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Analysis of Static Cellular Cooperation between
Mutually Nearest Neighboring Nodes

Luis David Álvarez Corrales, Anastasios Giovanidis, Member, IEEE,
Philippe Martins, Senior Member, IEEE, and Laurent Decreusefond

Abstract—Cooperation in cellular networks is a promising scheme to improve system performance. Existing works consider that a
user dynamically chooses the stations that cooperate for his/her service, but such assumption often has practical limitations. Instead,
cooperation groups can be predefined and static, with nodes linked by fixed infrastructure. To analyze such a potential network, we
propose a grouping method based on node proximity. With the Mutually Nearest Neighbour Relation, we allow the formation of singles
and pairs of nodes. Given an initial topology for the stations, two new point processes are defined, one for the singles and one for the
pairs. We derive structural characteristics for these processes and analyse the resulting interference fields. When the node positions
follow a Poisson Point Process (PPP) the processes of singles and pairs are not Poisson. However, the performance of the original
model can be approximated by the superposition of two PPPs. This allows the derivation of exact expressions for the coverage
probability. Numerical evaluation shows coverage gains from different signal cooperation that can reach up to 15% compared to the
standard noncooperative coverage. The analysis is general and can be applied to any type of cooperation in pairs of transmitting
nodes.

Index Terms—Cooperation; Static groups; Poisson cellular network; Thinning; Interference; Poisson superposition.
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1 INTRODUCTION

COOPERATION between wireless nodes, such as cellular
base stations (BSs) is receiving in recent years a lot

of attention. It is considered as a way to reduce intercell
interference in future cellular networks and consequently
improve network capacity. It is particularly beneficial for
users located at the cell-edge, where significant SINR gains
can be achieved in the downlink. In the wireless literature,
there is a considerable amount of research on the topic,
which relates to the concept of CoMP [1], [2], Network
MIMO [3], [4], [5], or C-RAN [6], [7]. It is also expected
to play a significant role due to the coming densification of
networks with HetNets [8], [9]. The various strategies pro-
posed differ in the number of cooperating nodes, the type
of signal cooperation, the amount of information exchange,
and the way groups (clusters) are formed.

Recent studies analyse such cooperative networks with
Stochastic Geometry as the main analytic tool [10]. Modeling
the position of wireless nodes via a Point Process gives
the possibility to include the impact of irregularity of BS
locations on the users’ performance (e.g. SINR, throughput,
delay). Furthermore, the gains from cooperation can be

• Luis David Álvarez Corrales conducted this research while at Télécom
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quantified in a systematic way, so there is no need to test
each different instance of the network topology by simula-
tions. Closed formulas are very important for an operator
that wants to plan and deploy an infrastructure with coop-
eration functionality, because these can provide intuition on
the relative influence of various design parameters.

1.1 Related Work
There are important results available for BS cooperation in
wireless networks. In [11], Baccelli and Giovanidis analyse
the case where BSs are modeled by a Poisson Point Process
(PPP) and each user-terminal triggers the cooperation of its
two closest BSs for its service. The authors show coverage
improvements and an increase of the coverage cell. In [12],
Nigam et al consider larger size of clusters, showing that
BS cooperation is more beneficial for the worst-case user.
The SINR experienced by a typical user when served by the
K strongest BSs is also investigated by Blaszczyszyn and
Keeler in [13], where the authors derive tractable integral
expressions of the coverage probability for general fading
by the use of factorial moment measures. An analysis of
a similar problem with the use of Laplace Transforms (LT)
is provided by Tanbourgi et al in [14]. Sakr and Hossain
propose in [15] a scheme between BSs in different tiers for
downlink CoMP. Outside the Stochastic Geometry frame-
work, we find [5] and [16]. In [16], Papadogiannis et al pro-
pose a dynamic clustering algorithm incorporating multi-
cell cooperative processing. All the above works assume
that a user-terminal dynamically selects the set of stations
that cooperate for its service, which changes the cluster
formation for every different configuration of users. This
is difficult to be applied in practice.

Other works propose to group BSs in a static way, so
that the clusters are a-priori defined and do not change
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over time. The appropriate static clustering should result
in considerable performance benefits for the users, with a
cost-effective infrastructure. In favour of the static grouping
approach are Akoum and Heath [17], who randomly group
BSs around virtual centres; Park et al [18], who form clusters
by using edge-coloring for a graph drawn by Delaunay
triangulation; Huang et al [19], who cluster BSs using a
hexagonal lattice, and Guo et al who analyse in [20] the
coverage benefits of cooperating pairs modeled by a Gauss-
Poisson point process [21]. The existing static clustering
models either group BSs in a random way [17], or they
randomly generate additional cluster nodes around a cluster
center [20], [22], which is translated in the physical world
into installing randomly new nodes in the existing infras-
tructure. A more appropriate analysis should have a map
of existing BS locations as the starting point, and from this
define in a systematic way cooperation groups. The criterion
for grouping should be based on node proximity, in order
to limit the negative influence of first-order interference.

1.2 Mutually Nearest Neighbor cooperation

Consider a fixed deployment of single antenna BSs on the
plane. As argued above, we wish to organize these BSs (or
atoms) into static cooperative groups, with possibly different
sizes. These groups must be mutually disjoint and their
union should exhaust the whole set of BSs. Additionally,
the groups must be invariable in size and elements with
respect to the random parameters of the telecommunication
network (e.g. fading, shadowing, or user positions). Hence,
we look for a criterion that aims at network-defined, static
clusters as opposed to the user-driven selection of other
works.

For this reason, we will propose rules that depend only
on geometry: An atom takes part in a group, based solely
on its relative distance to the rest of the atoms. Geometry
is related to the pathloss factor of the channel gain, so it
encompasses important aspects that influence signal power.

The specific grouping criterion (for static geometric clus-
ters) that we propose in this work is the Mutually Nearest
Neighbor Relation (MNNR). The main idea is that two BSs
belong to the same group if one of the two is the nearest
neighbor of the other. The MNNR is the keystone that allows
us to construct static clusters of singles and pairs. It is in-
spired by a model studied by Häggström and Meester [23],
the Nearest Neighbor Model (NNM), and further analysed
in [24], [25], [26], [27], [28], where each atom connects to
its geometrically Nearest Neighbor by an unidirected edge.
Although we will consider here groups of size at most 2, the
NNM can allow for an extension of our approach to include
larger groups. This is part of our ongoing research.

1.3 Contributions

This paper provides the following contributions:

• We introduce the MNNR, a grouping method for BSs
whose positions are modeled by a stationary point
process Φ (Section 2). Most results are derived when
Φ is chosen to be a Poisson Point Process (PPP).

• We analyse wireless networks with two types of clus-
ters (groups): Single nodes, that do not cooperate,

and pairs of nodes that cooperate with each other
(Section 2).

