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1. INTRODUCTION

We work over an algebraically closed field k of characteristic p > 0.
In [S1], Serre showed that if semi-simple representations Vi of a group

Γ are such that
∑

(dimVi − 1) < p, then their tensor product is semi-
simple. In [S2], he more generally considers the case where Γ is a sub-
group of G(k), for G a reductive group, and where Γ is G-cr, meaning
that whenever Γ is contained in a parabolic subgroup P , it is already
contained in a Levi subgroup of P . For G =∏

GL(Vi ), this is equivalent to
the semi-simplicity of the representations Vi of Γ. For a representation
V of G , one can then ask under what conditions does V becomes semi-
simple, when considered as a representation of Γ. Serre ([S2, Theorem
6, page 25]) shows this is the case when the Dynkin height htG (V ) is less
than p. For G =∏

GL(Vi ) and V =⊗Vi , one has htG (V ) =∑
(dimVi −1).

In [D], the results of [S1] were generalized to the case when the Vi

are semi-simple representations of a group scheme G. In this paper, we
consider the case when G is a subgroup scheme of a reductive group
G and generalize [S2] (see 4.11) and [D] (see 2.5). As in [D], we first
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have to prove a structure theorem (2.5) on doubly saturated (see 2.4)
subgroup schemes G of reductive groups G . The proof makes crucial
use of a result of Zhiwei Yun on root systems. The appendix contains
the result.

In Section 5, we consider a reductive group acting on an affine vari-
ety X and a point x of X whose orbit G .x is closed in X . We prove a
schematic analogue of [BR, Proposition 7.4,7.6] under some conditions
on the characteristic of k. More precisely, if X embeds in a G-module V
of low height, then we obtain, as a consequence of 2.5(2), an analogue
of Luna’s étale slice theorem ( 5.1, 5.6). In [BR] the language of schemes
was not used and as a consequence the orbit G .x had to be assumed
“separable". An orbit G .x is separable if and only if the stabilizer Gx is
reduced.

2. SATURATION AND INFINITESIMAL SATURATION

2.1. Let G be a reductive algebraic group over k. Our terminology is
that of [SGA3]: reductive implies smooth, and connected and an alge-
braic group will mean an affine group scheme of finite type over k. Fix
a maximal torus TG and a Borel subgroup containing TG which deter-
mines a root system R and a set of positive roots R+. Let 〈 , 〉 be the
natural pairing between the characters and co-characters and for each
root α, and let α

∨
be the corresponding coroot.

If the root system R associated to G is irreducible, the Coxeter number
hG of R and of G , admits the following equivalent descriptions:

(1) It is the order of the Coxeter elements of the Weyl group W . This
shows that R and the dual root system R∨ have the same Coxeter
number.

(2) Let α0 be the highest root and
∑

niαi its expression as a linear
combination of the simple roots. One has:

hG = 1+∑
ni (2.1.1)

(3) Applying this to the dual root system, one gets hG = 〈ρ,β
∨〉 + 1

where ρ is half the sum of positive roots and β
∨

is the highest
coroot. Indeed, ρ is also the sum of the fundamental weights ωi ,
and 〈ωi ,α

∨
j
〉 = δi j .

For a general reductive group G , define the Coxeter number hG to be the
largest among the ones for the irreducible components of R.

It follows from (2) above that if G is a reductive group, U the unipo-
tent radical of a Borel subgroup, and u := Lie(U ), the descending central
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series of u, defined by Z
1
u= u and Z

i
u= [u, Z

i−1
u], satisfies

Z
hG (u) = 0 (2.1.2)

For the group U , similarly Z
hG (U ) = (1).

The Lie algebra g of G is a p-Lie algebra. If ”nffl in g is nilpotent and
if p ≥ hG , then ”nfflp = 0. To check this, we may assume that ”nffl is in the
Lie algebra u of the unipotent radical U of a Borel subgroup. For each
positive root α, let Xα be a basis for the root subspace gα . Express ”nffl as∑

α∈R
+ aα .Xα . Each Xα is the infinitesimal generator of an additive group.

It follows that X
p

α
= 0 for each α. Observe that

”nfflp = ∑
α∈R

+
a

p

α
.X

p

α
(modulo Z

p
u) (2.1.3)

and Z
p
u= 0, as p ≥ hG . (see [Mc 1, page 10]).

2.2. Let gni l p (resp. G
u

) be the reduced subscheme of Lie(G) (resp.
G) with points the nilpotent (resp. unipotent) elements. Let U be
the unipotent radical of a Borel subgroup. For p ≥ hG , the Campbell-
Hausdorff group law ◦ makes sense in characteristic p and turns u :=
Lie(U ) into an algebraic group over k. This is so since Z

p
u= 0. Further,

there is an unique isomorphism

exp : (Lie(U ),◦)
∼−→U (2.2.1)

equivariant for the action of B and whose differential at the origin is
the identity. If in addition the simply connected covering of the derived
group of G is an étale covering (which is the case for p > hG , and could
fail when p = hG due to the presence of SL(p) as factors in the cover-
ing), then there is a unique G-equivariant isomorphism ([S2, Theorem
3, page 21]:

exp : gni l p →G
u

(2.2.2)

which induces (2.2.1) on each unipotent radical of a Borel subgroup. Let
log : G

u → gni l p denote its inverse.
For u a unipotent element of G(k), one defines the “t-power

map" t 7→ ut , from Ga to G , by

t 7→ exp(t log u). (2.2.3)

For G = GL(V ) such a map t 7→ ut is more generally defined for any u
in G such that u

p = 1. It is given by the truncated binomial expression
([S1, 4.1.1, page 524]):

t 7→ ut :=∑
i<p

(
t

i

)
(u −1)

i
. (2.2.4)
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Similarly, X in End(V ) such that X
p = 0 defines a morphism t 7→ exp(t X )

from Ga to GL(V ) given by the truncated exponential series:

t 7→ I + t X + (t X )
2

2!
+ . . .+ (t X )

p−1

(p −1)!
. (2.2.5)

Until the end of §3, we make the following assumptions on the reductive
group G .

ASSUMPTION 2.3. Let G̃ be the simply connected covering of the derived
group G ′. We assume that p ≥ hG and that the map G̃ →G ′ is étale.

In particular, by 2.1 and 2.2, the exponential map (2.2.2) is defined,
every unipotent element in G(k) is of order p, and every nilpotent in
Lie(G) is a p-nilpotent. One can then define the notions of saturation
and infinitesimal saturation of subgroup schemes G⊂G as follows (see
Remark 2.19 for the case when G = PGL(p)).

DEFINITION 2.4. ([S1, §4], [D, Definition 1.5])

(1) A subgroup scheme G⊂G is called saturated if for every u in G(k)
which is unipotent, the homomorphism t 7→ ut (2.2.3) from Ga to
G factors through G.

(2) A subgroup scheme G⊂G is called infinitesimally saturated if for
every nilpotent X in Lie(G), the morphism t 7→ exp(t X ) (2.2.2)
from Ga to G factors through G.

(3) G is doubly saturated if it is saturated and infinitesimally satu-
rated.

An element of Lie(G) is nilpotent if and only if it is nilpotent as an
element of Lie(G). The reference to the exponential map (2.2.2) in (2)
therefore makes sense. One way to see it is to observe that the inclusion
of Lie(G) in Lie(G) is a morphism of p-Lie algebras and that X is nilpo-

tent if and only if it is killed by an iterated p-power map, i.e. X
p

n

= 0.
Let G

0
be the identity component of G and G

0

r ed
the reduced sub-

scheme of G
0
.

THEOREM 2.5. Let G⊂G be a k-subgroup scheme which is infinitesimally
saturated. Assume that if p = hG , G

0

r ed
is reductive. Then

(1) The group G
0

r ed
and its unipotent radical Ru (G

0

r ed
) are normal

subgroup schemes of G and the quotient group scheme G
0
/G

0

r ed

is of multiplicative type.
(2) If G

0

r ed
is reductive, there exists a central, connected subgroup

scheme of multiplicative type M ⊂ G
0

such that the morphism
M ×G

0

r ed
→G

0
realizes G

0
as a quotient of M ×G

0

r ed
.
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The proof of part (2) of 2.5 will occupy most section 2, until 2.16. Part
(1) will be proven in section 3.

By [D, Lemma 2.3], the conclusions of 2.5 hold for G if and only if
they hold for the identity component G

o
. Until the end of section 3, we

will assume that G is connected.

