof. Let C in X (T ) › R be the cone generated by the positive roots,
relative to B and de�ne

C ⁄ :˘ C \ {0} (2.12.1)

As in 2.11, we let T act on G by conjugation ( t acts by g 7! t g t
¡ 1

). This
action induces actions on g :˘ Lie(G), the af�ne algebra A of G, its aug-
mentation ideal m (de�ning the unit element), and the dual g_ ˘ m/ m

2

of g. Similarly T acts on U , its Lie algebra u, its af�ne algebra AU and its
augmentation ideal mU . For the action on af�ne algebras, t in T trans-
forms f (g) into f (t

¡ 1
g t ). From these actions, we get X (T )-gradings. By

2.7(b)

u ˘
M

fl 2C ⁄

g
fl
. (2.12.2)

It follows that u_ ˘ mU / m
2

U
is the sum of the ( g_ )

fl
, for fl in the negative

¡ C ⁄ of C ⁄ . For n ¨ 0, the weights by which T acts on m
n

U
/ m

n¯ 1

U
are in

¡ C ⁄ . AsU is connected, the intersection of the m
n

U
is reduced to 0, and

the weights by which T acts on mU are also in ¡ C ⁄ .
Let I be the ideal of A generated by the graded components m

fl
of

m for fl not in ¡ C ⁄ , and put A1 :˘ A/ I . The image in mU of a m
fl

as
above is contained in m

fl

U
, hence vanishes. It follows that U is contained

in the closed subscheme U1 ˘ SpecA1 of G de�ned by I . As the graded
component de�ned m

0
of m is contained in I , the graded component A

0

1
of A1 (the T -invariants) is reduced to the constants. As T is connected
it follows that U1 is connected. As the image of m

fl

U
in m/ m

2
is (m/ m

2
)

fl
,

the image of I in m/ m
2

˘ g_ is the orthogonal of u ‰g and the tangent
space at the origin of U1 is u.

Claim : The subscheme U1 of G is a subgroup scheme, i.e. the coprod-
uct ¢ : A ! A› A, f (g) 7! f (gh) maps I to I › A' A› I . Indeed, ¢ respects
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the gradings; for k ‰A the constants, one has A ˘ k ' m, and ¢ maps m
to (k › m) ' (m› k ) ' (m› m), and hence m

fl
maps to

(k › m
fl
) ' (m

fl
› k ) '

X

fl ˘ fl 0̄ fl 00

m
fl 0

› m
fl 00

. (2.12.3)

As ¡ C ⁄ is stable by addition, if fl ˘ fl 0¯ fl 00and that fl is not in ¡ C ⁄ , one
of fl 0or fl 00is not in ¡ C ⁄ , and the corresponding m

fl 0
or m

fl 00
is contained

in I . The claim follows.
To summarize, U1 is connected, and the inclusion U ‰U1 induces an

isomorphism Lie( U ) »¡! Lie(U1). As U is smooth, this implies that U ˘
U1.

Since H centralizes T , the ideal I is stable by H , meaning that H nor-
malizes U .

�

COROLLARY2.13. Under the assumption of 2.7, H normalizes Gred .

Proof. Let B¡ be the Borel subgroup of Gred containing T and opposite
to B, and let U ¡ be its unipotent radical. As U ¡ , T and U are normalized
by H , the big cell U ¡ TU ‰Gred is stable by the conjugation action of H ,
and so is its schematic closure Gred . �

In what follows, we identify schemes with the corresponding fppf
sheaves. A quotient such as G/ H represents the quotient of the sheaf
of groups G by the subsheaf H : G is a H -torsor over G/ H .

LEMMA 2.14. The morphism of schemes

Gred / T ! G/ H (2.14.1)

is an isomorphism.

Proof. As T is the intersection of Gred and H , (2.14.1), as a morphism
of fppf sheaves, is injective. Testing on Spec( k ) and Spec(k [†]/( †

2
)), one

sees that it is bijective on points and injective on tangent space at each
point. It is hence radicial and unrami�ed, hence on some open set of
Gred / T an immersion. The Gred homogeneity then shows that it is a
closed embedding.

The tangent space at the origin of Gred / T is Lie(Gred )/Lie( T ). For
G/ H if J is the ideal de�ning H , as Gred is a H -torsor on Gred / H , if
· is the ideal de�ning the origin in Gred / H , the pull-back of · / ·

2
to

Gred / H is J/ J
2
, and · / ·

2
is the �ber if J/ J

2
at the origin e. By [D, 1.15]

applied to T acting on G by conjugation, ( J/ J
2
)e

»¡!
L

fl 6 0̆(m/ m
2
)

fl
˘

(Lie(Gred )/Lie( T ))_ . Thus, the closed embedding (2.14.1) is an isomor-
phism near the origin, hence everywhere by homogeneity, proving 2.14.
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COROLLARY2.15. Under the assumptions of 2.7, Gred is normal in G, and
there exists in G a central connected subgroup scheme of multiplicative
type M such that the morphism M £ Gred ! G realizes G as a quotient of
M £ Gred .

Proof. By 2.14, the product map Gred £ H ! G is onto, as a morphism of
sheaves. As both Gred and H normalize Gred ‰G, so does G.

To complete the proof of 2.15 (and thereby of 2.7), we follows [D,
§2.25] . Let M be the subgroup of H which centralizes Gred . Since Gred

is reductive, the group scheme Aut T (Gred ) of automorphisms which pre-
serve T is precisely T

ad
, the image of T in the adjoint group. Hence the

conjugation action of H on Gred gives the exact sequence:

1 ! M ! H ! T
ad

! 1 (2.15.1)

and T surjects onto T
ad

implying that M and T generate H . Since M is
generated by M red ‰Gred and M

0
, and since H and Gred generate G we

see that M
0

and Gred generate G. Moreover, M is central. Thus

M
0
£ Gred ! G (2.15.2)

is an epimorphism. This concludes the proof of 2.7 and in particular,
2.5(2). �

LEMMA 2.16. Suppose that H is a maximal connected subgroup scheme
of multiplicative type of an algebraic group G. Let Z

0

G
(H ) be the identity

component of the centralizer of H in G and de�ne U :˘ Z
0

G
(H )/ H. Then

the sequence:

0 ! Lie(H ) ! Lie(Z
0

G
(H )) ! Lie(U ) ! 0 (2.16.1)

associated to the central extension

1 ! H ! Z
0

G
(H ) ! U ! 1. (2.16.2)

is exact.

Proof. Left exactness of (2.16.1) is clear. The maximality of H implies
that U is unipotent (see [D, §2.5, page 590]).