• From the dependent thinning determined by the
MNNR, we construct two point processes Φ(1) and
Φ(2), the processes of singles and pairs, respectively.
Structural properties of both are provided: (a) the
average proportion of atoms from Φ that belong to
Φ(1) and Φ(2), (b) the average proportion of Voronoi
surface related to each one of them, (c) their re-
spective Palm measures, as well as (d) properties
concerning repulsion/attraction (Section 2).

• Our analysis is done in a general sense, without
restricting ourselves to specific cooperating signal
schemes (Section 3). Altogether, we provide the ana-
lytic tools that evaluate various strategies for trans-
mitter cooperation/coordination, as those in [1], [2],
[4], [29], [30].

• We provide an analysis of the interference generated
by the processes Φ(1) and Φ(2), and derive explicit
expressions for the corresponding expected values,
along with a methodology to obtain their Laplace
Transfrom (LT) (Section 4).

• Based on the structural characteristics of the singles
and the cooperative pairs, we introduce an approx-
imate model: the superposition of two independent
PPPs. Using this, a complete analysis of the coverage
probability is provided, for two different scenarios of
user-to-BS association (Section 5).

• In Section 6 the analytic formulas are validated
through simulations and the gains of static nearest
neighbor grouping are quantified. Section 7 presents
some pros and cons of the model. The final conclu-
sions are drawn in Section 8.

1.4 Notation

Let all random elements be defined on a common probabil-
ity space (Ω,F ,P), and let E denote the expectation under
P.

Let Φ = {φ} be a point process, with values in R2, where
every φ represents an element of the space of simple, and
locally finite configurations of R2 points [31].

If an atom x and a configuration φ are fixed, φ ∪ {x}
denotes the simple and locally finite configuration contain-
ing all the elements from φ plus x in the case where x
does not belong to φ, otherwise it just denotes φ. In the
same fashion, φ\{x} denotes the simple and locally finite
configuration containing all the elements from φ without
the point {x} in the case where x actually belongs to φ,
otherwise it represents just φ.

The Euclidean distance and the Euclidean surface on R2

are denoted by ‖ · ‖ and S(·), respectively.
For x ∈ R2 and a A closed subset of R2, we denote

d(x,A) := inf
y∈A
‖x− y‖,

the distance from x to A.
Finally, for x ∈ R2 and r > 0, let

B(x, r) := {y ∈ R2 | ‖x− y‖ < r}.
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2 THE MUTUALLY NEAREST NEIGHBOR MODEL

2.1 Singles and pairs

For two different atoms x and y in the configuration φ, we
say that x is in Nearest Neighbor Relation (NNR) with y (with
respect to φ) if

y = argmin
z∈φ\{x}

‖x− z‖,

and we write x
φ→ y. When the atom x is not in NNR with

y, we write x
φ

6→ y.
Henceforth, we will only consider stationary point pro-

cesses Φ = {φ} whose realisations fulfill the uniqueness of
the nearest neighbor a.s. Note however that this condition
does not generally hold. For example, within the finite
configuration φ = {(0, 0), (1, 0), (0, 1)}, the Euclidean origin
is in NNR with both (1, 0) and (0, 1).

Definition 1. Two different atoms x, y are in Mutually Nearest
Neighbor Relation (MNNR) if and only if (iff) x

φ→ y and y
φ→ x,

and we denote it by x
φ↔ y. In telecommunication terms, we say

that the two BSs x and y are in cooperation.

Definition 2. An atom x ∈ φ is called single iff it is not in
MNNR (does not cooperate) with any other atom in φ. That is, if

for every y ∈ φ such that x
φ→ y, then y

φ

6→ x.

(a)

(b)

Fig. 1: (a) The atoms x and y are mutually nearest neighbors,
so, they work in pair. The atom x is the nearest neighbor of
w, but w is not the closest atom to x, thus w is single. (b) A
Poisson realisation with its corresponding Voronoi diagram.
The asterisks are the single BSs, the connected dots are the
cooperating pairs.

For x, y ∈ φ fixed, denote the area

C(x, y) := B(x, ‖x− y‖) ∪B(y, ‖x− y‖).

In geometric terms, the relation x
φ→ y holds iff the disc

B(x, ‖x − y‖) is empty of atoms from φ. Consequently, the
relation x

φ↔ y holds iff, there are no atoms from φ inside
C(x, y). The Euclidean surface of C(x, y) is π‖x − y‖2(2 −
γ), where γ := 2

3 −
√

3
2π is a constant number equal to the

surface, divided by π, of the intersection of two discs with
unit radius and centres lying on the circumference of each
other. An illustration of the above explanations is given in
Figure 1.

When Φ = {φ} is a PPP, we have an expression of its
empty space function. With this in mind, along with the
above argument, it is possible to give a closed form to the
probability of two given atoms being in pair.

Lemma 1. Given a PPP Φ, with density λ > 0, for two different
and fixed atoms x, y ∈ R2,

P(x
Φ↔ y) = e−λπ‖x−y‖

2(2−γ).

For a stationary point process Φ, define two new point
processes Φ(1) and Φ(2), that result from the dependent
thinning defined above:

Φ(1) := {x ∈ Φ & x is single},
Φ(2) := {x ∈ Φ & x cooperates with another element of Φ}.
Both processes are stationary. This is due to the stationarity
of Φ and because, by definition, they depend only on the dis-
tance between the elements of Φ. From the previous Lemma,
Slivniak’s Theorem and Campbell-Little-Mecke formula [10]
we have the following result.

Theorem 1. Given a PPP Φ, with density λ > 0, for every fixed
atom x ∈ R2, there exists a constant δ > 0, independent of λ and
x, such that

P
(
x ∈ Φ(2)

)
= δ, P

(
x ∈ Φ(1)

)
= 1− δ.

Specifically, δ = 1
2−γ ≈ 0.6215.

Proof. By definition of Φ(2),

P
(
x ∈ Φ(2)

)
= P

(
x

Φ↔ y, for some y ∈ Φ\{x}
)

= E
(

1{
x

Φ↔y, for some y∈Φ\{x}
})

(a)
= E

∑
y∈Φ

1{
x

Φ↔y
}
 ,

where (a) holds because for PPPs the nearest neighbor is
a.s. unique. Using Campbell-Little-Mecke formula [10] for a
PPP,

E

(∑
y∈Φ

1{
x

Φ↔y
}
)

=

∫
R2

P
(
x

Φ↔ y
)
λdy

(b)
= λ

∫
R2

e−λπ‖x−y‖
2

(2− γ)dy

=
1

2− γ
,

where (b) follows from Lemma 1.

Remark: In Lemma 1 and Theorem 1 we actually make
use of the Palm measures of the process, but avoid its nota-
tion for ease of presentation, without substantial difference.
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The constant δ is crucial within this work. The above
Theorem states that, given the position of a BS (in a PPP),
its probability of being in a cooperation pair is δ ≈ 0.6215,
otherwise, its probability of being single is 1 − δ ≈ 0.3785,
irrespective of the value of the density λ > 0. Since we are
fixing the atom location, this result should be interpreted
from a local point of view. Nevertheless, in Section 3 we
will prove that, for a given density of the PPP λ > 0, the
intensities of Φ(1) and Φ(2) are actually (1 − δ)λ and δλ,
respectively. The former can be interpreted from a global
point of view: over any planar area in R2, in average, 37.85%
of atoms are singles and 62.15% belong to a cooperative
pair.