LEMMA 2.6. If G is an infinitesimally saturated subgroup scheme of G,
every nilpotent element ”nffl of Lie(G) is in Lie(Gr ed ).

Proof. As Ga is reduced, the morphismt 7→ exp(t ”nffl) maps Ga to Gr ed ⊂G .
The image of 1 in Lie(Ga ) is ”nffl. �

Part (2) of 2.5 is a corollary of 2.6 and of the following theorem, which
does not refer to G anymore.

THEOREM 2.7. Let G be a connected algebraic group such that

(a) Gr ed is reductive
(b) any nilpotent element of Lie(G) is in Lie(Gr ed ).

Then, the conclusion of 2.5(2) hold. As a consequence, Gr ed is a normal
subgroup scheme of G and G/Gr ed is of multiplicative type.

Let T be a maximal torus of Gr ed , and let H be the centralizer of T in
G. One has H ∩Gr ed = T . It follows from (b) that any nilpotent element
”nffl of Lie(H) is in Lie(T ), hence vanishes. By the following lemma, H is
of multiplicative type, and in particular commutative.

LEMMA 2.8. Let H be a connected algebraic group over k. If all the ele-
ments of Lie(H) are semi-simple, then H is of multiplicative type.

Proof. (see also ([DG, IV, §3, Lemma 3.7])) Lie(H) is commutative: Fix
x in Lie(H), and let us show that it is central in Lie(H). As ad x is semi-
simple, it suffices to show that if y is in an eigenspace of ad x, i.e. [x, y] =
λy , then x and y commute, i.e. λ = 0. Let W be the vector subspace

of Lie(H) generated by the y
[p`]

(` ≥ 0). The y
[p`]

commute. The map
z 7→ z

p
therefore induces a p-linear map from W to itself, injective by

assumption. It follows that W has a basis ei , (1 ≤ i ≤ N ) consisting of

elements such that e
p

i
= ei , and (

∑
a

i
ei )

p =∑
(a

i
)

p
ei .

LEMMA 2.9. For b = (bi ) in kN , define b
p

:= (b
p

i
). Then, any b in kN is a

linear combination of the b
[p`]

for `≥ 1.

Proof. The b
[pa ]

(a ≥ 0) are linearly dependent. A linear dependence re-
lation can be written ∑

j≥m

c j bp j = 0 (2.9.1)
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with cm 6= 0. Extracting p
m

-roots, we get

(
∑
j≥0

d j bp j
) = 0 (2.9.2)

where d j = c1/pm

m+ j . In particular, d0 6= 0, proving the lemma.
�

End of proof of commutativity From the lemma above, y is a linear

combination of the y
[p`]

(`> 0). The bracket [y
[p`]

, x] vanishes for (`> 0).

Indeed, it is (ad y)
[p`]

(x) which vanishes because [y, [y, x]] = [y,−λy] = 0.
It follows that [y, x] vanishes too.

The p-Lie algebra Lie(H) determines the kernel of the Frobenius mor-

phism F : H → H
(p)

, where H
(p)

is obtained from H by extension of
scalars λ 7→ λ

p
, k → k. As Lie(H) is commutative semi-simple, this ker-

nel of the Frobenius morphism is of multiplicative type. The same holds

for H
(p)

, which is obtained from H using an automorphism of k. The

same holds for each H
(p`)

.

For any n, the kernel Kn of the iterated Frobenius map F
n

: H → H
(p`)

is an iterated extension of subgroups of the kernel of the Frobenius of

the H
(pi )

, i < n. It is hence of multiplicative type, being an iterated ex-
tension of connected groups of multiplicative type ([SGA3, XVII, 7.1.1]).

The Kn form an increasing sequence. By the proof of [D, Proposition
1.1], there exist subgroup of multiplicative type M of H containing all
Kn . As H is connected and as M contains all infinitesimal neighbour-
hoods of the identity element, one has M = H . �

Whenever a group M of multiplicative type acts on a group K , its ac-
tion on Lie(K ) defines a weight decomposition:

Lie(K ) =⊕
β∈X (M) Lie(K )

β

(2.9.3)

If v ∈ Lie(K )
β

, then v
p

is in Lie(K )
p.β

. Indeed, after any extension of
scalars R/k, if m is in M(R),

m(v
p

) = (m(v))
p = (β(m)v)

p =β(m)
p

v
p

(2.9.4)

LEMMA 2.10. With the above notations, if β is not torsion, Lie(K )
β

consists
of nilpotent elements.

Proof. Indeed, if β is not torsion, the p
`
β are all distinct and Lie(K )

p
`
β

must vanish for `À 0. It follows that the elements of Lie(K )
β

are nilpo-
tent. �

6



Let us apply this to the action of T on G by inner automorphisms.

LEMMA 2.11. If β in X (T ) is not zero, the weight spaces Lie(G)
β

equals

Lie(Gr ed )
β

.

Proof. Indeed, Lie(G)
β

consists of nilpotent elements. By our assump-
tion 2.7(b), it is contained in Lie(Gr ed ). �

Let B a Borel subgroup of Gr ed containing T , and let U be its unipo-
tent radical.

LEMMA 2.12. Under the assumption of 2.7, H normalizes U .

Proof. Let C in X (T ) ⊗R be the cone generated by the positive roots,
relative to B and define

C∗ :=C \ {0} (2.12.1)

As in 2.11, we let T act on G by conjugation (t acts by g 7→ t g t
−1

). This
action induces actions on g := Lie(G), the affine algebra A of G, its aug-
mentation ideal m (defining the unit element), and the dual g∨ =m/m

2

of g. Similarly T acts on U , its Lie algebra u, its affine algebra AU and its
augmentation ideal mU . For the action on affine algebras, t in T trans-

forms f (g ) into f (t
−1

g t ). From these actions, we get X (T )-gradings. By
2.7(b)

u= ⊕
β∈C∗

g
β

. (2.12.2)

It follows that u∨ =mU /m
2

U
is the sum of the (g∨)

β
, for β in the negative

−C∗ of C∗. For n > 0, the weights by which T acts on m
n

U
/m

n+1

U
are in

−C∗. As U is connected, the intersection of the m
n

U
is reduced to 0, and

the weights by which T acts on mU are also in −C∗.

Let I be the ideal of A generated by the graded components m
β

of

m for β not in −C∗, and put A1 := A/I . The image in mU of a m
β

as

above is contained in m
β

U
, hence vanishes. It follows that U is contained

in the closed subscheme U1 = Spec A1 of G defined by I . As the graded

component defined m
0

of m is contained in I , the graded component A
0

1

of A1 (the T -invariants) is reduced to the constants. As T is connected

it follows that U1 is connected. As the image of m
β

U
in m/m

2
is (m/m

2
)
β

,

the image of I in m/m
2 = g∨ is the orthogonal of u ⊂ g and the tangent

space at the origin of U1 is u.
Claim: The subscheme U1 of G is a subgroup scheme, i.e. the coprod-

uct ∆ : A → A⊗A, f (g ) 7→ f (g h) maps I to I⊗A⊕A⊗I . Indeed, ∆ respects
7



the gradings; for k ⊂ A the constants, one has A = k ⊕m, and ∆ maps m

to (k ⊗m)⊕ (m⊗k)⊕ (m⊗m), and hence m
β

maps to

(k ⊗m
β

)⊕ (m
β ⊗k)⊕ ∑

β=β′+β′′
m

β′ ⊗m
β′′

. (2.12.3)

As −C∗ is stable by addition, if β=β′+β′′ and that β is not in −C∗, one

of β′ or β′′ is not in −C∗, and the corresponding m
β′

or m
β′′

is contained
in I . The claim follows.

To summarize, U1 is connected, and the inclusion U ⊂U1 induces an
isomorphism Lie(U )

∼−→ Lie(U1 ). As U is smooth, this implies that U =
U1 .

Since H centralizes T , the ideal I is stable by H , meaning that H nor-
malizes U .

�

COROLLARY 2.13. Under the assumption of 2.7, H normalizes Gr ed .

Proof. Let B− be the Borel subgroup of Gr ed containing T and opposite
to B , and let U− be its unipotent radical. As U−, T and U are normalized
by H , the big cell U−TU ⊂Gr ed is stable by the conjugation action of H ,
and so is its schematic closure Gr ed . �

In what follows, we identify schemes with the corresponding fppf
sheaves. A quotient such as G/H represents the quotient of the sheaf
of groups G by the subsheaf H : G is a H-torsor over G/H .

LEMMA 2.14. The morphism of schemes

Gr ed /T →G/H (2.14.1)

is an isomorphism.

