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Robust Direct Adaptive Regulation of Unknown Disturbances in the
Vicinity of Low Damped Complex Zeros - Application to Active

Vibration Control
Abraham Castellanos Silva∗, Ioan Doré Landau∗,

Petros Ioannou†.

Abstract—Adaptive feedback control approaches have been
widely used to address the issue of rejecting multiple narrow band
disturbances with unknown and time varying characteristics
(frequency, phase and amplitude), in Active Vibration Control
(AVC) and Active Noise Control (ANC). These approaches are
based directly or indirectly on the use of the Internal ModelPrin-
ciple and the Youla-Kučera parametrization combined with an
adaptive law. All the algorithms associated with these approaches
make the assumption that the plant zeros are different from the
poles of the disturbance model in order to achieve disturbance
compensation. However in practice the problem is more intricate
since it is not clear what happens if the plant has very low damped
complex zeros (often encountered in mechanical structures) and
the frequency of the disturbance is close to the anti-resonance
frequency (the resonance frequency of the plant zeros).

In this paper we evaluate comparatively in simulation and in
real time on a benchmark test bed, two different approaches
to deal with the low damped complex zeros of the plant. An
evaluation of the combination of the two approaches is also
presented.

Index Terms—Adaptive Regulation, Active Vibration Control,
Inertial Actuators, Multiple Narrow Band Disturbances, Yo ula-
Kučera Parametrization, Internal Model Principle

I. I NTRODUCTION

The basic problem in active vibration control (AVC) and
active noise control (ANC) is thestrongattenuation of multiple
narrow band disturbances1 with unknown and varying frequen-
cies. The problem has been approached both in continuous-
time ([23], [24] among other references) and in discrete-time
([26], [21] among other references). This paper consider the
discrete-time case.

The disturbance model is assumed to be either a function
equal to the sum of sinusoidal with unknown frequencies,
amplitudes and phases or equivalently, a transfer functionwith
unknown complex poles on the unit circle with white noise
or a Dirac pulse as an input. When information about such
model is available, it is possible to design an appropriate
controller. If the model of a disturbance is considered, one
has to address two issues:1) its structure (complexity, order
of the parametric model) and2) the values of the parameters
of the model. In general, one can assess from data the structure
for suchmodel of disturbance(using spectral analysis or order
estimation techniques). However, the parameters of the model
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FRANCE (e-mail: [abraham.castellanos-silva, ioan-dore.landau]@gipsa-
lab.grenoble-inp.fr).

†Department of Electrical Engineering, University of Southern California,
ioannou@usc.edu

1Called tonal disturbances in active noise control.

are unknown and may be time varying. This will require the
use of an adaptive feedback approach in order to adapt to
changes in parameters. An adaptive feedback approach, called
adaptive regulation (known plant model and unknown/time
varying disturbance model) is now widely accepted as the most
effective approach for solving this class of problems.
It is also assumed that the plant model is stable and this
property could be the result of a robust control design that is
already incorporated in the system under consideration. The
problem of disturbance rejection and adaptive regulation as
defined above has been previously addressed in a number of
papers ([3], [1], [7], [10], [11], [21], [16], [15], [6], [8], [2],
[5]) among others. More recent references on the subject are
[25], [17].

TheInternal Model Principleimplemented through a Youla-
Kučera parametrization – also known asQ-parametrization
– arises as a very attractive and efficient solution, since it
allows the incorporation of the model of the disturbance in
the controller without modifying thedesiredclosed loop poles,
defined by the designer ([26], [21], [4]) when a finite impulse
response (FIR) filter structure is considered for theQ-filter.
This parametrization allows one to have a two-stage controller:
1) a central controller for the stabilization and broadband
disturbance rejection and2) the adaptive part which deals
with the rejection of the narrow band disturbance effects. The
number of parameters to adapt is defined by the complexity of
the assumed disturbance model. An international benchmark
on adaptive rejection of narrow band disturbances has been
organized and the results are published in a special issue of
the European Journal of Control [17].