Embed H in Gr
m

as a subgroup scheme. The quotient H 00̆ Gr
m

/ H is a
torus, being a quotient of one. The central extension (2.16.2), by a push
forward, gives a central extension ([SGA3, ExposØ XVII, Lemma 6.2.4])

1 ! Gr
m

! E ! U ! 1 (2.16.3)
9



and a diagram of groups:

1

��

1

��

1

��
1 //H //

��

Z
0

G
(H ) //

��

U //

˘
��

1

1 //Gr
m

//

��

E //

��

U //

��

1

1 //H 00 ˘ //

��

H 00 //

��

1

1 1

(2.16.4)

Since H 00is multiplicative every nilpotent in Lie( E) maps to 0 in Lie( H 00)
and hence comes from a nilpotent in Lie( Z

0

G
(H )).

Since Gr
m

is smooth, by [SGA3, ExposØ VII, Proposition 8.2] the se-
quence (2.16.3) gives an exact sequence

0 ! Lie(Gr
m

) ! Lie(E) ! Lie(U ) ! 0 (2.16.5)

Since U is unipotent, any element z in Lie(U ) is nilpotent. Let z0 in
Lie(E) be a lift of z. The Jordan decomposition makes sense for any p -
Lie algebra over a perfect �eld k and uses only the p -power map (see
for example [W2, Corollary 4.5.9, page 135]. Thus, by using the Jordan
decomposition of the lift z0 in Lie( E) and noting that the semi-simple
part gets mapped to zero in Lie( U ), we can assume that z0 can also be
chosen to be nilpotent.

Since every nilpotent in Lie( E) comes from a nilpotent in Lie( Z
0

G
(H )),

we conclude that z gets lifted to a nilpotent in Lie( Z
0

G
(H )). This implies

that (2.16.1) is also right exact. �

LEMMA 2.17. Suppose that G is a subgroup scheme of G which is in-
�nitesimally saturated in G. Then the subgroup scheme Z

0

G
(H ) is in-

�nitesimally saturated in G; in particular, every non-zero nilpotent in
Lie(Z

0

G
(H )) lies in Lie (Z

0

G
(H )red ).

Proof. If �n�in Lie( Z
0

G
(H )) is nilpotent, the map ‰: t 7! exp(t �n�) : Ga !

G factors through G. Since H is central in Z
0

G
(H ), the action of H

by inner automorphisms �xes �n�. Since the map �exp" is compatible
with conjugation the entire curve ‰is �xed by H . Therefore, ‰factors
through ZG (H ) and hence through Z

0

G
(H )red , since Ga is reduced and
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connected, and hence �n�2 Lie(Z
0

G
(H )red ). This completes the proof of

the lemma. �

We have the following extension of ([D, Lemma 2.7, Corollary 2.11]).

LEMMA 2.18. Let G be as in 2.17. Let H ‰G be a maximal connected sub-
group scheme of multiplicative type. Then the central extension (2.16.2)
splits and U is a smooth unipotent group.

Proof. We claim that U is smooth. By Lemma 2.16, every element z
in Lie(U ) comes from a nilpotent in �n�in Lie( Z

0

G
(H )). By 2.17, �n�is in

Lie(Z
0

G
(H )red ). Its image z is hence in Lie( U red ). Thus, Lie(U ) ˘ Lie(U red )

proving the claim.
Now we have a central extension (2.16.2) with the added feature that

U is smooth. By [SGA3, ExposØ XVII, Theorem 6.1.1] it follows that
(2.16.2) splits (uniquely) and

Z
0

G
(H ) ˘ H £ U . (2.18.1)

�

Remark 2.19. Recall that in 2.2, for the existence of an exponential map
(2.2.2) we assumed that the covering morphism eG ! G0 is Øtale, which
therefore became a part of the standing assumption (2.3). The case
which gets excluded is when the simply connected cover of the derived
group has factors of SL( p ). For instance, when G0 is simple with p ˘ hG ,
the only case excluded is G0˘ PGL(p ).

Let G be a reductive group for which p ˘ hG . The tables of Coxeter
numbers of simple groups show that except for type A, where hSL(n ) ˘ n ,
Coxeter numbers are even greater than 2. It follows that eG is a prod-
uct of SL(p )’s and other simple factors with p larger than their Coxeter
numbers. Even when the morphism eG ! G0 is not Øtale, we can still de-
�ne the notions of saturation (resp in�nitesimal saturation ) of subgroup
schemes G ‰G as follows.

Say G ‰G is saturated (resp in�nitesimally saturated ) if the inverse
image of G in eG is saturated (resp in�nitesimally saturated). With this
de�nition, Theorem 2.5 remains true for p ‚ hG .

This notion of saturation (resp in�nitesimal saturation) can also be
seen in terms of suitably de�ned t -power maps and exponential maps.
We restrict ourselves to the case when G0 ˘ PGL(p ). At the level of Lie
algebras, the induced morphism:

sl(p ) ! pgl(p ) (2.19.1)

is a radicial map on the locus of nilpotent elements. If A 2 gl(p ) is
a matrix representing an element of pgl(p ), it is nilpotent if all but
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the constant coef�cients of the characteristic polynomial vanishes, i.e.
Tr (^ i (A)) ˘ 0,8 1 • i ˙ p and the characteristic polynomial reduces to
T

p
¡ det( A). This condition is stable under A 7! A ¯ ‚ .I as (T ¡ ‚ )

p
¡

det( A) ˘ T
p

¡ (det( A) ¯ ‚
p
) ˘ T

p
¡ det( A¯ ‚ .I ) .

We get the unique lift eA 2 sl(p ) by taking eA :˘ A¡ det( A)
1/ p

.I . Now one
has Tr (^ i ( eA)) ˘ 0 for 1 • i • p and hence we can de�ne the exponential
morphism Ga ! PGL(p ) as:

t 7! exp(t A) :˘ exp(t eA). (2.19.2)

Likewise, in the case of unipotents in the group PGL( p ), the restriction
of this map to the locus of unipotent elements:

SL(p )
u

! PGL(p )
u

(2.19.3)

is radicial. Thus, any unipotent u 2 PGL(p ) has a unique unipotent lift
eu 2 SL(p ) and one can de�ne the t -power map Ga ! PGL(p ) as:

t 7! u
t
:˘ image( eu

t
) (2.19.4)

With the notions of t -power map and exponential morphisms in place,
we can de�ne the notions of saturation (resp in�nitesimal saturation )
of subgroup schemes G ‰G0 exactly as in De�nition 2.4 using (2.19.4)
(resp (2.19.2)) and these coincide with the de�nitions made above.