Proof. As T is the intersection of Gr ed and H , (2.14.1), as a morphism

of fppf sheaves, is injective. Testing on Spec(k) and Spec(k[ε]/(ε
2
)), one

sees that it is bijective on points and injective on tangent space at each
point. It is hence radicial and unramified, hence on some open set of
Gr ed /T an immersion. The Gr ed homogeneity then shows that it is a
closed embedding.

The tangent space at the origin of Gr ed /T is Lie(Gr ed )/Lie(T ). For
G/H if J is the ideal defining H , as Gr ed is a H-torsor on Gr ed /H , if

η is the ideal defining the origin in Gr ed /H , the pull-back of η/η
2

to

Gr ed /H is J/J
2
, and η/η

2
is the fiber if J/J

2
at the origin e. By [D, 1.15]

applied to T acting on G by conjugation, (J/J
2
)e

∼−→ ⊕
β 6=0

(m/m
2
)
β =

(Lie(Gr ed )/Lie(T ))∨. Thus, the closed embedding (2.14.1) is an isomor-
phism near the origin, hence everywhere by homogeneity, proving 2.14.
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COROLLARY 2.15. Under the assumptions of 2.7, Gr ed is normal in G, and
there exists in G a central connected subgroup scheme of multiplicative
type M such that the morphism M ×Gr ed →G realizes G as a quotient of
M ×Gr ed .

Proof. By 2.14, the product map Gr ed ×H →G is onto, as a morphism of
sheaves. As both Gr ed and H normalize Gr ed ⊂G, so does G.

To complete the proof of 2.15 (and thereby of 2.7), we follows [D,
§2.25] . Let M be the subgroup of H which centralizes Gr ed . Since Gr ed

is reductive, the group scheme AutT (Gr ed ) of automorphisms which pre-

serve T is precisely T
ad

, the image of T in the adjoint group. Hence the
conjugation action of H on Gr ed gives the exact sequence:

1 → M → H → T
ad → 1 (2.15.1)

and T surjects onto T
ad

implying that M and T generate H . Since M is
generated by Mr ed ⊂Gr ed and M

0
, and since H and Gr ed generate G we

see that M
0

and Gr ed generate G. Moreover, M is central. Thus

M
0 ×Gr ed →G (2.15.2)

is an epimorphism. This concludes the proof of 2.7 and in particular,
2.5(2). �

LEMMA 2.16. Suppose that H is a maximal connected subgroup scheme
of multiplicative type of an algebraic group G. Let Z

0

G
(H) be the identity

component of the centralizer of H in G and define U := Z
0

G
(H)/H. Then

the sequence:

0 → Lie(H) → Lie(Z
0

G
(H)) → Lie(U ) → 0 (2.16.1)

associated to the central extension

1 → H → Z
0

G
(H) →U → 1. (2.16.2)

is exact.

Proof. Left exactness of (2.16.1) is clear. The maximality of H implies
that U is unipotent (see [D, §2.5, page 590]).

Embed H in Gr
m

as a subgroup scheme. The quotient H ′′ =Gr
m

/H is a
torus, being a quotient of one. The central extension (2.16.2), by a push
forward, gives a central extension ([SGA3, Exposé XVII, Lemma 6.2.4])

1 →Gr
m
→ E →U → 1 (2.16.3)

9



and a diagram of groups:

1

��

1

��

1

��
1 // H //

��

Z
0

G
(H) //

��

U //

=
��

1

1 // Gr
m

//

��

E //

��

U //

��

1

1 // H ′′ = //

��

H ′′ //

��

1

1 1

(2.16.4)

Since H ′′ is multiplicative every nilpotent in Lie(E) maps to 0 in Lie(H ′′)
and hence comes from a nilpotent in Lie(Z

0

G
(H)).

Since Gr
m

is smooth, by [SGA3, Exposé VII, Proposition 8.2] the se-
quence (2.16.3) gives an exact sequence

0 → Lie(Gr
m

) → Lie(E) → Lie(U ) → 0 (2.16.5)

Since U is unipotent, any element z in Lie(U ) is nilpotent. Let z ′ in
Lie(E) be a lift of z. The Jordan decomposition makes sense for any p-
Lie algebra over a perfect field k and uses only the p-power map (see
for example [W2, Corollary 4.5.9, page 135]. Thus, by using the Jordan
decomposition of the lift z ′ in Lie(E) and noting that the semi-simple
part gets mapped to zero in Lie(U ), we can assume that z ′ can also be
chosen to be nilpotent.

Since every nilpotent in Lie(E) comes from a nilpotent in Lie(Z
0

G
(H)),

we conclude that z gets lifted to a nilpotent in Lie(Z
0

G
(H)). This implies

that (2.16.1) is also right exact. �

LEMMA 2.17. Suppose that G is a subgroup scheme of G which is in-
finitesimally saturated in G. Then the subgroup scheme Z

0

G
(H) is in-

finitesimally saturated in G; in particular, every non-zero nilpotent in
Lie(Z

0

G
(H)) lies in Lie(Z

0

G
(H)r ed ).

Proof. If ”nffl in Lie(Z
0

G
(H)) is nilpotent, the map ρ : t 7→ exp(t ”nffl) : Ga →

G factors through G. Since H is central in Z
0

G
(H), the action of H

by inner automorphisms fixes ”nffl. Since the map “exp" is compatible
with conjugation the entire curve ρ is fixed by H . Therefore, ρ factors
through ZG(H) and hence through Z

0

G
(H)r ed , since Ga is reduced and
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connected, and hence ”nffl ∈ Lie(Z
0

G
(H)r ed ). This completes the proof of

the lemma. �

We have the following extension of ([D, Lemma 2.7, Corollary 2.11]).

LEMMA 2.18. Let G be as in 2.17. Let H ⊂G be a maximal connected sub-
group scheme of multiplicative type. Then the central extension (2.16.2)
splits and U is a smooth unipotent group.

Proof. We claim that U is smooth. By Lemma 2.16, every element z
in Lie(U ) comes from a nilpotent in ”nffl in Lie(Z

0

G
(H)). By 2.17, ”nffl is in

Lie(Z
0

G
(H)r ed ). Its image z is hence in Lie(Ur ed ). Thus, Lie(U ) = Lie(Ur ed )

proving the claim.
Now we have a central extension (2.16.2) with the added feature that

U is smooth. By [SGA3, Exposé XVII, Theorem 6.1.1] it follows that
(2.16.2) splits (uniquely) and

Z
0

G
(H) = H ×U . (2.18.1)

�

Remark 2.19. Recall that in 2.2, for the existence of an exponential map
(2.2.2) we assumed that the covering morphism G̃ → G ′ is étale, which
therefore became a part of the standing assumption (2.3). The case
which gets excluded is when the simply connected cover of the derived
group has factors of SL(p). For instance, when G ′ is simple with p = hG ,
the only case excluded is G ′ = PGL(p).

Let G be a reductive group for which p = hG . The tables of Coxeter
numbers of simple groups show that except for type A, where hSL(n) = n,
Coxeter numbers are even greater than 2. It follows that G̃ is a prod-
uct of SL(p)’s and other simple factors with p larger than their Coxeter
numbers. Even when the morphism G̃ →G ′ is not étale, we can still de-
fine the notions of saturation (resp infinitesimal saturation) of subgroup
schemes G⊂G as follows.

Say G ⊂ G is saturated (resp infinitesimally saturated) if the inverse
image of G in G̃ is saturated (resp infinitesimally saturated). With this
definition, Theorem 2.5 remains true for p ≥ hG .

This notion of saturation (resp infinitesimal saturation) can also be
seen in terms of suitably defined t-power maps and exponential maps.
We restrict ourselves to the case when G ′ = PGL(p). At the level of Lie
algebras, the induced morphism:

sl(p) → pgl(p) (2.19.1)

is a radicial map on the locus of nilpotent elements. If A ∈ gl(p) is
a matrix representing an element of pgl(p), it is nilpotent if all but
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the constant coefficients of the characteristic polynomial vanishes, i.e.
Tr (∧i (A)) = 0,∀1 ≤ i < p and the characteristic polynomial reduces to
T

p − det(A). This condition is stable under A 7→ A +λ.I as (T −λ)
p −

det(A) = T
p − (det(A)+λp

) = T
p −det(A+λ.I ) .