As indicated earlier the disturbance is considered to be
periodic, i.e. the poles of the disturbance models are on theunit
circle. All the stability proofs for the adaptation algorithms
make the assumption that the plant zeros are different from the
poles of the disturbance model in order to achieve disturbance
compensation. However in practice the situation is more
intricate since it is not clear what happens if the plant has very
low damped complex zeros (often encountered in mechanical
structures) and the frequency of the disturbance is close to
the anti-resonance frequency (the resonance frequency of the
plant zeros). Obviously even in the linear case with known
parameters the design of the controller in this situation isdif-
ficult for robustness reasons. Finding a good control solution
for this situation in an adaptive context is very challenging. In
the international benchmark dedicated to adaptive regulation in
the presence of unknown time varying disturbances [17] such
a situation has been explicitly considered. Several solutions



have been proposed and the most successful has been based
on the appropriate choice of the desired closed loop poles to
be achieved by the Youla-Kučera central controller and by
using an adjustableQ-FIR filter with the minimum number
of parameters [4]. Recently in [13] it was suggested that
over parametrization of theQ (FIR) filter can enhance the
robustness of the linear and adaptive scheme in the vicinityof
plant complex zeros2.

The aim of the article is to present simulation and real-
time comparisons of these two approaches on a relevant
example (The EJC Benchmark for adaptive regulation bench-
mark test bed [17]) and to evaluate also the combination
of the two approaches. The paper is organized as follows:
Section II-A presents the active vibration control system used
for the real-time experiments. Section II-B introduces the
plant/disturbance representation and the controller structure
used in this work. The influence of low damped complex
zeros for disturbance rejection is discussed in Section III. In
this section the two approaches for improving the behavior
of the system in the presence of periodic disturbances located
near low damped complex zeros are also briefly presented.
The direct adaptive feedback regulation scheme, based on a
Youla-Kučera parametrization is recalled briefly in Section IV.
The comparison between the two approaches presented in [4]
and in [13] and their combination is done in Section V through
simulation and real-time results. Some concluding remarksare
presented in Section VI.

II. PLANT DESCRIPTION AND CONTROLLER STRUCTURE

A. System structure

The photo of the active vibration control experimental setup
used in this study is presented in Fig. 1. The shaker acts as
a disturbance source by introducing vibration forces and the
inertial actuator can be used to counteract them by introducing
vibrational forces in the opposite direction (inertial actuators
use a similar principle as loudspeakers). This test bed was used
as international benchmark in adaptive regulation. A detailed
description together with the results were published in [17].
For sake of completeness some features are recalled here. The
test bed consists of a passive damper, an inertial actuator,a
mechanical structure, a transducer for the measurement of the
residual force, a controller, a power amplifier and a shaker.The
mechanical structure is such that the vibrations produced by
the shaker, fixed to the ground, are transmitted to the upper
side, on top of the passive damper. The inertial actuator is
fixed to the chassis where the vibrations should be attenuated.
The equivalent control scheme is shown in Fig. 2. The system
input, u(t) is the position of the mobile part (magnet) of the
inertial actuator, the outputy(t) is the residual force measured
by a force sensor. The plant transfer function (G = q−d B

A)
between the input of the inertial actuator,u(t), and the residual
force is calledsecondary path.

The control objective is to reject the effect of unknown
narrow band disturbances on the output of the system (residual

2This idea has not been explored by the participants to the benchmark.
Note that the over parametrization of theQ filter for robustness with respect
to uncertainties in the plant model has been proposed in [26], [13], however,
here the objective of over parametrization is different.
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Fig. 1. Active vibration control using an inertial actuator(photo).

force), i.e. to attenuate the vibrations transmitted from the
machine to the chassis. This requires that the compensator
system (the secondary path) has enough gain in the frequency
range where the narrow band disturbances are located [19].
The physical parameters of the system are not available.
The system has to be considered as ablack box and the
corresponding models for control design should be identified.
The sampling frequency isFs = 800 Hz.

Adaptive Part

Central Controller

Fixed Part

Secondary path

Active Vibration Control System

Fig. 2. Direct adaptive scheme using a YK-parametrization of the controller.
Dashed line: fixed part, dotted line: adaptive part, solid line: active vibration
control set up.