When Φ is a PPP, it is natural to wonder if Φ(1) and Φ(2)

are also PPPs. As a matter of fact, they are not (we could
have expected this, since they were defined by a strongly
dependent thinning). Suppose that Φ(2) is actually a PPP.
As shown in Theorem 1, for every atom in Φ(2), there is
a positive probability of this point not being in MNNR
with another point of Φ(2). However, by definition, all the
elements of Φ(2) are in MNNR with another element of Φ(2),
which is a contradiction. We conclude that the process Φ(2)

is not a PPP. For Φ(1) the argumentation is not as simple. We
can show using the Kolmogorov-Smirnov test [32] that the
number of Φ(1) atoms within a finite window is not Poisson
distributed. Moreover, Monte Carlo simulations estimate
that the average proportion of single atoms from Φ(1) is far
from the 37.85%.

We can show that the percentages in Theorem 1 are not
valid just for PPPs. Take the hexagonal grid model. This is
commonly used by industry related research teams to model
the BS positions, and then evaluate a system deployment
and performance via Monte Carlo methods. The hexagonal
grid’s centers should represent the BS locations. This is an
ideal scenario (the BSs are never that regular). We introduce
another point process, based on the hexagonal grid, that
actually allows for randomnes of the BS positions. Starting
from the grid placement, let the position of each BS be ran-
domly perturbed, independently of the others. For example,
consider as BS location the point whose polar coordinates
around each hexagon’s center follow two uniform random
variables (r.v.s), one angular over [0, 2π) and the radial
one over [0, Q] (see Figure 2). Figure 2 shows how the
average percentage of singles and pairs for the hexagonal
grid model changes when varying the parameter Q > 0.
Remark that these numbers are very close to the respective
average percentages we found when Φ is a PPP.

2.2 Palm Probabilities
We can interpret the Palm probability of a stationary point
process as the conditional probability, given that the process
has a point inside an infinitesimal neighborhood around a
fixed atom [10]. Denote by P0, P(1),0, and P(2),0 the Palm
probabilities of the stationary point processes Φ, Φ(1), and
Φ(2), respectively. Let

A0 := {Φ ∈ A0}, B0 := {Φ ∈ B0},

be two events, where

A0 := {φ | 0 ∈ φ and 0 is single },
B0 := {φ | 0 ∈ φ and 0 cooperates with another atom of φ }.

(a) (b)

0 1 2 3 4 5 6
0.36

0.37

0.38

0.39

0.4

0.41

 

 

Hexagonal grid model.
PPP.

(c)
0 1 2 3 4 5 6

0.58

0.59

0.6

0.61

0.62

0.63

0.64

 

 

Hexagonal grid model.
PPP.

(d)

Fig. 2: (a) The hexagonal grid model, without perturbation.
(b) The hexagonal grid model, with the centers being per-
turbed via a random experiment. (c) The average percentage
of single atoms for the hexagonal grid model. (d) The
average percentage of atoms in cooperative pairs.

We have the following result [33, pp. 35, Ex. 142].

Theorem 2. Let Φ be a stationary point process such that
P0(A0) > 0 and P0(B0) > 0. Therefore, for every C ∈ Ω,

P(1),0(C) = P0(C|A0), P(2),0(C) = P0(C|B0).

When Φ is a PPP, P0(A0) = 1−δ > 0 and P0(B0) = δ > 0
(Theorem 1). Then, for every C ∈ F ,

P(1),0(C) =
P0(C,A0)

1− δ
, P(2),0(C) =

P0(C,B0)

δ
. (1)

2.3 The NN function of Φ(2)

The Nearest Neighbor function (NN), commonly denoted by
G, is the cumulative distribution function (CDF) of the
distance from a typical atom of the process to its nearest
neighboring point [34]. Denote by G(2)(r) the NN function
of Φ(2), then,

G(2)(r) = P(2),0(d(0,Φ(2) \ {0}) ≤ r),

for every r > 0. Applying equation (1) to the above expres-
sion, we have the following result.

Theorem 3. For a PPP Φ, the NN function of Φ(2) is

G(2)(r) = 1− e−λπr2(2−γ), (2)

where γ is the same constant as in Lemma 1.

Proof. Remark that under P0

A0 =
⋃

y∈Φ\{0}

{0 Φ↔ y} (3)
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where A0 is the event from Theorem 2, and this union is
mutually disjoint. For r > 0 fixed,

G(2)(r) = P(2),0
(
d(0,Φ(2)\{0}) ≤ r

)
(a)
= P0

(
d(0,Φ(2)\{0}) ≤ r,A0

) 1

δ

(b)
= E0

 ∑
y∈Φ\{0}

1
{d(0,Φ(2)\{0})≤r,0 Φ↔y}

 1

δ
,

(c)
= E

∑
y∈Φ

1
{d(0,Φ(2)\{0})≤r,0 Φ↔y}

 1

δ
,

where (a) follows from equation (1), (b) after equation (3),
and (c) from Slivkyak-Mecke’s Theorem. Observe that, if
there is some y ∈ Φ being the mutually nearest neighbor of
the atom 0, that is 0

Φ↔ y, then,

d(0,Φ(2)\{0}) = d(0,Φ\{0}) = ‖y‖ a.s.

Using this, Campbell-Little-Mecke formula and Lemma 1,

E

(∑
y∈Φ

1{d(0,Φ(2)\{0})≤r,0↔y}

)
1

δ

= E

(∑
y∈Φ

1
{‖y‖≤r,0 Φ↔y}

)
1

δ

= E

(∑
y∈Φ

1{‖y‖≤r}1{0 Φ↔y}

)
1

δ

=

∫
R2

E
(

1{‖y‖≤r}1{0 Φ↔y}

)
λdy

1

δ

=

∫
R2

1{‖y‖≤r}E
(

1
{0 Φ↔y}

)
λdy

1

δ

=
λ

δ

∫
{‖y‖≤r}

P
(
0

Φ↔ y
)
dy

=
λ

δ

∫
{‖y‖≤r}

e−λπ‖y‖
2(2−γ)dy

(d)
=

λ2π

δ

∫ r

0
e−λπs

2(2−γ)sds

= 1− e−λπr
2(2−γ),

where (d) follows from the change of variable to polar
coordinates.

The last Theorem simply states that, in the PPP case, the
distance between cooperative atoms is Rayleigh distributed,
with scale parameter α := (2λπ(2− γ))−1/2.

2.4 Size of the Voronoi Cells

It follows naturally to investigate the size of Voronoi cells
associated with single atoms or pairs. A Voronoi cell of
an atom x ∈ φ is defined to be the geometric locus of all
planar points z ∈ R2 closer to this atom than to any other
atom of φ [35]. In a wireless network the Voronoi cell is
important when answering the question ’which user should
be associated with which station?’.