We get the unique lift Ã ∈ sl(p) by taking Ã := A−det(A)
1/p

.I . Now one
has Tr (∧i (Ã)) = 0 for 1 ≤ i ≤ p and hence we can define the exponential
morphism Ga → PGL(p) as:

t 7→ exp(t A) := exp(t Ã). (2.19.2)

Likewise, in the case of unipotents in the group PGL(p), the restriction
of this map to the locus of unipotent elements:

SL(p)
u → PGL(p)

u
(2.19.3)

is radicial. Thus, any unipotent u ∈ PGL(p) has a unique unipotent lift
ũ ∈ SL(p) and one can define the t-power map Ga → PGL(p) as:

t 7→ u
t

:= i mag e(ũ
t
) (2.19.4)

With the notions of t-power map and exponential morphisms in place,
we can define the notions of saturation (resp infinitesimal saturation)
of subgroup schemes G ⊂ G ′ exactly as in Definition 2.4 using (2.19.4)
(resp (2.19.2)) and these coincide with the definitions made above.

We note however that these “punctual" maps, i.e. defined for each
nilpotent A (resp each unipotent u), are not induced by a morphism
from pgl(p)ni l p to PGL(p)

u
(resp. A1 ×PGL(p)

u → PGL(p)
u

: (t ,u) 7→ u
t

is
not a morphism).

3. COMPLETION OF PROOF OF THE STRUCTURE THEOREM 2.5

We begin by stating a general result on root systems whose proof is
given in the appendix.

PROPOSITION 3.1. Let R be an irreducible root system with Coxeter num-
ber h and let X be the lattice spanned by R. Let φ : X → R/Z be a homo-
morphism. Then there exists a basis B for R such that if α ∈ R satisfies
φ(α) ∈ (

0,1/h
)

mod Z, then α is positive with respect to B.

3.2. Assumption 2.3 on the reductive group G continues to be in force.
Let G be a subgroup scheme of G , and H a maximal connected sub-
group scheme of multiplicative type of G. For the existence of H see [D,
Proposition 2.1].

Let X (H) be the group of characters of H . The action of H on
Lie(G) by conjugation gives an X (H)-gradation Lie(G) = Lie(Z

0

G
(H))⊕⊕

α6=0
Lie(G)

α
.

12



COROLLARY 3.3. (cf. [D, Lemma 2.12]) Let M be a connected subgroup
scheme of multiplicative type of G and suppose that p > hG . The ac-
tion of M on Lie(G) by conjugation gives an X (M)-gradation Lie(G) =⊕

α∈X (M)
Lie(G)

α
. If α 6= 0, then for γ ∈ Lie(G)

α
one has γ

p = 0. In particu-

lar, if M = H and γ ∈ Lie(G)
α

we have γ
p = 0.

Proof. In a smooth algebraic group, the maximal connected subgroups
of multiplicative type are (maximal) tori. Indeed, if T is such a maximal
subgroup, its centralizer ZG (T ) is smooth, being the fixed locus of a lin-
early reductive group acting on a smooth variety (see for example [DG,
Theorem 2.8, Chapter II, §5]). Define U := ZG (T )

o
/T . The group scheme

U is smooth, as a quotient of ZG (T )
o

which is smooth, and is unipotent
by maximality of T . By [SGA3, Exposé XVII, Theorem 6.1.1], we have a
splitting ZG (T )

o ' T ×U , and hence T is smooth.
In our case M is hence contained in a maximal torus T of G . By the

assumption 2.3 on G , it suffices to prove that γ is nilpotent. Suppose
first that M is isomorphic to µp . In that case, the non-trivial character

α of M induces an isomorphism from M to µp . Let φ : X (T ) → X (M)
α=

X (µp ) = Z/p be induced by the inclusion of M into T . Then, the M-

weight space Lie(G)
α

, is the sum of T -weight spaces Lie(G)
β

for β a root
such that φ(β) = 1. By 3.1, applied to 1

pφ, with values in 1
pZ/Z ⊂ R/Z,

this sum is contained in the Lie algebra of the unipotent radical of a
Borel subgroup of G . In particular, it consists of nilpotent elements.

For the general case, if M is trivial, the claim is empty. If M is not
trivial, pick A ⊂ M isomorphic to µp . If the restriction of α to A is non-
trivial, one applies 3.3 to the already proven case of A and the restriction
of α to A. If the restriction of α to A is trivial, one considers M/A ⊂
ZG (µp )

o
/µp and repeat the argument. �

3.4. The proof of 2.5 now follows [D, page 594-599] verbatim with a
sole alteration; recall that in [D] the group G was the linear group GL(V )
and the condition on the characteristic was p > dim(V ). For an arbi-
trary connected reductive G , this condition now gets replaced by p > hG ,
which makes 3.3 applicable.

Remark 3.5. If G = GL(V ) one has hG = dim(V ). In the case G =∏
GL(Vi )

with for each i , p > dim(Vi ), the case p > hG of Theorem 2.5 gives us [D,
Theorem 1.7].

Example 3.6. (Brian Conrad) Here is an example in any characteristic
p > 0, of a connected group of multiplicative type M acting on a re-
ductive group G , and of a non-trivial character α of M , such that the
weight space Lie(G)α contains elements which are not nilpotent. We
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take G = SLp (so that hG = p) and M = µp2 , and for α the character

ζ 7→ ζ
p

.
We embed M in the maximal torus of diagonal matrices of SLp by

ζ 7→ di ag (ζ
0
,ζ

−p
,ζ

−2p
, . . . ,ζ

−(p−1)p
)

The restriction to M of each simple root and of the lowest root is the
character α : ζ 7→ ζ

p
, and Lie(G)α is the sum of the corresponding root

spaces. In the standard visualization of SLp this weight space inside
Lie(G) = slp is the span of the super-diagonal entries and the lower-left
entry.

A sum of nonzero elements in those root lines contributing to Lie(G)α

is a p ×p-matrix X ∈ slp which satisfies

X (e1) = tp ep , X (e2) = t1e1, . . . , X (ep ) = tp−1ep−1 (3.6.1)

Iterating p times gives X p = di ag (t , . . . , t ), with t := ∏
t j 6= 0. Hence,

X ∈ Lie(G)α is not nilpotent.

Example 3.7. A variant of the above example leads to an example of
an infinitesimally saturated group scheme G ⊂ SL(V ) with dim(V ) = p
and such that V is an irreducible representation and such that Gr ed is a
unipotent group. This in particular implies that Gr ed is not normal in G.

Let V be the affine algebra of µp , that is

V =O (µp ) := k[u]

(up −1)
(3.7.1)

The vector space V admits the basis {u
i | i ∈Z/p}.

The multiplicative group O (µp )
∗

acts by multiplication on V . For f ∈
O (µp )

∗
, f

p
is constant. Define N f to be the constant value of f

p
. It is in

fact the norm of f . The action of O (µp )
∗

on V induces an action of the

subgroup N ⊂O (µp )
∗

for which N f = 1.
On V we have also the action of µp by translations and this action

normalizes the group O (µp )
∗

and its subgroup N . Consider the group
scheme:

G :=µp nN (3.7.2)

We make a few observations on G:

(1) G is infinitesimally saturated;

(2) G contains the group generated by the first factor µp and {u
i | i ∈

Z/p} 'Z/p. This group is a Heisenberg type central extension of
µp nZ/p by µp .
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(3) the representation V is irreducible as a G-module since it is so
for the Heisenberg type subgroup, being simply its standard rep-
resentation.

(4) The reduced group Gr ed can be identified with the unipotent
group { f ∈O (µp )

∗ | f (1) = 1}.
(5) The subgroup Gr ed is not normal as the point 1 of µp is not in-

variant by translations.

4. SEMI-SIMPLICITY STATEMENTS

Let G be a reductive group. Let C be an algebraic group and ρ : C →G
be a morphism.

DEFINITION 4.1. ([S2, Page 20]) One says that ρ is cr if, whenever ρ factors
through a parabolic P of G, it factors through a Levi subgroup of P.

When G = GL(V ), ρ is cr if and only if the representation V of C is
completely reducible (or equivalently, semi-simple) and hence the ter-
minology.

The property of ρ being cr depends only on the subgroup scheme of
G which is the (schematic) image of C . It in fact only depends on the

image of C in the adjoint group G
ad

. Indeed, the parabolic subgroups

of G are the inverse images of the parabolic subgroups of G
ad

, and sim-
ilarly for the Levi subgroups. A subgroup scheme G of G will be called
cr if its inclusion in G is so.

For an irreducible root system R, let α0 be the highest root and
∑

niαi

its expression as a linear combination of the simple roots. The charac-
teristic p of k is called good for R if p is larger than each ni . For a general
root system R, p is good if it is so for each irreducible component of R.