Fig. 3 gives the frequency characteristics of the identi-
fied parametric model for the secondary path (the excitation
signal was a PRBS). The system itself in the absence of
the disturbances features a number of low damped vibration
modes as well as low damped complex zeros (anti-resonance).
This makes the design of the controller difficult for rejecting
disturbances close to the location of low damped complex
zeros. The most significant are those located at 46.45, 100.50
and 111.55 Hz (see the zoom of the frequency characteristics
of the secondary path in Fig. 3). Note that the design of a
linear controller for rejecting a disturbance at 50 or 95 Hz
(as required by the benchmark) is difficult since each one of
these frequencies is close to a pair of low damped complex
zeros (damping around 0.005). The parametric model of the
secondary path has a high order,nA = 22 andnB = 25. The
system has a double differentiator behavior.
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Fig. 3. Magnitude of the frequency response for secondary path model (top).
Zoom at the low damped complex poles and zeros (bottom).

B. Plant/disturbance representation and controller structure

The structure of the linear time invariant discrete time model
of the plant - the secondary path - used for controller design
is:

G(z−1) =
z−dB(z−1)

A(z−1)
=

z−d−1B∗(z−1)

A(z−1)
, (1)

whered is equal to the plant integer time delay (number of
sampling periods) and

A(z−1) = 1+a1z
−1 + · · ·+anAz−nA ;

B(z−1) = b1z−1 + · · ·+bnBz−nB = z−1B∗(z−1) ;

B∗(z−1) = b1 + · · ·+bnBz−nB+1
,

are polynomials in the complex variablez−1 and nA, nB

and nB − 1 represent their orders3. The model of the plant
may be obtained by system identification. Details on system
identification of the models considered in this paper can be
found in [22], [20], [19].

Since the control objective is focused on regulation, the
controller to be designed corresponds to aRS polynomial
digital controller, ([18], [22] - see also Fig. 2). The controller
has the formK = R

S, whereR(z−1) andS(z−1), are polynomials
in z−1. Under the YK-parametrization (when aQ-FIR filter is
considered) they have the following expressions:

R(z−1) = R0 +AHS0HR0Q, (2)

S(z−1) = S0−z−dBHS0HR0Q. (3)

The YK-parametrization used here is depicted in Fig. 2, where
both fixed and adaptive parts are shown. In this paper a YK-
parametrization using an equation-error disturbance observer
is implemented along with a FIR filter representation of the
optimal Q filter

Q(z−1) = q0+q1z−1 + · · ·+qnQz−nQ. (4)

It can be shown [21] that for any arbitrary FIRQ(z−1) filter,
the closed loop poles remain unchanged. They are defined by

3The complex variablez−1 will be used for characterizing the system’s
behavior in the frequency domain and the delay (shift) operator q−1 (x(t) =
q−1x(t + 1)) will be used for describing the system’s behavior in the time
domain.

the stable polynomial

P(z1) = A(z−1)S0(z
−1)+z−dB(z−1)R0(z

−1), (5)

whose order isnP ≤ nA +nB+nHR0
+nHS0

+d−1 and where
R0 and S0 are minimal degree solutions to the previous
Bezout equation, whose structure is defined by the following
equations:

R0(z
−1) = r0

0 + r0
1z−1 + . . .+ r0

nR0
z−nR0 = R′

0 ·HR0; (6)

S0(z
−1) = 1+s0

1z
−1 + . . .+s0

nS0
z−nS0 = S′0 ·HS0, (7)

whereHR0 and HS0 are fixed parts used to open the loop at
some frequency or incorporate the model of the disturbance,
respectively. Eqs. (6) and (7) and Fig. 2 describe the structure
of the central controller. Pole Placement or other design
technique can be used to place the poles.

The output of the planty(t) and the inputu(t) may be
written as:

y(t) =
q−dB(q−1)

A(q−1)
·u(t)+ p(t) ; (8)

u(t) = −
R(q−1)

S(q−1)
·y(t) , (9)

wherep(t) is the resulting additive disturbance on the output
of the system.

We define the following sensitivity functions4:

• Output sensitivity function (the transfer function between
the disturbancep(t) and the output of the systemy(t)):

Syp(z
−1) =

AS
P

=
A

[

S0−z−dBHS0HR0Q
]

P
; (10)

• Input sensitivity function (the transfer function between
the disturbancep(t) and the input of the systemu(t)):

Sup(z
−1) = −

AR
P

= −
A

[

R0 +AHS0HR0Q
]

P
, (11)

Using equations (8) and (9), one can write the output of the
system as:

y(t) =
A(q−1)S(q−1)

P(q−1)
· p(t) = Syp(q

−1) · p(t) . (12)

For more details onRS-type controllers and sensitivity func-
tions see [22].