In a stationary framework, we examine the network
performance at the Cartesian origin, the typical user approach.
Let {0 y Φ(1)} (resp. {0 y Φ(2)}) denote the event that the

typical user belongs to the Voronoi cell of some atom of Φ(1)

(resp. Φ(2)). For the PPP case we have the following result.

Proposition 1. Suppose that Φ is a PPP, with density λ > 0.
There exists a measurable function F : [0,∞)×[0,∞)×[0, 2π)×
[0, 2π) −→ [0,∞), such that

P(0 y Φ(2))

= λ2

∫ ∞
0

∫ ∞
0

∫ 2π

0

∫ 2π

0
sre−λF (r,s,θ,ϕ)−λπr2

dϕdθdrds

Proof. See Appendix A, available in the supplemental mate-
rial.

Since
P(0 y Φ(1)) = 1− P(0 y Φ(2)), (4)

we have also an analytic representation for P(0 y Φ(1)).
The function F (r, s, θ, ϕ) is not explicitly given, being the
Euclidean surface of three overlapping discs. This is an
example of the complications that arise from the MNNR,
due to numerical issues related to integration over multi-
ple overlapping circles. Such complications led us to the
approximate model in Section 5.

Numerical Result 1. Given a PPP Φ, the average surface
proportion of Voronoi cells associated with single atoms, and that
associated with pairs of atoms, is independent of the parameter λ.
By Monte Carlo simulations, we find that

P(0 y Φ(1)) ≈ 0.4602, P(0 y Φ(2)) ≈ 0.5398.

Interestingly, although the ratio of single atoms to pairs
is 0.3785/0.6215 ≈ 0.6090, the ratio of the associated
Voronoi surface is 0.4602/0.5398 ≈ 0.8525, implying that
the typical Voronoi cell of a single atom is larger than that
of an atom from a pair, as Figure 1 shows. The last remark
gives a first intuition that there is attraction between the
cooperating atoms in pair and repulsion among the singles.

2.5 Further Results
The empty space function (ES), commonly denoted by F, is the
CDF of the distance from the typical user to the nearest atom
of the point process considered [34]. The two functions NN
and ES can be combined into a single expression known as
the J function. The latter is a tool introduced by van Lieshout
and Baddeley [34] to measure repulsion and/or attraction
between the atoms of a point process. It is defined as

J(r) =
1−G(r)

1− F (r)
, (5)

for every r > 0. In the case of the PPP, G (r) ≡ F (r) and
J (r) = 1, as a consequence of the fact that the reduced
Campbell measure is identical to the original measure.
Hence the J function quantifies the differences of any
process with the PPP. When J(r) > 1, this is an indicator
of repulsion between atoms, whereas J(r) < 1 indicates
attraction. We use Monte Carlo simulations to plot the J
function of both processes (see Figure 3). From the figures
we conclude that Φ(1) exhibits repulsion for every r ≥ 0, and
Φ(2) attraction everywhere. However, note that the attraction
in the case Φ(2) is due to the way the pairs were formed.
If we consider a new process having as elements the mid-
dle points between each one of the cooperating pairs, this
process exhibits repulsion everywhere.
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Fig. 3: (a) The J function of the processes Φ(1). (b) The J
function of the processes Φ(2).

3 RECEIVED SIGNALS

The analysis on this work can be applied to any type
of antennas, including directional ones. For simplicity of
presentation we will treat here the omnidirectional case,
where the emitted signal depends only on the distance of the
BS from the typical user. The case of directional BSs requires
extra integration with respect to angles, which unnecessarily
complicates the analysis, without substantial difference.

In what follows, we will introduce explicit examples. For
these, let us consider an i.i.d. family (hr)r>0 of positive
exponential variables, with parameter 1, also independent
of the BS positions. Given p > 0, the couple (hr, p) repre-
sents the random propagation effects and the power signal
emitted to the typical user from a BS whose distance from
the origin is r > 0. Let us also choose the path-loss function
as l(r) := 1

rβ
, with path loss exponent β > 2.

3.1 Single atoms
Consider f : R2 → [0,∞) and f̃ : [0,∞) −→ R+

two generic random fields. The quantity f(x) (and f̃(r))
represents the received signal at the typical user, when
transmitted by a single BS, whose position is x (or its
distance from the origin is r > 0). For a single BS we could,
for example, consider

f̃(r) = p
hr
rβ
, (6)

which follows an exponential distribution, with parameter
rβ

p .

3.2 Pair cooperation
Consider g : R2 × R2 −→ R+ and g̃ : [0,∞) × [0,∞) −→
R+ two generic random fields, both independent of the BS
positions. The quantity g(x, y) (and g̃(r, z)) represents the
received signal at the typical user, when transmitted by a
pair of BSs whose positions are x and y (or their distance
from the origin are r > 0 and z > 0), respectively. The
received signal can take the following example expressions,
which refer to different types of cooperation or coordination,

g̃(r, z) =



phr
rβ

+ phz
zβ
, [NSC]

1onrp
hr
rβ

+ (1− 1onr )p
hz
zβ
, [OFF]

max
{
phr
rβ
, phz

zβ

}
, [MAX]∣∣∣∣√phrrβ eiθr +

√
phz
zβ
eiθz

∣∣∣∣2 [PH]

. (7)

TABLE 1: Expressions for the CCDF and the LT

P(g(r, z) > T ) E[e−sg(r,z)]

[NSC] zβ

p(rβ−zβ)

(
e
− r

β

p
T − e−

zβ

p
T
)

rβ

sp+rβ
zβ

sp+zβ

[OFF] qe
− r

β

p
T

+ qe
− z

β

p
T

q rβ

sp+rβ
+ q zβ

sp+zβ

[MAX] e
− r

β

p
T

+ e
− z

β

p
T −

e
−
(
rβ

p
+ zβ

p

)
T

rβ

sp+rβ
+ zβ

sp+zβ
−

rβ+zβ

sp+rβ+zβ

In the above, (1onr )r>0 and (θr)r>0 are two different fam-
ilies of indexed identically distributed r.v.s, independent
of the other random objects. They follow a Bernoulli dis-
tribution, with parameter q ∈ (0, 1) (q := 1 − q), and a
general distribution over [0, 2π), respectively. [NSC] refers
to non-coherent joint transmission, as in [12], [13], [14], [20],
where each of the two BSs transmits an orthogonal signal,
and the two are added at the receiver side. [OFF] refers to
the case where one of the two BSs is active and the other
inactive, according to an independent Bernoulli experiment,
independent of the BS positions. [MAX] refers to the case
where the BS with the strongest signal is actively serving a
user, while the other is off. The [OFF] and [MAX] cases are
relevant to energy saving operation. In the [PH] case, two
complex signals are combined in phase (see [11], [12]), in
particular, when cos(θr − θz) = 1, the two signals are in the
same direction, and they add up coherently at the receiver
(user side), giving the maximum cooperating signal.