PROPOSITION 4.2. Suppose C is an extension

1 → B →C → A → 1 (4.2.1)

with A
o

of multiplicative type and A/A
o

a finite group of order prime
to p, and suppose that p is good. Let ρ : C → G be a morphism. If the
restriction of ρ to B is cr, then ρ is cr.

We don’t know whether the proposition holds without the assumption
that p is good.

Proof. Let P be a parabolic subgroup, U its unipotent radical, and u the
Lie algebra of U . The parabolic P is said to be restricted if the nilpotence
class of U is less than p. If P is a maximal parabolic corresponding to
a simple root α, the nilpotence class of U is the coefficient of α in the
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highest root. It follows that p is good if and only if all the maximal para-
bolic subgroups are restricted. By [Sei, Proposition 5.3] (credited by the
author to Serre), if P is restricted, one obtains by specialization from
characteristic 0, a P-equivariant isomorphism:

exp : (u,◦)
∼→U (4.2.2)

from u endowed with the Campbell-Hausdorff group law, to U .
We will first show that whenever ρ factors through a restricted para-

bolic subgroup P as above, if the restriction of ρ to B factors through
some Levi subgroup of P , the ρ itself factors through some Levi sub-
group of P .

The group U (k) acts on the right on the set L (k) of Levi subgroups
of P by

u in U (k) acts by L 7→ u
−1

Lu

This action turns L (k) into a U (k)-torsor. This expresses the fact that
two Levi subgroups are conjugate by a unique element of U (k). The
group P (k) acts on L (k) and on U (k) by conjugation. This turns L (k)
into an equivariant U (k)-torsor.

We will need a scheme-theoretic version of the above. Fix a Levi sub-
group Lo . Let L be the trivial U -torsor (i.e. U with the right action of U

by right translations). We have the family of Levi subgroups Lu := u
−1

Lo u
parametrized by L =U . We let P act on U by conjugation, and on L

as follows: p = v` in P = U Lo acts on L = U by u 7→ v
−1

.pup
−1

. This
turns L into an equivariant U -torsor. When we pass to k-points, and
attach to u in L the Levi subgroup uLo u

−1
, we recover the previously

described situation.
The morphism ρ : C → P turns L into an equivariant U -torsor. A

point x of L corresponding to a Levi subgroup Lx is fixed by C (scheme-
theoretically) if and only if ρ factors through Lx . This expresses the fact
that a Levi subgroup is its own normalizer in P .

We want to prove that if B has a fixed point in L , so does C . Let U
B

be the subgroup of U fixed by B , for the conjugation action. If B has a

fixed point in L , the fixed locus L
B

is a U
B

-torsor. As B is a normal
subgroup of C , C acts on L

B
and U

B
, and the action factors through A.

The isomorphism exp : (u,◦) → U is compatible with the action of B
by conjugation. Hence it induces an isomorphism from (u

B
,◦) →U

B
. Let

Z
i
(u

B
) be the central series of u

B
, and define Z

i
(U

B
) := exp(Z

i
(u

B
)). The

isomorphism exp induces an isomorphism between the vector group
16



Gr
i

Z
(u

B
) and Z

i
(U

B
)/Z

i+1
(U

B
), compatible with the action of A. On

Gr
i

Z
(u

B
) , this action is linear.

The assumption on A amounts to saying that A is linearly reductive,
that is, all its representations are semi-simple. Equivalently, if k is the
trivial representation, any extension

0 →V
a→ E

b→ k → 0 (4.2.3)

splits. Passing from E to b
−1

(1), such extensions correspond to A-
equivariant V -torsors, and the extension splits if and only if A has a
scheme-theoretic fixed point on the corresponding torsor.

Define U
B

i
to be U

B
/Z

i
(U

B
), and L

B

i
to be the U

B

i
-torsor obtained

from L by pushing by U
B →U

B

i
. We prove by induction on i that A has

a fixed point on L
B

i
.

As U
B

1
is trivial, the case i = 1 is trivial. If x is a fixed point of A

in L
B

i
, the inverse image of x in L

B

i+1
is an equivariant A-torsor on

Gr
i

Z
(u

B
) ∼ Z

i
(U

B
)/Z

i+1
(U

B
). By linear reductivity, A has a fixed point

on the inverse image. As the central descending series of u, and hence

of u
B

terminates, this proves 4.2 for restricted parabolic subgroups.
We now prove 4.2 by induction on (the dimension) of G . Suppose that

ρ factors through a proper parabolic subgroup P . As p is good, there ex-
ists a restricted proper parabolic Q containing P , and P is the inverse
image by the projection Q →Q/Ru (Q) of a parabolic P ′ of Q/Ru (Q). Let
L be a Levi subgroup of Q through which ρ factors and let P ′

L
be the

parabolic subgroup of L obtained as the inverse image of P ′ by the iso-
morphism L

∼→Q/Ru (Q). Levi subgroups of P ′
L

are Levi subgroups of P ,
and it remains to apply the induction hypothesis to L, for which p is
good too.

�

Remark 4.3. For several results related to 4.2 but in the setting of re-
duced subgroups, see [BMR1, Theorem 3.10] and [BMR2, Theorem 1.1
and Corollary 3.7].

Fix in the reductive group G , a maximal torus T , and a system of sim-
ple roots corresponding to a Borel subgroup B containing T . Let U be
the unipotent radical of B .

DEFINITION 4.4. (cf. [Dy], [S1],[IMP], ) The Dynkin height htG (V ) of a
representation V of G is the largest among {

∑
α>0〈λ,α

∨〉}, for λ a weight
for the action of T on V .
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This notion and this terminology go back to Dynkin [Dy, Page 331-
332] where it is called “height" as in [IMP], while in Serre ([S1] and [S2]),
it is simply “n(V )". If V is an irreducible representation, with dominant
weight λ

+
and smallest weight λ

−
, it is the sum of the coefficients of

λ
+ −λ−

, expressed as linear combination of the simple roots.
It follows that the product in End(V ) of the action of htG (V )+1 ele-

ments of Lie(U ) vanishes and for ”nffl nilpotent in Lie(G), one has ”nfflht (V )+1 =
0 in End(V ).

4.5. The representation ρ : G → GL(V ) is said to be of low height if
p > htG (V ). By [S2, Theorem 6, page 25], representations of low height
are semi-simple. One can show that if G admits a representation V of
low height which is almost faithful, meaning that its kernel is of multi-
plicative type, then G satisfies the assumption 2.3. That p ≥ hG results
from the more precise statement that htG (V ) ≥ hG −1 ([S3, (5.2.4), Page
213]). For the property that G̃/G ′ is étale, one uses the fact that the non-
trivial irreducible representation of PGL(p) of the smallest height is the
adjoint representation which is of height 2p −2.

We now assume that V is of low height, and the assumption 2.3
on G . It follows that any nilpotent ”nffl in Lie(G) satisfies ”nfflp = 0, and
further, the exponential map (2.2.2) is defined. The image dρ(”nffl)
of ”nffl in Lie(GL(V )) = End(V ) also has a vanishing p

th
-power, hence

exp(dρ(”nffl).t ) is defined. By [S2, Theorem 5, page 24], one has the fol-
lowing compatibility statement.

4.6. Compatibility If ”nffl in Lie(G) is nilpotent

ρ(exp(t ”nffl)) = exp(tdρ( ”nffl)). (4.6.1)

As a consequence, if u
p = 1 in G , one has

ρ(u
t
) = ρ(u)

t
(4.6.2)

The following theorem is a schematic analogue of [BT], for p large
enough.

THEOREM 4.7. Suppose that the reductive group G admits a low height
almost faithful representation ρ : G → GL(V ), and that p > hG . Then, for
any non-trivial unipotent subgroup U of G, there exists a proper para-
bolic subgroup P of G containing the normalizer NG (U ) of U , and whose
unipotent radical contains U .

The condition p > hG implies that G satisfies the assumption 2.3. If G
is simple simply connected, it implies the existence of an almost faith-
ful low height representation except for the G of type F4 , E6 , E7 or E8 ,
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in which case the lowest height of a non-trivial representation and the
Coxeter number are respectively 16 > 12, 16 > 12, 27 > 18 and 58 > 30.
For these groups, we do not know whether the conclusion of the theo-
rem is valid assuming only p > hG .