Suppose thatp(t) is a deterministic disturbance, so it can
be written as

p(t) =
Np(q−1)

Dp(q−1)
·δ (t) , (13)

whereδ (t) is a Dirac pulse andNp(z−1), Dp(z−1) are coprime
polynomials inz−1, of degreesnNp and nDp, respectively. In
the case of persistent (stationary) disturbances the rootsof
Dp(z−1) are on the unit circle and they are complex and
non repeated. The energy of the disturbance is essentially
represented byDp. The contribution of the terms ofNp is
weak compared to the effect ofDp, so Np can be neglected.

4The arguments(z−1) and (q−1) will be omitted in some of the following
equations to make them more compact.



III. C ONSTRAINTS FOR ADAPTIVE REGULATION DUE THE

PRESENCE OF LOW DAMPED COMPLEX ZEROS

It follows from eq. (12) that a complete rejection at a certain
frequencyωk can be achieved whenSyp(e− jωk) = 0, which is
possible ifS(e− jωk) = 0, i.e. the roots ofDp(z−1) are contained
in S(z−1). This is known as the internal model principle [9]. In
this case the modulus of the input sensitivity function (eq.(11))
becomes equal to the inverse of the plant gain which implies
that if B(z−1) has a pair of low damped complex zeros close
to ωk, the plant input will reach very high values, putting
an important stress on the actuator. Another implication is
that the modulus of the input sensitivity function will become
very large and therefore the tolerance with respect to additive
uncertainties will become very low. Therefore, the cancellation
(or in general an important attenuation) of disturbance effect
on the output should be done only in frequency regions where
the system gain is large enough.

It is also well known that the use of the internal model
for total rejection (asymptotically) of the disturbance raises
the maximum value of the modulus of the output sensitivity
function [4], also known as ”waterbed” effect. This may lead
to unacceptable values for the modulus margin5 – defined as
∆M =

∣

∣Syp(e− jω)
∣

∣

−1
max – and the delay margin if the controller

design is not appropriately done [22].
To illustrate the above, first consider the case when a double

narrow band disturbance placed at 50 and 70 Hz must be
canceled, (in this caseDp(z−1) is known). In order that the
polynomialQ(z−1) introduces the internal model ofDp(z−1)
in S(z−1), the following Diophantine equation must be satisfied

DpS′ +z−dBHS0HR0Q = S0 (14)

where Dp, HS0, HR0, d, B and S0 are known, andS′ and
Q are unknown. Eq. (14) has a unique and minimal degree
solution forS′ andQ with nS0 ≤ nDp +nB+nHS0

+nHR0
+d−1,

nS′ = nB +d+nHS0
+nHR0

−1 andnQ = nDp −1.
Remark: It is assumed thatDp and B do not have common
factors but nothing is said of the feasibility of the solution if
some roots ofDp are very close to some of the roots ofB. In
such case, the solution of (14) will be computationally chal-
lenging due to ill conditioning. Furthermore, ifnQ > nDP −1
then the solution is not unique leading to overparametrization.

The central controller (R0,S0) has been computed by Poles
Placement and the desired poles have been selected using
”Internal model control” [22]. The system hasnA poles. The
closed loop will havenP ≤ nA+nB+nHR0

+nHS0
+d−1 poles.

They are assigned as follows:

• The plant is stable and all plant poles (22) are assigned
as desired closed loop poles.

• Among the remaining poles, 10 real poles are assigned at
0.3 for robustness reasons (robustifying poles called also
robustifying filter) [22], the other being at 0.

• The loop is open at 0Fs and 0.5Fs by choosingHR0(z
−1)=

1−z−2 (controller gain equal to zero in steady state and
at the Nyquist frequency).

5The modulus margin is the minimum distance between the open loop
transfer function hodograph and the Nyquist point [22].
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Fig. 4. Modulus of the sensitivity functions for different cases. Dash-dot
line: basic design, dashed line: design from [4], solid line: overparametrized
solution.

• No fixed parts are considered forS0(z−1), i.e. HS0(z
−1) =

1.

Using this central controller the resulting modulus margin
will have unacceptable low values (the maximum of the
modulus of the sensitivity functions is too high) as shown
in Fig. 4(a). For the two sinusoidal disturbances at 50 Hz
and 70 Hz one gets∆M = 0.127 (17.9 dB). These values
are far from the recommended value of∆M = 0.5−0.4. One
observes also an important increase in the modulus of the input
sensitivity function outside the attenuation band (50 to 95Hz)
in Fig. 4(b). This is why in [4], the central controller design
was considered as a major problem.