The above expressions in (7) are merely examples of the
cooperation signals. A more general family can be proposed
with specific properties. Consider ci : [0,∞)× [0,∞) −→ R,
and di : [0,∞) × [0,∞) −→ R+, for 1 ≤ i ≤ n, some
deterministic and measurable functions, and suppose that

P(g̃(r, z) > T ) =
n∑
i=1

ci(r, z)e
−di(r,z)T . (8)

When analysing performance related to coverage probabil-
ity, the tail probability distribution functions (CCDF) for the
signals that can be written as (8) lead easier to numerically
tractable formulas. However, the function defined in (8) is
not necessarily a CCDF. For this to hold, some extra condi-
tions must be imposed to the functions ci(r, z) and di(r, z).
Interestingly, the CCDF of g̃(r, z) in the [NSC], [OFF], and
[MAX] cases fulfils equation (8) (see Table 1). Furthermore,
there exist important families of r.v.s whose CCDF actually
has the form described in equation (8): the hypo-exponential
distribution, the hyper-exponential distribution, the maximum
over a finite number of exponential r.v.s, among others.

4 INTERFERENCE ANALYSIS IN THE MNNR
MODEL

The purpose of the analysis up to this point was to develop
the basic tools, within a communication context, that will
allow us to derive results related to cooperation. As shown
in the previous Section, the cooperating BS pairs will have
a different influence on the interference seen by a user in
the network, than those operating individually. The current
Section will focus on the interference field generated by Φ(1)

and Φ(2). As shown in Section 2, even when Φ is a PPP, the
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two processes behave differently than a PPP. We thus have
to resort to direct techniques from the theory of Stochastic
Geometry and point processes.

If we denote by I(1) and I(2), the interference field
generated by the elements of Φ(1) and Φ(2), then,

I(1) =
∑

x∈Φ(1)

f(x), (9)

I(2) =
1

2

∑
x∈Φ(2)

∑
y∈Φ(2)\{x}

g(x, y)1{
x

Φ↔y
} (10)

The 1/2 in front of the summation in (10) prevents us from
considering a pair twice. Remark that we can consider here
any type of signal (directional or not).

4.1 Expected value of I(1) and I(2).

The next Theorem gives an exact integral expression to the
expected value of the interference field generated by the
singles and the pairs. The proof uses the Campbell-Little-
Mecke formula, Lemma 1, and Theorem 1.

Theorem 4. For a PPP Φ, the expected value of the interference
field generated by Φ(1) and Φ(2) is given by

E
[
I(1)

]
= (1− δ)

∫
R2

E [f(x)]λdx, (11)

E
[
I(2)

]
=

1

2

∫
R2

∫
R2

E [g(x, y)] e−λπ|x−y|
2(2−γ)λdyλdx.

(12)

Proof. Let us start with I(1). We observe that, because the
nearest neighbor always exists and is unique,

I(1) =
∑

x∈Φ(1)

f(x)

=
∑
x∈Φ

f(x)1{x∈Φ(1)}

=
∑
x∈Φ

f(x)
(

1− 1{x∈Φ(2)}

)
Thus, after applying the reduced Campbell-Little-Mecke
formula and Slivnyak-Mecke’s Theorem

E
[
I(1)

]
= E

[∑
x∈Φ

f(x)
(

1− 1{x∈Φ(2)}

)]
(a)
=

∫
R2

E [f(x)]
(

1− P(x ∈ Φ(2))
)
λdx

(b)
= (1− δ)

∫
R2

E [f(x)]λdx,

where (a) follows because f(x) is independent of Φ and (b)
after Theorem 1. Then we have the desired result for I(1).

For I(2), we make the observation that∑
x∈Φ(2)

∑
y∈Φ(2)\{x}

g(x, y)1
{x Φ↔y}

=
∑
x∈Φ

∑
y∈Φ\{x}

g(x, y)1
{x Φ↔y}

,

and iterating the reduced Campbell-Little-Mecke formula
and Slivnyak-Mecke’s Theorem,

E
[
I(2)

]
= E

∑
x∈Φ

∑
y∈Φ\{x}

g(x, y)1
{x Φ↔y}


=

∫
R2

∫
R2

E
[
g(x, y)1

{x Φ↔y}

]
λdyλdx

(c)
=

∫
R2

∫
R2

E [g(x, y)]P
(
x

Φ↔ y
)
λdyλdx

(d)
=

∫
R2

∫
R2

E [g(x, y)] e−λπ‖x−y‖
2(2−γ)λdyλdx,

where (c) follows because g(x, y) is independent of Φ and
(d) after Lemma 1.

The expected value can be finite or infinite, depending
on the choice of f(x) and g(x, y). Observe that for [NSC]
and [PH] the expected interference has the same value.

Corollary 1. For a PPP Φ, let M (1) and M (2) be the intensity
measures of Φ(1) and Φ(2), respectively. Then,

M (1)(dx) = (1− δ)λdx,
M (2)(dx) = δλdx.

Proof. Let A be a regular subset of R2. For the choice
f(x) = 1xA (and g(x, y) = 1xA2), the random variable I(1)

(and I(2)) counts the number of singles (pairs) within A.
Applying directly the preceeding Theorem, and remarking
that

∫
R2 e−λπ‖x−y‖

2(2−γ)λdy = δ, for every x ∈ R2, we have
the desired result.

The previous Corollary states that the intensities of Φ(1)

and Φ(2) are (1− δ)λ and δλ, as stated in Section 2.

4.2 Laplace functional of Φ(1) and Φ(2)

As a final discussion in this Section, we present our findings
related to the LT of the interference from Φ(1) and Φ(2),
when Φ is a PPP. Fix a measurable set A ⊂ R2 (window).
Recall that Φ(A) denotes all the atoms of Φ inside A. We
define the point processes

Φ
(1)
A =

{
single atoms of Φ(A)

}
Φ

(2)
A =

{
atoms of Φ(A) in MNNR

} (13)

where the MNNR have been considered only among the
Φ atoms inside A. Consider a sequence of finite windows
(An)∞n=1 increasing to R2 in an appropriate sense (for exam-
ple, An = B(n, 0)). We have the following result.

Theorem 5. Given a PPP Φ, then, for i = 1, 2,

lim
n→∞

Φ
(i)
An

(d)
= Φ(i),

where
(d)
= means equality in distribution.

Proof. See Appendix B, available in the supplemental mate-
rial.