Proof. Let V
U

be the invariants of U acting on V . It is not zero, because
U is unipotent. It is not V , because the representation V is almost faith-
ful, hence faithful on U . It does not have a U -stable supplement V ′ in
V , because U would have invariants in V ′.

Let H be the subgroup scheme of G which stabilizes V
U

. It contains
the normalizer NG (U ) of U . It is a doubly saturated subgroup scheme

of G . Indeed, if h in H(k) is of order p, by (4.6.2), ρ(h
t
) = ρ(h)

t =∑
i<p

(t
i

)
(ρ(h) − 1)

i
, which stabilizes V

U
, and similarly if ”nffl in Lie(H) is

nilpotent, the exp(t ”nffl) are in H .
As p > hG , theorem 2.5 ensures that H

0

r ed
is a normal subgroup scheme

of H and that the quotient H/H
0

r ed
is an extension of a finite group of

order prime to p by a group of multiplicative type. It follows that U ⊂
H

0

r ed
.

LEMMA 4.8. H
0

r ed
is not reductive.

Proof. If it were, V would be a representation of low height of H
0

r ed
([S2,

Corollary 1, page 25]), hence a semi-simple representation of H
0

r ed
, and

V
U

would have in V a H
0

r ed
-stable supplement. As V

U
does not admit a

supplement stable under U ⊂ H
0

r ed
, this is absurd. �

Proof of 4.7 continued: If S is a doubly saturated subgroup scheme of

G , we will call Ru (S
0

r ed
) the unipotent radical of S and denote it simply

by Ru (S). By 2.5, it is a normal subgroup of S and S/Ru (S
0

r ed
) does not

contain any normal unipotent subgroup. This justifies the terminology.
Define U1 := Ru (H). By 4.8, it is a non-trivial unipotent subgroup of

G , and we can iterate the construction. We define for i ≥ 1

Hi := stabilizer of V
Ui ⊂V

Ui+1 := Ru (Hi )

One has U ⊂ H
0

r ed
and

U ⊂ NG (U ) ⊂ H ⊂ NG (U1 ) ⊂ H1 ⊂ NG (U2 ) ⊂ H2 . . . (4.8.1)

The H
o

i ,r ed
form an increasing sequence of smooth connected subgroups

of G . It stablizes, hence so do the sequences of the Ui and of the Hi . If
Hi = Hi+1 , one has Hi = NG (Ui+1 ) = Hi+1 and
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Ui+1 = Ru (Hi ) = Ru (Hi+1 ) = Ru (N (Ui+1 )
o

r ed
)

By [BT, Proposition 2.3, page 99] (or for example [H, Section 30.3, Propo-
sition on page 186]), this implies that N (Ui+1 )r ed = (Hi+1 )r ed is a proper
parabolic subgroup of G . Call it Q. A parabolic subgroup of G is its own
normalizer scheme (cf. [SGA3, XII, 7.9], [CGP, page 469]). As (Hi+1 )r ed =
Q is normal in Hi+1 , it follows that Hi+1 =Q and that NG (U ) ⊂Q.

A Levi subgroup L of Q is a reductive subgroup of G , hence satisfies
the assumptions of 4.7. It is isomorphic to Q/Ru (Q). If U is not con-
tained in Ru (Q), we can repeat the argument for the image U of U in
Q/Ru (Q), which is isomorphic to L. One obtains a proper parabolic sub-
group of Q/Ru (Q) which contains the normalizer of U . Its inverse image
in Q is a parabolic subgroup, properly contained in Q and containing
the normalizer of U . Iterating, one eventually finds a parabolic P con-
taining NG (U ) and such that U ⊂ Ru (P ). �

Remark 4.9. Let G̃ be the simply connected central extension of the de-
rived group G ′, and let G̃i be its simple factors: G̃ =∏

G̃i . A representa-
tion of low height V of G is almost faithful if and only if its restriction
to each G̃i is not trivial. It suffices to check this for each G̃i separately.
Thus we may assume G is simply connected. The existence of a non-
trivial V of low height implies that p > 2 for G of type Bn , Cn (n ≥ 2) or
F4 and p > 3 for G of type G2 . Let G be the image of G in GL(V ). If V
is non-trivial, u : G →G is an isogeny. We want to show that it is a cen-
tral isogeny. If it is not, the structure of isogenies ([SGA3, XXII, 4.2.13])
show that ker(u) contains the kernel of the Frobenius. The weights of V

are the p
th

-powers and htG (V ) is a multiple of p, contradicting the low
height assumption.

4.10. If G is a reductive group for which assumption 2.3 holds, and G is
a subgroup scheme of G , the double saturation G

∗
of G is the smallest

doubly saturated subgroup scheme of G containing G. It is the inter-
section of the doubly saturated subgroup schemes containing G, and is
obtained from G by iterating the construction of taking the group gen-
erated by G, the additive groups exp(t ”nffl) for ”nffl nilpotent in Lie(G) and
u

t
for u of order p in G(k).

COROLLARY 4.11. Let V be a low height almost faithful representation of
a reductive group G. Assume that p > hG . Let G be a subgroup scheme of
G, and let G

∗
be its double saturation. Then the following conditions are

equivalent.

(i) V is a semi-simple representation of G
(ii) V is a semi-simple representation of G

∗

20



(iii) G is cr in G
(iv) G

∗
is cr in G

(v) the unipotent radical of (G
∗

)
0

r ed
is trivial

Proof. (i) ⇐⇒ (ii): If W is a subspace of V , the stabilizer in G of W
is doubly saturated, as we saw in the beginning of the proof of 4.7. If
G stabilizes W , it follows that G

∗
also stabilizes W : the lattice of sub-

representations of V is the same for G and G
∗

, hence the claim.
(iii) ⇐⇒ (iv): Similarly, the parabolic subgroups of G and their Levi

subgroups are doubly saturated, hence contain G if and only if they
contain G

∗
.

not (v) =⇒ not (ii): Let U be the unipotent radical of (G
∗

)
0

r ed
. If

it is non-trivial, V
U 6= V , because V is faithful on U and does not

have a U -stable supplement. As U is normal in G
∗

(2.5), V
U

is a sub-
representation for the action of G

∗
on V . This contradicts the semi-

simplicity of V .
(v) =⇒ (ii): The representation V of the reductive group (G

∗
)

0

r ed

is of low height, hence semi-simple. By 2.5, (G
∗

)
0

r ed
is a normal sub-

group of G
∗

and the quotient A is linearly reductive. If W is a sub-G
∗

-
representation of V , A acts on the affine space of (G

∗
)

0

r ed
-invariant re-

tractions V → W . It has a fixed point, whose kernel is a supplement to
W .

not (v) =⇒ not (iv): Let U be the unipotent radical of (G
∗

)
0

r ed
. If it

is not trivial, there exists a parabolic P containing its normalizer, hence
G

∗
, and the unipotent radical of P contains U (4.7). Thus, no Levi sub-

group of P can contain G
∗

.
(v) =⇒ (iv): By [S2, Theorem 7, page 26], (G

∗
)

0

r ed
is cr in G , and one

applies 4.2.
�

COROLLARY 4.12. Let ρ : G → GL(V ) be an almost faithful low height rep-
resentation, and let v in V be an element such that the G-orbit of v in V
is closed. Then there exists a connected multiplicative central subgroup
scheme M ⊂G

0

v
and a surjective homomorphism M ×G

0

v,r ed
→G

0

v
.

Proof. The orbit being closed in V and hence affine, the reduced sta-
bilizer Gv,r ed is reductive ([Bo]). Since p ≥ hG and since stabilizers are
doubly saturated and 2.5(2) holds for G = Gv , we get the required re-
sult. �

We now observe that the results of [D, Section 6] can be obtained as a
consequence of 4.11. Note that by the remarks in [D, Page 607] it suffices
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to prove the semisimplicity results in the case when k is algebraically
closed.

THEOREM 4.13. G be an algebraic group. Let (Vi )i∈I be a finite family of
semi-simple G-modules and let mi be integers ≥ 0. If∑

mi (dim Vi −mi ) < p (4.13.1)

the G-module
⊗

j

∧m j
V j is semi-simple.

Proof. Let G =∏
j

GL(V j ) and V =⊗
j

∧m j
V j . Then, (4.13.1) is simply the

inequality p > htG (V ). Replacing G by its image in G we may and shall
assume that G is a subgroup scheme of G . Since Vi are semi-simple G-
modules, it follows that G is G-cr, for G = ∏

j
GL(V j ). By [D, §6.2], we

may also assume that p > dim(V j ) = hGL(V j )∀ j .