A. Improving the central controller design by poles selection
[4]

In [4] it was shown that using the plant model information
(frequency characteristics), it is possible tokeepthe modulus
of Syp(z−1) under an imposed maximum value by choosing
appropriately some of the desired closed loop poles inP(z−1).
In this approach the minimal degree for the polynomialQ̂(z−1)
is preserved and an ”equation error” Youla-Kučera observer



is used. Basically it consist to place in addition of the plant
poles, two pairs of complex poles close to the frequency region
limits (50 and 95 HZ), and two other pairs of complex poles
at 65 Hz and 80 Hz (these last values are not critical). The
idea behind is that this will create ”band stop filters ” on the
sensitivity functions around these frequencies which willallow
to reduce significantly the waterbed effect (for more details
on the effect of band stop filters see [22]). The damping of
these poles is chosen in relation with the attenuation imposed
at the corresponding frequencies. In addition, the shaping
of Sup(z−1) outside the attenuation zone was considered in
order to lower down its magnitude. This was done again by
the technique of band stop filters. The sensitivity functions
obtained with this design are also shown in Fig. 4 (dashed
line).

B. Improving robustness by increasing the number of param-
eters in the Q filter [13]

In (14) the order ofQ can benQ > nDp − 1. In this case
the solution of (14) forQ, S′ is not unique and an infinite
number of polynomials with ordernQ > nDp −1 satisfy (14).
The approach of [13] is to consider theQ that minimizesSyp

subject to the constraint of (14). The rationale behind this
approach is that in the presence of noise or other uncertainties,
denoted byv(t), we have

y(t) = Syp(q
−1)p(t)+Syp(q

−1)v(t), (15)

sinceSyp contains the internal modelDp of p(t), Syp(q−1)p(t)
will converge to zero asymptotically with time andy(t) will
be driven by the termSyp(q−1)v(t). The additional objective
is to keep the modulus ofSyp as low as possible. This gives
rise to the following optimization problem

min
Q

J(Q) =

∥

∥

∥

∥

HS0HR0q
−dBQ

S0

∥

∥

∥

∥

∞
(16)

subject to (14) andnQ > nDp −1. However another significant
advantage ofnQ > nDp−1 is that the ill conditioning that arises
when the zeros ofDp(z−1) are close to the zeros ofB(z−1) is
reduced as the order ofQ increases. The details of the solution
of the optimization problem in (16) are presented in [14]. We
should also note that the solution of the optimization problem
shows the existence of an optimumQ, but in order to solve
(16) we need to know the internal modelDp(z−1).

The adaptive law that estimates the coefficients ofQ search
for the optimumQ given that it exists and does not require the
a priori knowledge of the disturbances. The unknown optimal
value is considered to be the desired one in the analysis of the
adaptive scheme.

Note that the controller considered in [13] uses an ”output
error” type Youla-Kučera disturbance observer, however the
methodology of [13] as indicated above extends to other types
of disturbance observers without any significant difference6.
The sensitivity functions obtained with this design are also
shown in Fig. 4 (solid line).

6For a definition of the various types of Youla-Kučera disturbance observers
see [17].

C. Combination of the two approaches

It is obvious that the two approaches can be combined, i.e;
one can consider to use the approach presented in III-A by
using the improved controller design and augmenting the order
of the Q filter.

IV. A DAPTIVE FEEDBACK REGULATION

In this section the direct adaptive algorithm – based on the
YK-paremetrized controller – is recalled and used as basis for
both comparison and combination of the two approaches to be
evaluated. It can be used for the case of the minimal order of
the polynomialQ (whennQ = nDp −1) or for the augmented
case (whennQ > nDp −1).