As convergence in distribution is equivalent to conver-
gence of the LT [31], the previous Theorem states that, for
A large enough, the LT of Φ

(i)
A approximates that one of

Φ(i). The benefit of this approach is that, for every finite
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windowA, we can actually obtain an analytic representation
for the LT of Φ

(i)
A . As a sketch of the proof, fix a finite

subset A. Conditioned on the number of atoms, these are
i.i.d. uniformly distributed within A. Then, using the law of
total probability, we can express the LT as an infinite sum
of terms. The probability of a PPP having a fixed number of
atoms within A is known. Thus, we only have left to find
expressions for the LT conditioned on the number of points
inside A. For a finite number of different planar points
x1, . . . , xn ∈ A, define the function Hi,n(x1, . . . , xn) as the
indicator function of the atom xi being in pair with another
atom of the finite configuration {x1, . . . , xn} (Definition 1).
In the same fashion, define the function Ii,n(x1, . . . , xn)
as the indicator function of the atom xi being single with
respect to the finite configuration {x1, . . . , xn} (Definition
2). Let

H(n)(x1, . . . , xn)

:= (H(1,n)(x1, . . . , xn), . . . ,H(n,n)(x1, . . . , xn)),

I(n)(x1, . . . , xn)

:= (I(1,n)(x1, . . . , xn), . . . , I(n,n)(x1, . . . , xn)).

We have the following result.

Theorem 6 (Laplace transform). Consider a PPP Φ, with
intensity λ, a regular subset A ⊂ R2, and a measurable function
f : R2 −→ R+. Let F (n)(x1, . . . , xn) := (f(x1), . . . , f(xn)).

The LT of Φ
(1)
A is equal to

E
(
e
−
∑
x∈Φ

(1)
A

f(x)
)

=e−λS(A)

(
1 + λ

∫
A
e−f(x)dx+

λ2

2

+
∞∑
n=3

λn

n!

∫
A
. . .

∫
A
e−F

(n)(x1,...,xn)·H(n)(x1,...,xn)dx1 . . . dxn

)
(14)

The LT of Φ
(2)
A is equal to

E
(
e
−
∑
x∈Φ

(2)
A

f(x)
)

=e−λS(A)

(
1 + λS(A) +

λ2

2

∫
A

∫
A
e−(f(x)+f(y))dydx

+
∞∑
n=3

λn

n!

∫
A
. . .

∫
A
e−F

(n)(x1,...,xn)·I(n)(x1,...,xn)dx1 . . . dxn

)
(15)

Implementation: The MNNR was defined in a general way
(see Section 2). Then, for every natural number n, it is easy
to write a program/algorithm with input (x1, . . . , xn) and
output H(n)(x1, . . . , xn) (or I(n)(x1, . . . , xn)):

1) Define a n× n matrix D = (di,j), such that

di,j = ‖xi − xj‖.

2) Choose a n × 1 vector v, such that, for each i =
1, . . . , n,

v(i) = argmin
j∈{1,...,n}\{i}

di,j .

3) Define another n × 1 vector u, such that, for each
i = 1, . . . , n

• If i = v(v(i)) (that is, xi and xv(i) are in
MNNR), then u(i) = 1.

• Else u(i) = 0.

4) Return u.

Fixed f(x), F (n)(x1, . . . , xn) is also known. Thus, for every
natural number n, it is easy to set up a program that
numerically approaches∫

A
. . .

∫
A
e−F

(n)(x1,...,xn)·H(n)(x1,...,xn)dx1 . . . dxn

and ∫
A
. . .

∫
A
e−F

(n)(x1,...,xn)·I(n)(x1,...,xn)dx1 . . . dxn.

However, it is clear that, as n grows, computational time for
H(n)(x1, . . . , xn) and I(n)(x1, . . . , xn) naturally increases.
Since n-nested integral involving these functions needs to
be computed, complicating the problem even more. As part
of the current research, the authors work on the complexity
reduction of the MNNR algorightm, and investigate the rate
of convergence for the expressions in equations (14) and (15)
(to avoid calculating an infinite number of terms).

5 THE SUPERPOSITION MODEL - COVERAGE
ANALYSIS

As a consequence of the non-Poissonian behaviour of Φ(1)

and Φ(2), a complete performance analysis of SINR related
metrics is analytically challenging. This is due to the fact
that the expressions presented for the LT are not numerically
tractable. Thus, one cannot derive simple, analytic expres-
sions for the coverage probability by LT methods, as shown
in [36]. Instead, we use in this work the following model to
approximate these metrics.

5.1 Poisson Superposition Model
To imitate the process of singles, we consider a PPP Φ̂(1),
with parameter (1 − δ)λ. In this way, the new process of
singles and Φ(1) share the first moment (Corollary 1).

To imitate the process of pairs, we also consider a PPP
Φ̂(2), independent of Φ̂(1), with intensity δ

2λ. We call the
atoms of this process the parents. We considere the process
Φ̂(2) as independently marked. Each mark of a parent repre-
sents its pairing BS, the daughter. The idea is that each couple
(parent, daughter) imitates a cooperating pair in MNNR. Let
us consider (Zr)r>0 a family of independent, real r.v.s,
independent also of Φ̂(1) and of Φ̂(2), where each Zr follows
a Rice distribution, with parameter (r, α). If Y is a random
vector representing the Cartesian coordiantes of a parent,
we define its mark by Z‖Y ‖.

To understand the choice for the marks, suppose that a
BS is placed at the polar coordinates (r, θ), with r > 0 and
θ ∈ [0, 2π) fixed (see Figure 4). Assume also that this BS
belongs to a cooperating pair from the Nearest Neighbor
model, and let us denote by W the distance between the
stations in pair. According to Theorem 3, W is Rayleigh dis-
tributed, with scale parameter α. If Z denotes the distance
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Fig. 4: Two cooperating BSs, where r and Zr are their
distances from the origin, and W is the distance between
them.

from the typical user to the second BS, the isotropy of the
PPP implies that the distribution of Z is independent of θ.
Moreover, we have the following result.

Proposition 2. The r.v. Z is Rice distributed, with parameters
(r, α). The probability density function (PDF) of Z is given by

f(z|r) =
z

α2
e−

z2+r2

2α2 I0
( zr
α2

)
, (16)

where I0(x) is the modified Bessel function, of the first kind, with
order zero.

The angular coordinate of a PPP atom is uniformly
distributed in [0, 2π). Moreover, the Cartesian coordinates
of a point around a center, with Rayleigh radial distance and
uniform angle, are distributed as an independent Gaussian
vector. Given this, Proposition 2 follows from [37, Lem. 1].

5.2 The Distribution of The Closest Distances
Let R1 and R2 denote the r.v.s of the distances from the
closest element of Φ̂(1) and Φ̂(2) to the origin, respectively.
Denote also by Z2 the mark of the parent at R2. It is known
that the r.v.s R1 and R2 are Rayleigh distributed [36], with
scale parameters ξ and ζ , where ξ := ((1− δ)2λπ)−1/2 and
ζ := (δλπ)−1/2. By definition, R2 and Z2 are not mutually
independent, but we can derive their joint PDF.

Lemma 2. The joint PDF of the r.v. (R2, Z2) is given by

f(r, z) =
rz

(αζ)2
e
− r22

(
1
α2 + 1

ζ2

)
−−z

2

2ζ2 I0

(
rz

ζ2

)
. (17)

Furthermore, the r.v. Z2 is Rayleigh distributed, with scale pa-
rameter (α2 + ζ2)−1/2.