Hence by working with the image of G (and G) in GL(V ) and applying
4.11, we conclude that V is semi-simple as a G-module. �

Remark 4.14. If (Vi , qi ) is a non-degenerate quadratic space with
dim Vi = 2di on which G acts by similitudes, then by passing to a sub-
group of index at most 2 and mapping to the group of similitudes rather
than GL(Vi ), one can replace the term mi (dim Vi −mi ) by mi (dim Vi −
mi −1), when mi ≤ 2di .

Complete reducibility in the classical case. By 4.1, a subgroup scheme
G ⊂ G is called cr if for every parabolic subgroup P ⊂ G containing G,
there exists an opposite parabolic subgroup P ′ such that G⊂ P∩P ′. Sup-
pose that char (k) 6= 2 and let G be SO(V ) (or Sp(V ) in any characteris-
tic), relative to a non-degenerate symmetric or alternating bilinear form
B on V . In this situation, the notion of cr can be interpreted as follows:
G is cr in G if and only if for every G-submodule W ⊂V which is totally
isotropic, there exists a totally isotropic G-submodule W ′ of the same
dimension, such that the restriction of B to W +W ′ is non-degenerate
(cf. [S3, Example 3.3.3, page 206]).

LEMMA 4.15. Let the subgroup scheme G of G be cr. Then the G-module
V is semi-simple and conversely.

Proof. Let W ⊂ V be a G-submodule. Then we need to produce a G-
complement.

Consider W1 := W ∩W
⊥

. If W1 = (0), then W ⊕W
⊥ = V and we are

done. So let W1 6= (0). Then W1 is a G-submodule which is totally
isotropic and hence by the cr property, we have a totally isotropic G-
submodule W ′

1
of the same dimension as W1 , such that the form B is
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non-degenerate on W1+W ′
1
. In particular, W1∩W ′

1
= (0). Since W1 ⊂W

⊥
,

we see that W ⊂W
⊥

1
.

Let w ∈ W ∩W ′
1
⊂ W

⊥
1
∩W ′

1
and suppose w 6= 0. Since w ∈ W ′

1
, there

exists w ′ ∈W1 such that B(w, w ′) 6= 0. On the other hand, since w ∈W
⊥

1
,

B(w, v) = 0 for all v ∈W1 and in particular B(w, w ′) = 0 which contradicts
the assumption that w 6= 0. Hence it follows that W ∩W ′

1
= (0). Thus,

W ( X = W ⊕W ′
1
⊂ V is a G-submodule. We proceed similarly and get

X1 = X ∩ X
⊥

such that X ⊕ X ′
1
⊂ V . If X1 = (0), then V = X ⊕ X

⊥
, so get a

G-decomposition of V as W ⊕W ′
1
⊕ . . ., that is a G-complement of W in

V .
Conversely, let V be semi-simple as a G-module. Let W ⊂ V be a

totally isotropic G-submodule of dim(W ) = d . Note that d < dim(V )/2.
We therefore have a G-submodule Z ⊂ V such V = W ⊕ Z . The non-
degenerate form B gives an G-equivariant isomorphism φ : V → V

∗ =
W

∗⊕Z
∗

and since W is totally isotropic φ(W )∩W
∗ = (0). Hence φ(W ) ⊂

Z .
Again, since W is totally isotropic, the restriction of B to Z is non-

degenerate and hence we get an isomorphism ψ : Z
∗ → Z . Define W ′ :=

ψ◦φ(W ).
Then it is easily seen that W ′ is of dimension d and also totally

isotropic G-invariant submodule of V . Finally, B is non-degenerate on
W ⊕W ′. Hence G is cr in G .

�

5. ÉTALE SLICES IN POSITIVE CHARACTERISTICS

We begin this section with the following (linear) analogue of the Luna
étale slice theorem in positive characteristics.

THEOREM 5.1. Let V be a G-module with low height i.e. such that
p > htG (V ). Let v in V be an element such that the orbit G .v is a closed
orbit in V . Then there exists a Gv -invariant linear subspace S of V giving
rise to a commutative diagram:

G ×Gv S
φ

//

f
��

V

q

��
(G ×Gv S) ËG

` // V ËG

(5.1.1)

and G-equivariant open subsets U ⊂ (G×Gv S) containing the closed orbit
G .v and an open subset U ′ of V containing v, for which (5.1.1) induces a
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cartesian diagram

U
φ

//

f
��

U ′

q
��

U ËG
`|U // U ′ ËG

(5.1.2)

such that the morphism `|U is étale.

Remark 5.2. The above theorem was stated in the note [MP] whose proof
contained serious gaps (as was pointed to the authors by Serre in a pri-
vate correspondence).

We note that G/Gv is constructed in ([DG, III, Proposition 3.5.2]). It
represents the quotient in the category of fppf sheaves. Furthermore if
πv : G →V , g 7→ g .v , the image im(πv ), as a locally closed sub-scheme of
V with its reduced scheme structure, can be identified with the scheme
G/Gv . We call this locally closed sub-scheme, the orbit G .v and have the
identification G/Gv 'G .v (see also [DG, Proposition and Definition 1.6,
III, §3, page 325]).

PROPOSITION 5.3. Let V be an arbitrary G-module. Let v ∈ V and sup-
pose that there exists a Gv -submodule S of the tangent space Tv (V ), such
that Tv (V ) splits as Tv (G .v)⊕S. Let G act on G ×S by h.(g , s) := (h.g , s).
Then the G-morphism Φ : G ×S → V given by (g , s) 7→ g .v + g .s descends
to a G-morphism

φ : G ×Gv S →V. (5.3.1)

which is étale at (e,0), e being the identity of G.

Proof. To check the morphic properties, we need to check for all A-
valued points of Gv where A is a k-algebra and we will suppress the A.

We will check that it is constant on the Gv -orbits. Let α in Gv act on

G ×S by α.(g , s) = (g .α,α
−1

.s). Observe that Φ
(
α.(g , s)

) =Φ(g .α,α
−1

.s) =
g .α.v + g .α.α

−1
.s = g .v + g .s (since α fixes v). Therefore it is constant

on the Gv -orbits. Since the action of Gv on G×S is scheme-theoretically

free, Φ descends to a morphism φ : G×Gv S →V . Clearly the actions of G
and Gv on G ×S commute and hence the descended morphism is also a
G-morphism.

Observe that the quotient morphism G → G/Gv is a torsor for the
group scheme Gv , locally trivial under the fppf topology. Since the ac-

tion of Gv on S is linear, we see that the associated fibre space ψ : G ×Gv

S → G/Gv is a locally free sheaf of rank = dim(S). In particular, G ×Gv S
is a smooth k-scheme of finite type. Observe further that under the
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morphism φ, the zero section of the vector bundle ψ : G ×Gv S → G/Gv

canonically maps onto the orbit G .v ⊂ V , while the fibre ψ
−1

(e.Gv ) of
the identity coset e.Gv ∈ G/Gv maps isomorphically to the affine sub-
space S+v ⊂V . Since Tv (V ) = Tv (G .v)⊕S by assumption, it follows that
the differential dφz , at z = (e,0), is an isomorphism.

We now apply [D, Lemme 2.9], to conclude that the morphism

φ : G ×Gv S → V is étale at z = (e,0). �

PROPOSITION 5.4. Let V be a G-module such that p > htG (V ), and let v
in V be an element such that the G-orbit of v in V is closed. Then there
exists a Gv -submodule S ⊂ V such that V = Tv (G .v)⊕S as a Gv -module.
In particular, the consequences of 5.3 hold good.

Proof. One has the exact sequence:

1 →G
0

v
→Gv →π0 (Gv ) → 1 (5.4.1)

the quotient π0 (Gv ) being the group of connected components. Fur-

ther, we note that | Gv /G
0

v
| = | Gv,r ed /G

0

v,r ed
|. Note also that since

Gv,r ed is a saturated subgroup of G , by [S2, Property 3, Page 23] the index

| Gv,r ed /G
0

v,r ed
| is prime to p. Thus, π0 (Gv ) is linearly reductive.

Since G .v is a closed orbit, by 4.12 we see that G
0

v,r ed
is reductive and

by 2.5(1), we have the exact sequence:

1 →G
0

v,r ed
→G

0

v
→ τ→ 1 (5.4.2)

where τ is a multiplicative group scheme.
Since G

0

v,r ed
is a reductive saturated subgroup of G , by [S2, Corollary 1,

page 25] we get the inequality p > htG (V ) ≥ ht
G

0
v,r ed

(V ). Being of low

height, V is semi-simple as a G
0

v,r ed
-module, .