We note however that these �punctual" maps, i.e. de�ned for each
nilpotent A (resp each unipotent u ), are not induced by a morphism
from pgl(p )ni l p to PGL(p )

u
(resp. A1 £ PGL(p )

u
! PGL(p )

u
: (t ,u ) 7! u

t
is

not a morphism).

3. COMPLETION OF PROOF OF THE STRUCTURE THEOREM2.5

We begin by stating a general result on root systems whose proof is
given in the appendix.

PROPOSITION 3.1. Let R be an irreducible root system with Coxeter num-
ber h and let X be the lattice spanned by R. Let ` : X ! R/ Z be a homo-
morphism. Then there exists a basis B for R such that if fi 2 R satis�es
` (fi ) 2

¡
0,1/h

¢
mod Z , then fi is positive with respect to B.

3.2. Assumption 2.3 on the reductive group G continues to be in force.
Let G be a subgroup scheme of G, and H a maximal connected sub-
group scheme of multiplicative type of G. For the existence of H see [D,
Proposition 2.1].

Let X (H ) be the group of characters of H . The action of H on
Lie(G) by conjugation gives an X (H )-gradation Lie( G) ˘ Lie(Z

0

G
(H )) '

L
fi 6 0̆ Lie(G)

fi
.

12



COROLLARY 3.3. (cf. [D, Lemma 2.12] ) Let M be a connected subgroup
scheme of multiplicative type of G and suppose that p ¨ hG . The ac-
tion of M on Lie (G) by conjugation gives an X (M )-gradation Lie (G) ˘L

fi 2X (M ) Lie(G)
fi
. If fi 6˘0, then for ° 2 Lie(G)

fi
one has °

p
˘ 0. In particu-

lar, if M ˘ H and ° 2 Lie(G)
fi

we have °
p

˘ 0.

Proof. In a smooth algebraic group, the maximal connected subgroups
of multiplicative type are (maximal) tori. Indeed, if T is such a maximal
subgroup, its centralizer ZG(T ) is smooth, being the �xed locus of a lin-
early reductive group acting on a smooth variety (see for example [DG,
Theorem 2.8, Chapter II, §5]). De�ne U :˘ ZG(T )

o
/ T . The group scheme

U is smooth, as a quotient of ZG(T )
o

which is smooth, and is unipotent
by maximality of T . By [SGA3, ExposØ XVII, Theorem 6.1.1], we have a
splitting ZG(T )

o
’ T £ U , and hence T is smooth.

In our case M is hence contained in a maximal torus T of G. By the
assumption 2.3 on G, it suf�ces to prove that ° is nilpotent. Suppose
�rst that M is isomorphic to „ p . In that case, the non-trivial character

fi of M induces an isomorphism from M to „ p . Let ` : X (T ) ! X (M ) fi˘
X („ p ) ˘ Z / p be induced by the inclusion of M into T . Then, the M -

weight space Lie(G)
fi
, is the sum of T -weight spaces Lie(G)

fl
for fl a root

such that ` (fl ) ˘ 1. By 3.1, applied to 1
p ` , with values in 1

p Z / Z ‰R/ Z ,
this sum is contained in the Lie algebra of the unipotent radical of a
Borel subgroup of G. In particular, it consists of nilpotent elements.

For the general case, if M is trivial, the claim is empty. If M is not
trivial, pick A ‰M isomorphic to „ p . If the restriction of fi to A is non-
trivial, one applies 3.3 to the already proven case of A and the restriction
of fi to A. If the restriction of fi to A is trivial, one considers M / A ‰
ZG(„ p )

o
/ „ p and repeat the argument. �

3.4. The proof of 2.5 now follows [D, page 594-599] verbatim with a
sole alteration; recall that in [D] the group G was the linear group GL( V )
and the condition on the characteristic was p ¨ dim( V ). For an arbi-
trary connected reductive G, this condition now gets replaced by p ¨ hG ,
which makes 3.3 applicable.

Remark 3.5. If G ˘ GL(V ) one has hG ˘ dim( V ). In the case G ˘
Q

GL(Vi )
with for each i , p ¨ dim( Vi ), the case p ¨ hG of Theorem 2.5 gives us [D,
Theorem 1.7].

Example 3.6. (Brian Conrad) Here is an example in any characteristic
p ¨ 0, of a connected group of multiplicative type M acting on a re-
ductive group G, and of a non-trivial character fi of M , such that the
weight space Lie(G)fi contains elements which are not nilpotent. We
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take G ˘ SLp (so that hG ˘ p ) and M ˘ „ p2, and for fi the character
‡7! ‡

p
.

We embed M in the maximal torus of diagonal matrices of SL p by

‡7! di ag (‡
0
,‡

¡ p
,‡

¡ 2p
, . . . ,‡

¡ (p ¡ 1)p
)

The restriction to M of each simple root and of the lowest root is the
character fi : ‡ 7! ‡

p
, and Lie(G)fi is the sum of the corresponding root

spaces. In the standard visualization of SL p this weight space inside
Lie(G) ˘ slp is the span of the super-diagonal entries and the lower-left
entry.

A sum of nonzero elements in those root lines contributing to Lie( G)fi

is a p £ p -matrix X 2 slp which satis�es

X (e1) ˘ tp ep ,X (e2) ˘ t1e1, . . . ,X (ep ) ˘ tp ¡ 1ep ¡ 1 (3.6.1)

Iterating p times gives X p ˘ di ag (t , . . . ,t ), with t :˘
Q

t j 6˘ 0. Hence,
X 2 Lie(G)fi is not nilpotent.

Example 3.7. A variant of the above example leads to an example of
an in�nitesimally saturated group scheme G ‰SL(V ) with dim( V ) ˘ p
and such that V is an irreducible representation and such that Gred is a
unipotent group. This in particular implies that Gred is not normal in G.

Let V be the af�ne algebra of „ p , that is

V ˘ O(„ p ) :˘
k [u ]

(u p ¡ 1)
(3.7.1)

The vector space V admits the basis { u
i
j i 2 Z / p }.

The multiplicative group O(„ p )
⁄

acts by multiplication on V . For f 2
O(„ p )

⁄
, f

p
is constant. De�ne N f to be the constant value of f

p
. It is in

fact the norm of f . The action of O(„ p )
⁄

on V induces an action of the
subgroup N ‰O(„ p )

⁄
for which N f ˘ 1.

On V we have also the action of „ p by translations and this action
normalizes the group O(„ p )

⁄
and its subgroup N . Consider the group

scheme:

G :˘ „ p n N (3.7.2)

We make a few observations on G:

(1) G is in�nitesimally saturated;
(2) G contains the group generated by the �rst factor „ p and {u

i
j i 2

Z / p } ’ Z / p . This group is a Heisenberg type central extension of
„ p n Z / p by „ p .
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(3) the representation V is irreducible as a G-module since it is so
for the Heisenberg type subgroup, being simply its standard rep-
resentation.