As pointed out in [21], [19], theInternal Model Principle
along with the YK-parametrization can be used to develop
an algorithm to incorporate into the controller the assumed
model of the disturbance (13) without changing the desired
closed loop poles. From Fig. 2 we have that

w(t) = A(q−1)y(t)−q−dB∗(q−1)u(t −1) = A(q−1)p(t) (17)

and replacing (3) in (12), the output of the closed loop system
can be express as

y(t) =

[

S0−q−dBHS0HR0Q
]

P
·w(t). (18)

From the previous equation it is possible to derive the direct
adaptive algorithm from [21], which uses the followinga
posteriori adaptation error

ε(t +1) =
[

θ T − θ̂ T(t +1)
]

·φ(t)+v(t +1), (19)

with the following definitions

θ =
[

q0,q1, · · · ,qnQ

]T
, (20)

θ̂ (t +1) =
[

q̂0(t +1), q̂1(t +1), · · · , q̂nQ(t +1)
]T

, (21)

φ(t) = [w2(t),w2(t −1), · · · ,w2(t −nQ)]T , (22)

w2(t) =
q−dHR0HS0B∗

P
·w(t), (23)

v(t +1) =
S′Dp

P
·w(t +1) =

S′ANp

P
·δ (t +1), (24)

wherev(t +1) tends asymptotically towards zero (an asymp-
totically stable system excited by a Dirac pulse).

The associated standard parameter adaptation algorithm
(PAA) used is [19],[18]:

θ̂ (t +1) = θ̂(t)+F(t)φ(t)ε(t +1) (25)

ε(t +1) =
ε0(t +1)

1+ φT(t)F(t)φ(t)
(26)

ε0(t +1) = w1(t +1)− θ̂ T(t)φ(t) (27)

w1(t +1) =
S0

P
·w(t +1) (28)

F(t +1)−1 = λ1(t)F(t)−1 + λ2(t)φ(t)φT(t) (29)

0 < λ1(t) ≤ 1, 0≤ λ2(t) < 2, F(0) > 0 (30)

where λ1(t), λ2(t) allow to obtain various profiles for the
evolution of the adaptation gainF(t) (for details see [22][18]).



For a stability proof under the hypothesismodel = plant,
see [21]7.

V. COMPARISON OF THE TWO APPROACHES AND THEIR

COMBINATION - SIMULATION AND REAL TIME RESULTS

As seen in Section III, the standard central controller design
using ”internal model control” does not achieve a robust
modulus margin, either for a single or double narrow band
disturbances in the vicinity of low damped complex zeros,
when the minimal degree forQ (nQ = nDp − 1) is used. An
improved central controller design has been proposed for this
case. See III-A(this will be called ”Case 1”). Alternatively
using the standard central controller design the augmentation
of the order of theQ filter has been considered (this will
be called ”Case 2”). Finally augmenting the order of theQ
polynomial for the improved central controller design has also
been considered (this will be called ”Case 3”).

Due to space constraints, only some of the results will be
presented. To determine a relevant value of the degree of
polynomialQ for the augmented solutions, simulations were
carried out.The performance specifications ans constraints as
well as the measurements procedures defined [17] are con-
sidered. Nevertheless, not all the criteria will be presented.
Special attention is given to: global attenuation (GA) of the
disturbance, disturbance attenuation (DA) and the maximum
amplification (MA) along with the transient evaluation (TE).
For the case of over parametrization a normalized parameter
adaptation algorithm should be used [18] and [12]. However
the normalization slow down significantly the adaptation tran-
sients and therefore for the purpose of comparison with the
minimal parametrization approach the unnormalized adapta-
tion algorithm has been used for all the cases.

Two different narrow band disturbances are tested on the
simulator and experimental setup (Section II-A). The first
disturbance corresponds to a double narrow band disturbance
located at 50 and 70 Hz and the second is when the disturbance
frequency corresponds to 75 and 95 Hz. This two set of
frequencies were chosen due to the proximity that they have
to the plant low damped complex zeros.
For all simulations ans experiments, the parameter adaptation
algorithm given in Section IV has been used.λ1 andλ2 have
been updated in order to obtain a time decreasing adaptation
gain combined with a constant trace adaptation gain (residual
gain assuring the adaptive behavior). The value of the constant
trace was 0.004xN where N is the number of parameters to be
adapted. The corresponding updating formula can be found in
[18].

A. Performance criteria for simulation and real-time experi-
ments

Simulations(SIM) and real-time(RT) experiments were
conducted using both approaches and their combinations. The
results were classified in frequency and in time domain. In

7Convergence of the adaptation error for any initial conditions, boundedness
of all the variables, convergence of the estimated parameters toward the
optimal values fornQ = nDp −1

frequency domain the objective is to strongly attenuate thedis-
turbance with a limited amplification of the other frequencies.
To evaluate the performance three indicators have been defined
together with three target values according to [17]: Disturbance
Attenuation (DA) (min = 40 dB), Global Attenuation (GA)
(min = 30 dB), and Maximum Amplification (MA ) (max= 7
dB)8.