Further, since τ is multiplicative (and hence linearly reductive), by [D,
Lemma 4.2] and 5.4.2, we deduce that V is semi-simple as a G

0

v
-module.

Using 5.4.1, we conclude that V is semi-simple as a Gv -module as well.
In particular, we have a Gv -supplement S for the Gv -invariant sub-

space Tv (G .v) ⊂ Tv (V ) =V , i.e. we have a Gv -decomposition S ⊕Tv (G .v)
for V . �

We recall the “Fundamental lemma of Luna" which holds in positive
characteristics as well and which is essential to complete the proof of
Theorem 5.1.

LEMMA 5.5. ([GIT, Page 152]) Let ¯s : X → Y be a G-morphism of affine
G-schemes. Let F ⊂ X be a closed orbit such that:
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(1) ¯s is étale at some point of F
(2) ¯s(F ) is closed in Y
(3) ¯s is injective on F
(4) X is normal along F.

then there are affine G-invariant open subsets U ⊂ X and U ′ ⊂ Y with
F ⊂ U such that ¯s Ë G : U Ë G → U ′ Ë G is étale and (¯s, pU ) : U →
U ′×

U ′ËG
U Ë G is an isomorphism (where pU : U →U Ë G is the quotient

morphism).

Proof. (of 5.1) As a first step, we need to show that the categorical quo-

tient G ×Gv S ËG exists as a scheme. As we have seen in 5.3, action of
G on G ×S (via g .(a, s) = (g .a, s) and the (twisted) action of Gv on G ×S
commute and hence

k[G ×Gv S]
G = (k[G ×S]

Gv )
G = (k[G ×S]

G
)

Gv = k[S]
Gv . (5.5.1)

Thus it is enough to show that k[S]
Gv is finitely generated and we would

have

G ×Gv S ËG ' S ËGv . (5.5.2)

As we have observed in the proof of 5.4, G
0

v
⊂Gv is a normal subgroup

of finite index. Thus, the finite generation of k[S]
Gv is reduced to check-

ing finite generation of k[S]
G

0
v . We may therefore replace Gv by G

0

v
in the

proof. Further, since G .v is a closed orbit, Gv,r ed is reductive. Therefore,
by 4.12, we have a surjection M ×Gv,r ed → Gv . Since M in Gv is central

k[S]
Gv =

(
k[S]

Gv,r ed

)M

.

Again, since Gv,r ed is reductive, the ring of invariants k[S]
Gv,r ed is a

finitely generated k-algebra. Since M is a group of multiplicative type
over an algebraically closed field, it is a product of Gm ’s and a finite
group scheme. Therefore, by [GIT, Theorem 1.1] and [AV, Page 113], the

ring of invariants

(
k[S]

Gv,r ed

)M

is also finitely generated. This proves the

finite generation of k[S]
Gv .

The commutativity of the diagram (5.1.1) now follows by the property
of categorical quotients by the group G .

Now we check the conditions of Lemma 5.5. We consider the given

closed G-orbit F =G ×Gv {v} ⊂G ×Gv S. Then we need to check that φ(F )
is a closed orbit in V . In fact, φ(F ) is precisely the closed orbit G .φ(v) =
G .v ⊂ V . Thus we have verified conditions (2) and (3) of Lemma 5.5.
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Condition (1) is precisely the content of 5.4 and (4) holds since G ×Gv S
has been seen to be smooth.

The isomorphism (¯s, pU ) shows that the diagram (5.1.2) is cartesian.
This completes the proof of 5.1. �

COROLLARY 5.6. Let X be an affine G-scheme embeddable as a closed G-
subscheme in low height G-module. Let x ∈ X be such that the orbit G .x ⊂
X is closed. Then there exists a locally closed Gx -invariant subscheme (a
“slice") X1 , of X with x ∈ X1 ⊂ X such that the conclusions of 5.1 hold for

the G-morphism G ×Gx X1 → X .

Proof. This follows from 5.1 (which corresponds to [BR, Proposition
7.4]) exactly as in [BR, Proposition 7.6]. �

The following consequence of the slice theorem has many applica-
tions so we state it here without proof.

COROLLARY 5.7. (see [BR, Proposition 8.5, p.312]) Let F be an affine G–
subvariety of P(V ), with V as a G–module with low height, and suppose
that F contains a unique closed orbit F cl . Then there exists a G-retract
F −→ F cl .

Let V be a finite dimensional G–module and let

htG (∧(V )) := maxi {htG (∧i
(V ))} (5.7.1)

We then have the following application to the theory of semistable prin-
cipal bundles in positive characteristics.

THEOREM 5.8. Let E be a stable G-bundle with G semi-simple and ρV :
G → SL(V ) be a representation such that p > htG (∧(V )). Then the associ-
ated bundle E(V ) is polystable of degree 0.

Proof. The proof follows [BP, Theorem 9.11] verbatim where the notion
of “separable index" is replaced by the Dynkin height, the key ingredient
being Corollary 5.7. �
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APPENDIX A. COXETER NUMBER AND ROOT SYSTEMS, ZHIWEI YUN

PROPOSITION A.1. Let R be an irreducible root system associated to a sim-
ple group G with Coxeter number h and let X be the lattice spanned by
R. Let φ : X →R/Z be a homomorphism. Then there exists a basis B for R
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such that if α ∈ R satisfies φ(α) ∈ (
0,1/h

)
mod Z, then α is positive with

respect to B.

Proof. Pick any basis B0 = {α1 , . . . ,αr } of R. We lift φ to a linear map
y : X →R which is viewed as a point in V = Hom(X ,R).

Let W be the Weyl group of R. Then there is an action of the extended
Weyl group Hom(X ,Z)oW on V and the validity of the statement for the
linear map y is invariant for this action. Therefore we may assume that
y lies in the fundamental alcove attached to B0 , i.e.

α j (y) ≥ 0, ∀1 ≤ j ≤ r (A.1.1)

θ(y) ≤ 1 (A.1.2)

where θ is the highest root with respect to B0 . Then for all α ∈ R, we
have

|α(y) |≤ 1. (A.1.3)

We claim that there exists a basis B of R such that for any β ∈ R with

β(y) ∈ (−1,−1+1/h
)∪ (

0,1/h
)
, (A.1.4)

β positive with respect to B .
Write θ =∑

i
niαi and let α0 = 1−θ and n0 = 1 as usual. Then we have

the equality
∑r

i=0
niαi = 1, viewed as affine functions on V and we have

h=
r∑

i=0

ni . (A.1.5)

Therefore, for some 0 ≤ i ≤ r , we have αi (y) ≥ 1/h.
If i = 0, then θ(y) ≤ 1−1/h and in this case, we can take B = B0 . In fact,

for any negative root −β with respect to B0 , we have 0 ≥−β(y) ≥ 1−1/h,
so that −β cannot satisfy the condition (A.1.4).

If i > 0, let vi be the vertex of the fundamental alcove opposite to the
root hyperplane αi . So α j (vi ) = 0 if j 6= i and αi (vi ) = 1/ni . We take a
basis B of R such that the vector y − vi is dominant, i.e. for any β ∈ R
positive for B , we have the relation: β(y) ≥β(vi ).

Such a basis B of R satisfies the requirements of the claim. In fact, let
β ∈ R be negative with respect to B .

Write β=∑r

j=1
m jα j for some −n j ≤ m j ≤ n j . Then, β(vi ) = mi /ni . On

the other hand, β(y) =∑r

j=1
m jα j (y). Since β is negative for B , we have

β(y) ≤β(vi ) = mi /ni . (A.1.6)

and we have two cases:
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• If β > 0, with respect to B0 , then β(y) ≥ 0 and 0 ≤ m j ≤ n j for
all j . If mi = 0, then (A.1.6) implies that β(y) = 0 and so β fails
to satisfy (A.1.4). If mi ≥ 1, then β(y) ≥ αi (y) ≥ 1/h, again not
satisfying (A.1.4).

• If β< 0, with respect to B0 , then −1 ≤ β(y) ≤ 0 and −n j ≤ m j ≤ 0
for all j . If mi = −ni , then β(vi ) = −1 which forces β(y) = −1
by (A.1.6). If mi ≥−ni +1, then comparing | β(y) | with | θ(y) |, it
misses at least one copy of αi (y), therefore |β(y) |≤ θ(y)−αi (y) ≤
1−1/h and yet again, β(y) does not satisfy (A.1.4).

This proves the claim and the proposition. �
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