(4) The reduced group Gred can be identi�ed with the unipotent
group { f 2 O(„ p )

⁄
j f (1) ˘ 1}.

(5) The subgroup Gred is not normal as the point 1 of „ p is not in-
variant by translations.

4. SEMI -SIMPLICITY STATEMENTS

Let G be a reductive group. Let C be an algebraic group and ‰: C ! G
be a morphism.

DEFINITION 4.1. ([S2, Page 20]) One says that‰is cr if, whenever ‰factors
through a parabolic P of G, it factors through a Levi subgroup of P.

When G ˘ GL(V ), ‰is cr if and only if the representation V of C is
completely reducible (or equivalently, semi-simple) and hence the ter-
minology.

The property of ‰being cr depends only on the subgroup scheme of
G which is the (schematic) image of C. It in fact only depends on the
image of C in the adjoint group G

ad
. Indeed, the parabolic subgroups

of G are the inverse images of the parabolic subgroups of G
ad

, and sim-
ilarly for the Levi subgroups. A subgroup scheme G of G will be called
cr if its inclusion in G is so.

For an irreducible root system R, let fi 0 be the highest root and
P

n i fi i

its expression as a linear combination of the simple roots. The charac-
teristic p of k is called good for R if p is larger than each n i . For a general
root system R, p is good if it is so for each irreducible component of R.

PROPOSITION 4.2. Suppose C is an extension

1 ! B ! C ! A ! 1 (4.2.1)

with A
o

of multiplicative type and A / A
o

a �nite group of order prime
to p, and suppose that p is good. Let ‰: C ! G be a morphism. If the
restriction of ‰to B is cr, then ‰is cr.

We don’t know whether the proposition holds without the assumption
that p is good.

Proof. Let P be a parabolic subgroup, U its unipotent radical, and u the
Lie algebra of U . The parabolic P is said to be restricted if the nilpotence
class of U is less than p . If P is a maximal parabolic corresponding to
a simple root fi , the nilpotence class of U is the coef�cient of fi in the
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highest root. It follows that p is good if and only if all the maximal para-
bolic subgroups are restricted. By [Sei, Proposition 5.3] (credited by the
author to Serre), if P is restricted, one obtains by specialization from
characteristic 0, a P-equivariant isomorphism:

exp : (u,–) »! U (4.2.2)

from u endowed with the Campbell-Hausdorff group law, to U .
We will �rst show that whenever ‰factors through a restricted para-

bolic subgroup P as above, if the restriction of ‰to B factors through
some Levi subgroup of P, the ‰itself factors through some Levi sub-
group of P.

The group U (k ) acts on the right on the set L (k ) of Levi subgroups
of P by

u in U (k ) acts by L 7! u
¡ 1

Lu

This action turns L (k ) into a U (k )-torsor. This expresses the fact that
two Levi subgroups are conjugate by a unique element of U (k ). The
group P(k ) acts on L (k ) and on U (k ) by conjugation. This turns L (k )
into an equivariant U (k )-torsor.

We will need a scheme-theoretic version of the above. Fix a Levi sub-
group Lo . Let L be the trivial U -torsor (i.e. U with the right action of U
by right translations). We have the family of Levi subgroups Lu :˘ u

¡ 1
Lo u

parametrized by L ˘ U . We let P act on U by conjugation, and on L
as follows: p ˘ v ‘ in P ˘ UL o acts on L ˘ U by u 7! v

¡ 1
.pup

¡ 1
. This

turns L into an equivariant U -torsor. When we pass to k -points, and
attach to u in L the Levi subgroup uL o u

¡ 1
, we recover the previously

described situation.
The morphism ‰: C ! P turns L into an equivariant U -torsor. A

point x of L corresponding to a Levi subgroup Lx is �xed by C (scheme-
theoretically) if and only if ‰factors through Lx . This expresses the fact
that a Levi subgroup is its own normalizer in P.

We want to prove that if B has a �xed point in L , so does C. Let U
B

be the subgroup of U �xed by B, for the conjugation action. If B has a
�xed point in L , the �xed locus L B

is a U
B
-torsor. As B is a normal

subgroup of C, C acts on L B
and U

B
, and the action factors through A.

The isomorphism exp : ( u,–) ! U is compatible with the action of B
by conjugation. Hence it induces an isomorphism from ( u

B
,–) ! U

B
. Let

Z
i
(u

B
) be the central series of u

B
, and de�ne Z

i
(U

B
) :˘ exp(Z

i
(u

B
)). The

isomorphism exp induces an isomorphism between the vector group
16



Gr
i

Z
(u

B
) and Z

i
(U

B
)/ Z

i ¯ 1
(U

B
), compatible with the action of A. On

Gr
i

Z
(u

B
) , this action is linear.

The assumption on A amounts to saying that A is linearly reductive,
that is, all its representations are semi-simple. Equivalently, if k is the
trivial representation, any extension

0 ! V a! E b! k ! 0 (4.2.3)

splits. Passing from E to b
¡ 1

(1), such extensions correspond to A-
equivariant V -torsors, and the extension splits if and only if A has a
scheme-theoretic �xed point on the corresponding torsor.

De�ne U
B

i
to be U

B
/ Z

i
(U

B
), and L B

i
to be the U

B

i
-torsor obtained

from L by pushing by U
B

! U
B

i
. We prove by induction on i that A has

a �xed point on L B

i
.

As U
B

1
is trivial, the case i ˘ 1 is trivial. If x is a �xed point of A

in L B

i
, the inverse image of x in L B

i ¯ 1
is an equivariant A-torsor on

Gr
i

Z
(u

B
) » Z

i
(U

B
)/ Z

i ¯ 1
(U

B
). By linear reductivity, A has a �xed point

on the inverse image. As the central descending series of u, and hence
of u

B
terminates, this proves 4.2 for restricted parabolic subgroups.

We now prove 4.2 by induction on (the dimension) of G. Suppose that
‰factors through a proper parabolic subgroup P. As p is good, there ex-
ists a restricted proper parabolic Q containing P, and P is the inverse
image by the projection Q ! Q/ Ru (Q) of a parabolic P0 of Q/ Ru (Q). Let
L be a Levi subgroup of Q through which ‰factors and let P0

L
be the

parabolic subgroup of L obtained as the inverse image of P0 by the iso-
morphism L »! Q/ Ru (Q). Levi subgroups of P0

L
are Levi subgroups of P,

and it remains to apply the induction hypothesis to L, for which p is
good too.