In time domain the Transient Evaluation (TE in %) is
considered. The transient evaluation criterion requires that
the transient duration when a disturbance is applied, has to
be smaller than 2 s. A percentage was established for the
fulfillment of this criterion. TE= 0% indicates a transient
duration of 4 s and TE= 100% a transient duration smaller or
equal to 2 s. The percentage is assigned using the ratio (α) of
the truncated two norm (N2T) of the residual force evaluated
in two periods of time. This means that 2 s after application
of a disturbance theN2T of the output has to be equal or
smaller than 1.21 of the steady state value of theN2T of the
residual force. TheN2T is evaluated over an interval of 3 s
both for transient and steady state, taking into account that the
disturbance is applied att = 5 and the steady state is evaluated
between 27 and 30 s. The performance variables are calculated
using the following equations:

N2T(i : m) =
m

∑
i

y(i)2 (31)

α =
N2T(7 : 10)
N2T(27 : 30)

(32)

δTrans= α −1.21 if α > 1.21 (33)

δTrans= 0 if α ≤ 1.21 (34)

TE =

(

1.21− δTrans
1.21

)

100% (35)

Another very important indicator is the complexity of the
solutions proposed. This complexity is evaluated in terms
of Computation Time (CT in µs). The computation time is
calculated from the Task Execution Time evaluated in the
MATLAB c©’s xPC-Target environment. Since the computa-
tion time is measured only in the real-time application, no
simulation results are provided. The computational time only
consider the closed loop calculations9.

B. Results in simulation and real-time experiments

Table I summarizes the results in frequency domain when
a double disturbance at 50 and 70 Hz is introduced into the
system. The results correspond to simulations and real-time
experiments. For the over parametrized solutions the persistent
excitation condition is not preserved.

As is seen from the results, the solution used inCase 1
shows its effectiveness by achieving very good results for
GA and DA and being slightly over the limit in MA (for
the RT). Since the objective is to compare the three cases,

8GA and MA give indication about the quality of the control which is
supposed to introduce a very limited amplification at frequencies different
from the frequency of the disturbance.

9The CT for an open loop test is 12.9µs is subtracted from the total
computation time



TABLE I
FREQUENCY DOMAIN RESULTS IN SIMULATION AND REAL TIME FOR

A DOUBLE SINUSOIDAL DISTURBANCE AT 50 AND 70 HZ

Case nQ
GA dB DA dB MA dB

SIM RT SIM RT SIM RT

1 3 36.1 35.4 45.3-42.7 42.8-43.6 9.8 7.5

2 21 36.2 36.3 42.6-44.1 42.1-47.8 10.8 11.7

3 4 36.6 34.7 46.3-45.0 41.5-44.2 9.0 7.6

RT: Real time, SIM: Simulation, GA: Global attenuation, DA:Dis-
turbance attenuation, MA: Maximum amplification.

the number of parameters forCase 2was augmented until
the results were close to the ones of theCase 1. For this
disturbance, 22 parameters ( nb. of parameters= nQ+1) were
necessary to achieve almost the same level of effectiveness.
Nevertheless, the MA shows that keeping the modulus ofSyp

under the settled limit is difficult. It was found that even
though the number of parameters could be increased, this have
a negative impact either over the maximum amplification or
the disturbance attenuation. So 22 parameters seems to be a
good compromise. Finally,Case 3shows that augmenting from
4 to 5 parameters, better GA (in SIM) and MA (in SIM) are
achieved. However, the Disturbance attenuation (DA) in real
time (RT) is slightly less good. In Fig. 5 the achieved modulus
margin (∆M) is shown for all the cases. Since in all the cases
the DA and GA were achieved, the figure aims to show the
amplifications due to the waterbed effect.Case 1and3 handle
in a better way this effect, while theCase 2achieves almost the
same profile but not for the amplifications at other frequencies
different from 50 and 70 Hz.