Proof. See Appendix C, available in the supplemental mate-
rial.

To make a complete analysis of the coverage probability,
we make use of the distribution of the random vector
(R1, R2, Z2). Because R1 is independent of (R2, Z2), the
joint PDF is the product of the PDF of R1 with the joint
PDF of (R2, Z2).

5.3 Interference Field
It is clear from the definition of the marks of Φ(2) that, for
the superposition model, we deal only with onmidirectional
BSs. For r > 0, denote by

Lf̃ (s; r) := E
[
e−sf̃(r)

]
, (18a)

Lg̃(s; r, ρ) := E
[
e−sg̃(r,Zr)1{Zr>ρ}

]
, (18b)

the LT of the signal generated by a single BS, and the LT
of the signal generated by a cooperation pair, given that the
radius of the daughter is larger than ρ ≥ 0. When ρ = 0,
Lg(s; r, 0) will be denoted just by Lg(s; r). For example, if
we take f(r) as in equation (6), we get

Lf (s; r) =
rβ

sp+ rβ
. (19)

Recall that phr
rβ

and phz
zβ

are independent, exponential r.v.s,
with parameter rβ

p and zβ

p . In Table 1 we find expressions
for E[e−sg̃(r,z)] in the [NSC], [OFF], and [MAX] cases. By
remarking that

Lg̃(s; r, ρ) = E
[
E
[
e−sg̃(r,Zr)

∣∣∣Zr]1{Zr>ρ}] ,
we get analytical expressions for Lg̃(s; r) in the [NSC],
[OFF], and [MAX]. For example, in the [NSC] we have that

Lg̃(s; r, ρ) =
rβ

sp+ rβ

∫ ∞
ρ

zβ

sp+ zβ
f(z|r)dr,

where f(z|r) is the density function of the Rice r.v. Zr (see
equation (16)). For the more general distribution described
by equation (8), it is also possible to give analytical formulas
similar to Lg̃(s; r, ρ). The [PH] case is more complicated
(see [11, Lem. 3] for cos(θr − θz) = 1).

We consider the interference fields generated by all the
elements of Φ̂(1) and Φ̂(2) outside the radius ρ ≥ 0

Î(1)(ρ) =
∑

x∈Φ̂(1),‖x‖>ρ

f̃(‖x‖), (20a)

Î(2)(ρ) =
∑
y∈Φ̂(2)

‖y‖>ρ,Z‖y‖>ρ

g̃(‖y‖, Z‖y‖). (20b)

When ρ = 0, they are just denoted by Î(1) and Î(2). The
total interference generated outside possibly different radii
for the two processes, i.e. ρ1 ≥ 0 and ρ2 ≥ 0 is

Î(ρ1, ρ2) := Î(1)(ρ1) + Î(2)(ρ2). (21)

When ρ1 = ρ1 = 0, we write only Î .
The next Lemma is a well known result giving analytical

representations to the LT of the PPP Interference fields [10].

Lemma 3. The LTs of Î(1)(ρ) and Î(2)(ρ), denoted by
LÎ(1)(s; ρ) and LÎ(2)(s; ρ), are given by

LÎ(1)(s; ρ) = e−λ2π(1−δ)
∫∞
ρ (1−Lf (s;r))rdr, (22a)

LÎ(2)(s; ρ) = e−πλδ
∫∞
ρ (1−Lg(s;r,ρ))rdr. (22b)

The Lemma uses the Poisson properties of Φ̂(1) and
Φ̂(2). The expressions given in equations (22) are the tools
which allow us to make an entire analysis of the coverage
probability.

As an example, if we replace equation (19) in equation
(22a), for ρ = 0 we get the analytical representation [36]

LÎ(1)(s) = e−
λ(1−δ)2π2(sp)2/β

β csc( 2π
β ), (23)

where csc(z) is the cosecant function. In the same fash-
ion, it is possible to obtain expressions for LÎ(1)(s; ρ) and
LÎ(2)(s; ρ).
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5.4 Coverage Probability
We can now make use of the PPP superposition model to
evaluate the performance of the different cooperation (or
coordination) types proposed above. The beneficial signal,
received at the typical user from a single BS or a pair, will
be denoted by f̃(r) and g̃(r, z), respectively. These may not
be the same functions modeling the interference the typical
user receives from other BSs. This is explained by the fact
that the interference is the sum of the signals other BSs
generate for their own serving users who are not located
at the Cartesian origin.

We consider two scenarios of user-to-BS association:

5.4.1 Fixed Single Transmitter
Let us suppose that there is one BS serving the typical user,
whose distance to the origin is fixed and known r0 > 0.
Moreover, it serves the typical user independently of the
atoms from Φ̂(1) and Φ̂(2). Then the signal emitted to the
typical user is f̃(r0), and the Signal-to-Interference-plus-
Noise-Ratio (SINR) at the typical user is defined by

SINR :=
f̃(r0)

σ2 + Î
, (24)

where σ2 is the additive Gaussian noise power at the re-
ceiver and Î is the total interference power (see equation
(21)).

Proposition 3. Suppose f̃(r0) as in (6). Then, the success
probability is given by the expression

P (SINR > T ) = e−
Tσ2r

β
0

p LÎ(1)

(
Trβ0
p

)
LÎ(2)

(
Trβ0
p

)
.

(25)

The last proposition allows us to evaluate the SINR
directly with the help of equations (22a) and (22b) for ρ = 0.

5.5 Closest Transmitter from Φ̂(1) or Φ̂(2) (and his
daughter)
We consider that the typical user is connected to the BS
at R1 (see subsection 5.2), or to the cooperating cluster
(parent,daughter) at (R2, Z2). The previous association de-
pends on which one of them is closer to the typical user. If
R1 < min{R2, Z2}, the single BS at R1 serves the typical
user, and it emits the signal f̃(R1). In the opposite case, if
R2 ≤ R1 or if Z2 ≤ R1, the cooperating pair at (R2, Z2)
serves the user, and it emits the signal g̃(R2, Z2). All the BSs
not serving the typical user generate interference. Thus,

SINR :=


f̃(R1)

σ2+Î(R1,R1)
; R1 < min{R2, Z2},

g̃(R2,Z2)

σ2+Î(R2,R2)
; R2 < min{R1, Z2},

g̃(R2,Z2)

σ2+Î(Z2,R2)
; Z2 < min{R1, R2}.

(26)

From equation (20b), recall that once a parent generates
interference, its respective daughter does it along with it. For
the first term of the preceding equation, Î(R1, R1) considers
that all the singles and parents lying outside R1 generate
interference. For the the second term we use a similar
argument. For the third one, the argument is a little bit more
delicate. The r.v. Î(Z2, R2) considers that all the singles lie

outside the radius Z2, and all of them generate interference.
Nevertheless, only the parents outside R2 generate interfer-
ence (the parent associated to R2 lies outside Z2). Note that,
the way this user-to-BS-association is defined, for the three
cases, this is the only way to assure that all the BSs not
serving the typical user generate interference.