�

Remark 4.3. For several results related to 4.2 but in the setting of re-
duced subgroups, see [BMR1, Theorem 3.10] and [BMR2, Theorem 1.1
and Corollary 3.7].

Fix in the reductive group G, a maximal torus T , and a system of sim-
ple roots corresponding to a Borel subgroup B containing T . Let U be
the unipotent radical of B.

DEFINITION 4.4. (cf. [Dy] , [S1],[IMP] , ) The Dynkin height ht G(V ) of a
representation V of G is the largest among {

P
fi ¨ 0h‚ ,fi

_
i }, for ‚ a weight

for the action of T on V .
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This notion and this terminology go back to Dynkin [Dy, Page 331-
332] where it is called �height" as in [IMP], while in Serre ([S1] and [S2]),
it is simply � n (V )". If V is an irreducible representation, with dominant
weight ‚

¯
and smallest weight ‚

¡
, it is the sum of the coef�cients of

‚
¯

¡ ‚
¡
, expressed as linear combination of the simple roots.

It follows that the product in End( V ) of the action of ht G(V ) ¯ 1 ele-
ments of Lie( U ) vanishes and for �n�nilpotent in Lie( G), one has �n�ht (V )¯ 1

˘
0 in End( V ).

4.5. The representation ‰: G ! GL(V ) is said to be of low height if
p ¨ ht G(V ). By [S2, Theorem 6, page 25], representations of low height
are semi-simple. One can show that if G admits a representation V of
low height which is almost faithful , meaning that its kernel is of multi-
plicative type, then G satis�es the assumption 2.3. That p ‚ hG results
from the more precise statement that ht G(V ) ‚ hG ¡ 1 ([S3, (5.2.4), Page
213]). For the property that eG/ G0 is Øtale, one uses the fact that the non-
trivial irreducible representation of PGL( p ) of the smallest height is the
adjoint representation which is of height 2 p ¡ 2.

We now assume that V is of low height, and the assumption 2.3
on G. It follows that any nilpotent �n�in Lie( G) satis�es �n�p ˘ 0, and
further, the exponential map (2.2.2) is de�ned. The image d‰(�n�)
of �n� in Lie(GL( V )) ˘ End(V ) also has a vanishing p

th
-power, hence

exp(d‰(�n�).t ) is de�ned. By [S2, Theorem 5, page 24], one has the fol-
lowing compatibility statement.

4.6. Compatibility If �n�in Lie( G) is nilpotent

‰(exp(t �n�)) ˘ exp(td ‰(�n�)). (4.6.1)

As a consequence, if u
p

˘ 1 in G, one has

‰(u
t
) ˘ ‰(u )

t
(4.6.2)

The following theorem is a schematic analogue of [BT], for p large
enough.

THEOREM 4.7. Suppose that the reductive group G admits a low height
almost faithful representation ‰: G ! GL(V ), and that p ¨ hG . Then, for
any non-trivial unipotent subgroup U of G, there exists a proper para-
bolic subgroup P of G containing the normalizer N G(U ) of U, and whose
unipotent radical contains U.

The condition p ¨ hG implies that G satis�es the assumption 2.3. If G
is simple simply connected, it implies the existence of an almost faith-
ful low height representation except for the G of type F4, E6, E7 or E8,
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in which case the lowest height of a non-trivial representation and the
Coxeter number are respectively 16 ¨ 12, 16 ¨ 12, 27 ¨ 18 and 58 ¨ 30.
For these groups, we do not know whether the conclusion of the theo-
rem is valid assuming only p ¨ hG .

Proof. Let V
U

be the invariants of U acting on V . It is not zero, because
U is unipotent. It is not V , because the representation V is almost faith-
ful, hence faithful on U . It does not have a U -stable supplement V 0 in
V , becauseU would have invariants in V 0.

Let H be the subgroup scheme of G which stabilizes V
U

. It contains
the normalizer NG(U ) of U . It is a doubly saturated subgroup scheme
of G. Indeed, if h in H (k ) is of order p , by (4.6.2), ‰(h

t
) ˘ ‰(h )

t
˘

P
i ˙ p

¡ t
i

¢
(‰(h ) ¡ 1)

i
, which stabilizes V

U
, and similarly if �n�in Lie( H ) is

nilpotent, the exp( t �n�) are in H .
As p ¨ hG , theorem 2.5 ensures that H

0

red
is a normal subgroup scheme

of H and that the quotient H / H
0

red
is an extension of a �nite group of

order prime to p by a group of multiplicative type. It follows that U ‰
H

0

red
.

LEMMA 4.8. H
0

red
is not reductive.

Proof. If it were, V would be a representation of low height of H
0

red
([S2,

Corollary 1, page 25]), hence a semi-simple representation of H
0

red
, and

V
U

would have in V a H
0

red
-stable supplement. As V

U
does not admit a

supplement stable under U ‰H
0

red
, this is absurd. �

Proof of 4.7 continued : If S is a doubly saturated subgroup scheme of
G, we will call Ru (S

0

red
) the unipotent radical of S and denote it simply

by Ru (S). By 2.5, it is a normal subgroup of S and S/ Ru (S
0

red
) does not

contain any normal unipotent subgroup. This justi�es the terminology.
De�ne U1 :˘ Ru (H ). By 4.8, it is a non-trivial unipotent subgroup of

G, and we can iterate the construction. We de�ne for i ‚ 1

H i := stabilizer of V
Ui ‰V

U i ¯ 1 :˘ Ru (H i )

One has U ‰H
0

red
and

U ‰NG(U ) ‰H ‰NG(U1) ‰H1 ‰NG(U2) ‰H2 . . . (4.8.1)

The H
o

i ,red
form an increasing sequence of smooth connected subgroups

of G. It stablizes, hence so do the sequences of the U i and of the H i . If
H i ˘ H i ¯ 1, one has H i ˘ NG(U i ¯ 1) ˘ H i ¯ 1 and
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U i ¯ 1 ˘ Ru (H i ) ˘ Ru (H i ¯ 1) ˘ Ru (N (U i ¯ 1)
o

red
)

By [BT, Proposition 2.3, page 99] (or for example [H, Section 30.3, Propo-
sition on page 186]), this implies that N (U i ¯ 1)red ˘ (H i ¯ 1)red is a proper
parabolic subgroup of G. Call it Q. A parabolic subgroup of G is its own
normalizer scheme (cf. [SGA3, XII, 7.9], [CGP, page 469]). As (H i ¯ 1)red ˘
Q is normal in H i ¯ 1, it follows that H i ¯ 1 ˘ Q and that NG(U ) ‰Q.