Table II shows the results when the disturbance is located at
75 and 95 Hz. As in the previous test, theCase 1shows sim-
ulation results close to the benchmark specifications. The RT
results shows some differences, the most important in DA and
MA. Taking these results as a reference, it results that one need
27 parameters for theCase 2in order to achieve or improve
the performance obtained inCase 1(simulation results with
22 parameters shows less good results). As for the previous
test, higher orders forQ̂(z−1) allows to achieve better DA
for 95 Hz but not for 75 Hz. Also, MA achieves its minimum
using 27 parameters but if more parameters are used, this result
is degraded. Although simulations results where better, the
real-time results were quite close to the ones obtained for the
Case 1. Regarding the real-time results, theCase 3achieves
the best ones, showing clearly that the combination of both
approaches allows to improve the result from a minimal degree
solution (Case 1), without increasing significantly the number
of parameters (Case 2). Fig. 6 displays the estimated output
sensitivity function for the three cases, using the estimated
parameters of̂Q(z−1). The figure is zoomed in order to show
the amplifications due to the waterbed effect. It is clear that
the Case 3shows the lowest amplifications (higher∆M).

The transient evaluation results are shown in Table III. All
the cases exceptCase 2with nQ = 26 for a disturbance located
at [75,95] Hz pass the transient evaluation. ForCase 2with
nQ = 26 for a disturbance located at [75,95] Hz on achieves

TABLE II
FREQUENCY DOMAIN RESULTS IN SIMULATION AND REAL TIME FOR

A DOUBLE SINUSOIDAL DISTURBANCE AT 75 AND 95 HZ

Case nQ
GA dB DA dB MA dB

SIM RT SIM RT SIM RT

1 3 35.4 33.7 48.0-37.0 39.3-37.4 7.3 9.4

2 21 34.7 - 45.6-35.0 - 9.0 -
26 35.2 32.8 47.5-39.6 39.5-37.6 7.6 9.3

3 4 35.5 - 48.0-37.1 - 7.3 -
7 35.7 33.6 51.9-36.5 41.9-38.0 6.8 7.9

RT: Real time, SIM: Simulation, GA: Global attenuation, DA:
Disturbance attenuation, MA: Maximum amplification.

TABLE III
T IME DOMAIN RESULTS IN SIMULATION

AND REAL TIME FOR A DOUBLE SINUSOIDAL

DISTURBANCE

Disturbance Case nQ
TE %

Hz SIM RT

[50,70]
1 3 100 100
2 21 100 100
3 4 100 100

[75,95]
1 3 100 100
2 26 94.2 99.7
3 7 100 100

TE: Transient evaluation criterion.

94.2% and 99.7% in simulation and real-time respectively.
These results are close to the imposed specifications.

The complexity of the various solutions are evaluated in
Table IV by comparing the Computation Time (CT). As
expected, theCase 1shows the lowest CT since it uses the
minimum number of parameters to be adapted. By augmenting
the number of parameters, as inCase 3, the CT is increased.
The most significant increases occur for theCase 2for [50,70]
Hz and and for [75,95] Hz. The computation time increases
by a factor over 12 with respect to theCase 1.

VI. CONCLUDING REMARKS

Two approaches and their combination for handling the
problem of attenuation of unknown narrow band disturbances
in the vicinity of low damped plant complex zeros have

TABLE IV
COMPUTATION TIME RESULTS FOR A DOUBLE

SINUSOIDAL DISTURBANCE

Disturbance (Hz) Case nQ CT (µs)

[50,70]
1 3 3.6
2 21 44
3 4 5

[75,95]
1 3 3.6
2 26 61.3
3 7 7.5

CT: Computation Time.
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Fig. 5. Output sensitivity function comparison, for rejecting a double
disturbance located at [50,70] Hz.
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Fig. 6. Output sensitivity function comparison, for rejecting a double
disturbance located at [75,95] Hz.

thoroughly evaluated. One approach emphasizes the need for
a careful selection of some of the desired closed poles in
order to use a minimal number of parameters to adapt. The
other approach overcome the problem of a careful design of
the central controller by a significant over parametrization of
the compensator filter to be adapted. The price to pay is a
significant increase in the computer load. Combination of the
two approaches can be considered. A small increase of the
size of the minimal order of the filter to be adapted combined
with an improved central controller design can further slightly
improve the performance. It is however important to recall
that strictly speaking the over parametrization requires to use
a normalized parameter adaptation algorithm and this will
augment significantly the duration of the adaptation transients.
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