A Levi subgroup L of Q is a reductive subgroup of G, hence satis�es
the assumptions of 4.7. It is isomorphic to Q/ Ru (Q). If U is not con-
tained in Ru (Q), we can repeat the argument for the image U of U in
Q/ Ru (Q), which is isomorphic to L. One obtains a proper parabolic sub-
group of Q/ Ru (Q) which contains the normalizer of U . Its inverse image
in Q is a parabolic subgroup, properly contained in Q and containing
the normalizer of U . Iterating, one eventually �nds a parabolic P con-
taining NG(U ) and such that U ‰Ru (P). �

Remark 4.9. Let eG be the simply connected central extension of the de-
rived group G0, and let eGi be its simple factors: eG ˘

Q eGi . A representa-
tion of low height V of G is almost faithful if and only if its restriction
to each eGi is not trivial. It suf�ces to check this for each eGi separately.
Thus we may assume G is simply connected. The existence of a non-
trivial V of low height implies that p ¨ 2 for G of type Bn , Cn (n ‚ 2) or
F4 and p ¨ 3 for G of type G2. Let G be the image of G in GL(V ). If V
is non-trivial, u : G ! G is an isogeny. We want to show that it is a cen-
tral isogeny. If it is not, the structure of isogenies ([SGA3, XXII, 4.2.13])
show that ker( u ) contains the kernel of the Frobenius. The weights of V
are the p

th
-powers and ht G(V ) is a multiple of p , contradicting the low

height assumption.

4.10. If G is a reductive group for which assumption 2.3 holds, and G is
a subgroup scheme of G, the double saturation G

⁄
of G is the smallest

doubly saturated subgroup scheme of G containing G. It is the inter-
section of the doubly saturated subgroup schemes containing G, and is
obtained from G by iterating the construction of taking the group gen-
erated by G, the additive groups exp( t �n�) for �n�nilpotent in Lie( G) and
u

t
for u of order p in G(k ).

COROLLARY4.11. Let V be a low height almost faithful representation of
a reductive group G. Assume that p ¨ hG . Let G be a subgroup scheme of
G, and let G

⁄
be its double saturation. Then the following conditions are

equivalent.
(i) V is a semi-simple representation of G

(ii) V is a semi-simple representation of G
⁄
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(iii) G is cr in G
(iv) G

⁄
is cr in G

(v) the unipotent radical of (G
⁄
)

0

red
is trivial

Proof. (i) () (ii): If W is a subspace of V , the stabilizer in G of W
is doubly saturated, as we saw in the beginning of the proof of 4.7. If
G stabilizes W , it follows that G

⁄
also stabilizes W : the lattice of sub-

representations of V is the same for G and G
⁄
, hence the claim.

(iii) () (iv): Similarly, the parabolic subgroups of G and their Levi
subgroups are doubly saturated, hence contain G if and only if they
contain G

⁄
.

not (v) )̆ not (ii): Let U be the unipotent radical of ( G
⁄
)

0

red
. If

it is non-trivial, V
U

6˘ V , because V is faithful on U and does not
have a U -stable supplement. As U is normal in G

⁄
(2.5), V

U
is a sub-

representation for the action of G
⁄

on V . This contradicts the semi-
simplicity of V .

(v) )̆ (ii): The representation V of the reductive group ( G
⁄
)

0

red

is of low height, hence semi-simple. By 2.5, ( G
⁄
)

0

red
is a normal sub-

group of G
⁄

and the quotient A is linearly reductive. If W is a sub-G
⁄
-

representation of V , A acts on the af�ne space of ( G
⁄
)

0

red
-invariant re-

tractions V ! W . It has a �xed point, whose kernel is a supplement to
W .

not (v) )̆ not (iv): Let U be the unipotent radical of ( G
⁄
)

0

red
. If it

is not trivial, there exists a parabolic P containing its normalizer, hence
G

⁄
, and the unipotent radical of P contains U (4.7). Thus, no Levi sub-

group of P can contain G
⁄
.

(v) )̆ (iv): By [S2, Theorem 7, page 26], (G
⁄
)

0

red
is cr in G, and one

applies 4.2.
�

COROLLARY4.12. Let ‰: G ! GL(V ) be an almost faithful low height rep-
resentation, and let v in V be an element such that the G-orbit of v in V
is closed. Then there exists a connected multiplicative central subgroup
scheme M‰G

0

v
and a surjective homomorphism M £ G

0

v,red
! G

0

v
.

Proof. The orbit being closed in V and hence af�ne, the reduced sta-
bilizer Gv,red is reductive ([Bo]). Since p ‚ hG and since stabilizers are
doubly saturated and 2.5(2) holds for G ˘ Gv , we get the required re-
sult. �

We now observe that the results of [D, Section 6] can be obtained as a
consequence of 4.11. Note that by the remarks in [D, Page 607] it suf�ces
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to prove the semisimplicity results in the case when k is algebraically
closed.

THEOREM 4.13. G be an algebraic group. Let (Vi )i 2I be a �nite family of
semi-simple G-modules and let m i be integers ‚ 0. If

X
m i (dim Vi ¡ m i ) ˙ p (4.13.1)

the G-module
N

j

V m j V j is semi-simple.

Proof. Let G ˘
Q

j GL(V j ) and V ˘
N

j

V m j V j . Then, (4.13.1) is simply the
inequality p ¨ ht G(V ). Replacing G by its image in G we may and shall
assume that G is a subgroup scheme of G. Since Vi are semi-simple G-
modules, it follows that G is G-cr, for G ˘

Q
j GL(V j ). By [D, §6.2], we

may also assume that p ¨ dim( V j ) ˘ hGL(Vj )8 j .
Hence by working with the image of G (and G) in GL(V ) and applying

4.11, we conclude that V is semi-simple as a G-module. �

Remark 4.14. If (Vi ,qi ) is a non-degenerate quadratic space with
dim Vi ˘ 2d i on which G acts by similitudes, then by passing to a sub-
group of index at most 2 and mapping to the group of similitudes rather
than GL(Vi ), one can replace the term m i (dim Vi ¡ m i ) by m i (dim Vi ¡
m i ¡ 1), when m i • 2d i .

Complete reducibility in the classical case . By 4.1, a subgroup scheme
G ‰G is called cr if for every parabolic subgroup P ‰G containing G,
there exists an opposite parabolic subgroup P0such that G ‰P\ P0. Sup-
pose that char (k ) 6˘2 and let G be SO(V ) (or Sp(V ) in any characteris-
tic), relative to a non-degenerate symmetric or alternating bilinear form
B on V . In this situation, the notion of cr can be interpreted as follows:
G is cr in G if and only if for every G-submodule W ‰V which is totally
isotropic, there exists a totally isotropic G-submodule W 0 of the same
dimension, such that the restriction of B to W ¯ W 0 is non-degenerate
(cf. [S3, Example 3.3.3, page 206]).

LEMMA 4.15. Let the subgroup schemeG of G be cr. Then the G-module
V is semi-simple and conversely.

Proof. Let W ‰V be a G-submodule. Then we need to produce a G-
complement.

Consider W1 :˘ W \ W
?
. If W1 ˘ (0), then W ' W

?
˘ V and we are

done. So let W1 6˘ (0). Then W1 is a G-submodule which is totally
isotropic and hence by the cr property, we have a totally isotropic G-
submodule W 0

1
of the same dimension as W1, such that the form B is
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non-degenerate on W1 ¯ W 0
1
. In particular, W1 \ W 0

1
˘ (0). Since W1 ‰W

?
,

we see that W ‰W
?

1
.

Let w 2 W \ W 0
1

‰W
?

1
\ W 0

1
and suppose w 6˘0. Since w 2 W 0

1
, there

exists w 02 W1 such that B(w ,w 0) 6˘0. On the other hand, since w 2 W
?

1
,

B(w ,v ) ˘ 0 for all v 2 W1 and in particular B(w ,w 0) ˘ 0 which contradicts
the assumption that w 6˘0. Hence it follows that W \ W 0

1
˘ (0). Thus,

W ( X ˘ W ' W 0
1

‰V is a G-submodule. We proceed similarly and get
X1 ˘ X \ X

?
such that X ' X 0

1
‰V . If X1 ˘ (0), then V ˘ X ' X

?
, so get a

G-decomposition of V as W ' W 0
1

' . . ., that is a G-complement of W in
V .

Conversely, let V be semi-simple as a G-module. Let W ‰V be a
totally isotropic G-submodule of dim( W ) ˘ d . Note that d ˙ dim( V )/2.
We therefore have a G-submodule Z ‰V such V ˘ W ' Z . The non-
degenerate form B gives an G-equivariant isomorphism ` : V ! V

⁄
˘

W
⁄
' Z

⁄
and since W is totally isotropic ` (W )\ W

⁄
˘ (0). Hence ` (W ) ‰

Z .
Again, since W is totally isotropic, the restriction of B to Z is non-

degenerate and hence we get an isomorphism ˆ : Z
⁄

! Z . De�ne W 0:˘
ˆ –` (W ).

Then it is easily seen that W 0 is of dimension d and also totally
isotropic G-invariant submodule of V . Finally, B is non-degenerate on
W ' W 0. Hence G is cr in G.

�

5. É TALE SLICES IN POSITIVE CHARACTERISTICS

We begin this section with the following (linear) analogue of the Luna
Øtale slice theorem in positive characteristics.

THEOREM 5.1. Let V be a G-module with low height i.e. such that
p ¨ ht G(V ). Let v in V be an element such that the orbit G .v is a closed
orbit in V . Then there exists a G v -invariant linear subspace S of V giving
rise to a commutative diagram:

G £
Gv S

` //

f
��

V

q
��

(G £
Gv S) ¸ G ‘ //V ¸ G

(5.1.1)

and G-equivariant open subsets U ‰(G£
Gv S) containing the closed orbit

G.v and an open subset U 0of V containing v, for which (5.1.1) induces a
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cartesian diagram

U
` //

f
��

U 0

q
��

U ¸ G
‘ jU //U 0¸ G

(5.1.2)

such that the morphism ‘ jU is Øtale.

Remark 5.2. The above theorem was stated in the note [MP] whose proof
contained serious gaps (as was pointed to the authors by Serre in a pri-
vate correspondence).

We note that G/ Gv is constructed in ([DG, III, Proposition 3.5.2]). It
represents the quotient in the category of fppf sheaves. Furthermore if
…v : G ! V, g 7! g.v , the image im( …v ), as a locally closed sub-scheme of
V with its reduced schemestructure, can be identi�ed with the scheme
G/ Gv . We call this locally closed sub-scheme, the orbit G .v and have the
identi�cation G/ Gv ’ G.v (see also [DG, Proposition and De�nition 1.6,
III, §3, page 325]).

PROPOSITION 5.3. Let V be an arbitrary G-module. Let v 2 V and sup-
pose that there exists a Gv -submodule S of the tangent space Tv (V ), such
that T v (V ) splits as Tv (G.v ) ' S. Let G act on G£ S by h.(g,s) :˘ (h .g,s).
Then the G-morphism ' : G £ S ! V given by (g,s) 7! g.v ¯ g.s descends
to a G-morphism

` : G £
Gv S ! V. (5.3.1)

which is Øtaleat (e,0), e being the identity of G.

Proof. To check the morphic properties, we need to check for all A-
valued points of Gv where A is a k -algebra and we will suppress the A.

We will check that it is constant on the Gv -orbits. Let fi in Gv act on
G £ S by fi .(g,s) ˘ (g.fi ,fi

¡ 1
.s). Observe that '

¡
fi .(g,s)

¢
˘ ' (g.fi ,fi

¡ 1
.s) ˘

g.fi .v ¯ g.fi .fi
¡ 1

.s ˘ g.v ¯ g.s (since fi �xes v ). Therefore it is constant
on the Gv -orbits. Since the action of Gv on G£ S is scheme-theoretically
free, ' descends to a morphism ` : G£

Gv S ! V . Clearly the actions of G
and Gv on G£ S commute and hence the descended morphism is also a
G-morphism.

Observe that the quotient morphism G ! G/ Gv is a torsor for the
group scheme Gv , locally trivial under the fppf topology. Since the ac-
tion of Gv on S is linear, we see that the associated �bre space ˆ : G £

Gv

S ! G/ Gv is a locally free sheaf of rank ˘ dim( S). In particular, G £
Gv S

is a smooth k -scheme of �nite type. Observe further that under the
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morphism ` , the zero section of the vector bundle ˆ : G £
Gv S ! G/ Gv

canonically maps onto the orbit G.v ‰V , while the �bre ˆ
¡ 1

(e.Gv ) of
the identity coset e.Gv 2 G/ Gv maps isomorphically to the af�ne sub-
space S¯ v ‰V . Since Tv (V ) ˘ Tv (G.v ) ' S by assumption, it follows that
the differential d ` z , at z ˘ (e,0), is an isomorphism.

We now apply [D, Lemme 2.9], to conclude that the morphism
` : G £

Gv S ! V is Øtale atz ˘ (e,0). �

PROPOSITION 5.4. Let V be a G-module such that p ¨ ht G(V ), and let v
in V be an element such that the G-orbit of v in V is closed. Then there
exists a Gv -submodule S ‰V such that V ˘ Tv (G.v ) ' S as a Gv -module.
In particular, the consequences of 5.3 hold good.

Proof. One has the exact sequence:

1 ! G
0

v
! Gv ! …0(Gv ) ! 1 (5.4.1)

the quotient …0(Gv ) being the group of connected components. Fur-
ther, we note that j Gv / G

0

v
j ˘ j Gv,red / G

0

v,red
j. Note also that since

Gv,red is a saturated subgroup of G, by [S2, Property 3, Page 23] the index
j Gv,red / G

0

v,red
j is prime to p . Thus, …0(Gv ) is linearly reductive.

Since G.v is a closed orbit, by 4.12 we see that G
0

v,red
is reductive and

by 2.5(1), we have the exact sequence:

1 ! G
0

v,red
! G

0

v
! ¿ ! 1 (5.4.2)

where ¿ is a multiplicative group scheme.
Since G

0

v,red
is a reductive saturated subgroup of G, by [S2, Corollary 1,

page 25] we get the inequality p ¨ ht G(V ) ‚ ht
G

0
v,red

(V ). Being of low

height, V is semi-simple as a G
0

v,red
-module, .

Further, since ¿ is multiplicative (and hence linearly reductive), by [D,
Lemma 4.2] and 5.4.2, we deduce that V is semi-simple as a G

0

v
-module.

Using 5.4.1, we conclude that V is semi-simple as a Gv -module as well.
In particular, we have a Gv -supplement S for the Gv -invariant sub-

space Tv (G.v ) ‰Tv (V ) ˘ V , i.e. we have a Gv -decomposition S ' Tv (G.v )
for V . �

We recall the �Fundamental lemma of Luna" which holds in positive
characteristics as well and which is essential to complete the proof of
Theorem 5.1.

LEMMA 5.5. ([GIT, Page 152]) Let 	s: X ! Y be a G-morphism of af�ne
G-schemes. Let F‰X be a closed orbit such that:
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(1) 	sis Øtale at some point of F
(2) 	s(F) is closed in Y
(3) 	sis injective on F
(4) X is normal along F .

then there are af�ne G-invariant open subsets U ‰X and U 0 ‰Y with
F ‰U such that 	s¸ G : U ¸ G ! U 0 ¸ G is Øtale and (	s,pU ) : U !
U 0£

U 0̧ G
U ¸ G is an isomorphism (where p U : U ! U ¸ G is the quotient

morphism).

Proof. (of 5.1) As a �rst step, we need to show that the categorical quo-
tient G £

Gv S ¸ G exists as a scheme. As we have seen in 5.3, action of
G on G £ S (via g.(a,s) ˘ (g.a,s) and the (twisted) action of Gv on G £ S
commute and hence

k [G £
Gv S]

G
˘ (k [G £ S]

Gv )
G

˘ (k [G £ S]
G
)

Gv ˘ k [S]
Gv . (5.5.1)

Thus it is enough to show that k [S]
Gv is �nitely generated and we would

have

G £
Gv S ¸ G ’ S ¸ Gv . (5.5.2)

As we have observed in the proof of 5.4, G
0

v
‰Gv is a normal subgroup

of �nite index. Thus, the �nite generation of k [S]
Gv is reduced to check-

ing �nite generation of k [S]
G

0
v . We may therefore replace Gv by G

0

v
in the

proof. Further, since G.v is a closed orbit, Gv,red is reductive. Therefore,
by 4.12, we have a surjection M £ Gv,red ! Gv . Since M in Gv is central

k [S]
Gv ˘

µ
k [S]

Gv,red
¶M

.

Again, since Gv,red is reductive, the ring of invariants k [S]
Gv,red is a

�nitely generated k -algebra. Since M is a group of multiplicative type
over an algebraically closed �eld, it is a product of Gm ’s and a �nite
group scheme. Therefore, by [GIT, Theorem 1.1] and [AV, Page 113], the

ring of invariants
µ
k [S]

Gv,red
¶M

is also �nitely generated. This proves the

�nite generation of k [S]
Gv .

The commutativity of the diagram (5.1.1) now follows by the property
of categorical quotients by the group G.

Now we check the conditions of Lemma 5.5. We consider the given
closed G-orbit F ˘ G £

Gv {v } ‰G £
Gv S. Then we need to check that ` (F)

is a closed orbit in V . In fact, ` (F) is precisely the closed orbit G.` (v ) ˘
G.v ‰V . Thus we have veri�ed conditions (2) and (3) of Lemma 5.5.
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Condition (1) is precisely the content of 5.4 and (4) holds since G £
Gv S

has been seen to be smooth.
The isomorphism ( 	s,pU ) shows that the diagram (5.1.2) is cartesian.

This completes the proof of 5.1. �

COROLLARY5.6. Let X be an af�ne G-scheme embeddable as a closed G-
subscheme in low height G-module. Let x 2 X be such that the orbit G .x ½
X is closed. Then there exists a locally closed Gx -invariant subscheme (a
“slice") X1, of X with x 2 X1 ½X such that the conclusions of 5.1 hold for

the G-morphism G £
Gx X1 ! X .

Proof. This follows from 5.1 (which corresponds to [BR, Proposition
7.4]) exactly as in [BR, Proposition 7.6]. �

The following consequence of the slice theorem has many applica-
tions so we state it here without proof.

COROLLARY 5.7. (see[BR, Proposition 8.5, p.312] ) Let F be an af�ne G–
subvariety of P(V ), with V as a G–module with low height, and suppose
that F contains a unique closed orbit F cl . Then there exists a G-retract
F ¡! Fcl .

Let V be a �nite dimensional G–module and let

ht G(^ (V )) :Æmax i {ht G(^
i
(V ))} (5.7.1)

We then have the following application to the theory of semistable prin-
cipal bundles in positive characteristics.

THEOREM 5.8. Let E be a stable G-bundle with G semi-simple and ½V :
G ! SL(V ) be a representation such that p È ht G(^ (V )). Then the associ-
ated bundle E (V ) is polystable of degree0.

Proof. The proof follows [BP, Theorem 9.11] verbatim where the notion
of “separable index" is replaced by the Dynkin height, the key ingredient
being Corollary 5.7. �
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APPENDIX A. COXETER NUMBER AND ROOT SYSTEMS, ZHIWEI YUN

PROPOSITION A.1. Let R be an irreducible root system associated to a sim-
ple group G with Coxeter number h and let X be the lattice spanned by
R. LetÁ : X ! R/ Z be a homomorphism. Then there exists a basis B for R
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