Proposition 4. Suppose f(r) and g(r, z) follow equations (6)
and (8). Then, there exist explicit functions G : [0,∞) → R+

and H,K : [0,∞)× [0,∞)→ R+ such that

P (SINR > T ) = E[G(R1)] + E[H(R2, Z2)] + E[K(R2, Z2)].

Proof. See Appendix D, available in the supplemental mate-
rial.

The expressions for G(r), H(r, z), and K(r, z) are given
by

G(r) = G̃(r)Ĝ(r),

H(r, z) = H̃(r, z)Ĥ(r, z),

K(r, z) = K̃(r, z)K̂(r, z),

where

G̃(r) := 1− FR2
(r)− FZ2

(r) + FR2,Z2
(r, r),

H̃(r, z) := (1− FR1
(r))1{z>r},

K̃(r, z) := (1− FR1
(z))1{r>z},

and

Ĝ(r) := e
−Trβ
p σ2

LÎ(1)

(
Trβ

p
; r

)
LÎ(2)

(
Trβ

p
; r

)
,

Ĥ(r, z) :=
n∑
i=1

ci
(
r, z
)
e−Tdi(r,z)σ

2

LÎ(1)

(
Tdi(r, z); r

)
LÎ(2)

(
Tdi(r, z); r

)
K̂(r, z) :=

n∑
i=1

ci
(
r, z
)
e−Tdi(r,z)σ

2

LÎ(1)

(
Tdi(r, z); z

)
LÎ(2)

(
Tdi(r, z); r

)
.

We can find expressions for the deterministic functions
LÎ(1)(s; ρ) and LÎ(2)(s; ρ) in equation (22), and the functions
ci(r, z) and di(r, z) are those from equation (8). Finally, the
functions FR1

(r), FR2
(r), and FZ2

(r) are the CDF of the ran-
dom variables R1, R2, Z2, which are Rayleigh distributed
(see Section 5.2), and FR2,Z2

(r, z) is the CDF of the random
vector (R2, Z2), which can be obtained with equation (17).

Remark: we can either calculate the expression of the
coverage probability from equation (4) via Monte Carlo sim-
ulations (because we know the distribution of R1, R2, and
(R2, Z2)), or via numerical integration, using the formulas

E[G(R1)] =

∫ ∞
0

G(r)fR1(r)dr

E[H(R2, Z2)] =

∫ ∞
0

∫ ∞
0

H(r, z)fR2,Z2(r, z)dzdr

E[K(R2, Z2)] =

∫ ∞
0

∫ ∞
0

K(r, z)fR2,Z2(r, z)dzdr,

where fR1(r) and fR2,Z2(r, z) are the density functions of
R1 and (R2, Z2) (again, see equation (17)).
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6 NUMERICAL EVALUATION

We consider a density for the BSs λ = 0.25 [km2], which
corresponds to an average closest distance of (2

√
λ)−1 = 1

[km] between stations. We also consider that the power is
p = 1 [Watt].

We first illustrate the validity of the expressions in Theo-
rem 4. Specifically, we compare the expressions in equations
(11) and (12) with simulations.

6.1 Expected value of the Interference field

Given a fixed β > 2, define the random field f(x) =
h‖x‖
‖x‖β 1{‖x‖>R}, where R is a positive number and the fam-
ily (hr)r>0 is defined in Section 3. The indicator function
serves to calculate the interference generated by the singles,
outside a ball centred at 0 and radius R. With the aid of
f(x), define I(1) as in equation (9). Using Theorem 4, the
numerical evaluation of the expected value of I(1) is given
in figure 5. The expression in (11) gives almost identical
results with the simulations.

Similarly, with the aid of the random field
g(x, y)1{‖x‖,‖y‖>R}, define I(2) as in equation (10).
For the numerical evaluation, we consider the two cases
[NSC] and [MAX]. The interference from [MAX] is always
smaller than that one from [NSC], since it is received only
from one of the two BSs of each pair, while the other is
silent. Figure 5 shows that the numerical evaluation of the
expression in (12) gives almost identical results with the
simulations. Remark also that, for β = 4, the two scenarios
do not numerically defer much.

For the coverage probability analysis, we evaluate only
the noiseless scenario P(SIR > T ) (with σ2 = 0). We
compare the SIR coverage performance from the Nearest
Neighbor and the superposition models against the model
without cooperation [36]. We consider both cases (a) with
fixed transmitter, and (b) where the association is done with
the (almost) closest cluster, as in (26). In this second case, for
the Nearest Neighbor model, the user-cluster association is
done differently than in the superposition model, as follows.
The typical user is served by the closest BS of the original
point process Φ, and by its mutually nearest neighbor, if one
exists. The cooperative signals are those proposed in (7).

6.2 Closeness of the approximation by the PPP super-
position

We compare in Fig. 6 the coverage probabilities, over the
threshold T , for the Nearest Neighbor model and the super-
position model, in both association cases. As we can see,
the curves are very close in both cases. For the ”closest”
transmission cluster the difference is more evident, because
on the one hand the superposition model does not take into
account the repulsion between clusters (singles or pairs),
and on the other hand the association of a cluster to the
user as done in (26) for the superposition model, sometimes
misses the actual closest daughter to the origin (which is
not necessarily the one at Z2). This never happens the
way we choose the closest cluster in the Nearest Neighbor
model. Hence, the approximative model underestimates the
coverage benefits in the closest cluster association.
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Fig. 5: (a) Expected value of the interference generated
by the single atoms, outside a radius R, (b) and by the
cooperative pairs, outside a radius R.
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Fig. 6: Closeness of the approximation between the super-
position and the Nearest Neighbor model, β = 3. (a) Fixed
transmitter and (b) closest transmitter.
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6.3 Validity of the numerical analysis

In Figure 7, we compare the plots of the coverage probability
from the numerical integration, against simulations, of the
analytic formula presented in Proposition 4. As we can see,
they fit perfectly, both for larger values of β, like β = 4, and
for critical ones, like β = 2.5.
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Fig. 7: Validity of the analysis for the superposition model
for the fixed single transmitter. (a) β = 2.5 (b) β = 4.

6.4 Cooperation gains

The possible coverage gains, compared to the non-
cooperative network, in the case of an association with a
fixed transmitter, are shown in Fig. 8(a). As a first remark,
for the fixed association, the [NSC] case for the Nearest
Neighbor model and the non-cooperative model are practi-
cally the same. The coverage probability in the [MAX] case
is close to the coverage probability in the [NSC] case. This
suggests that the strongest signal in each cooperating pair
influences interference the most. For the [OFF] case there is
a 10% benefit compared to the non-cooperative case, in the
largest part of the domain in T .

The gains are also evaluated in the case of association
with the closest cluster. For the SINR, let us call [MAX/OFF]
the case where the closest cluster emits a signal to the typical
user according to [MAX], i.e. only the max signal is sent,
while the pairs generate interference, according to [OFF].
The idea is that when all network pairs choose [MAX]
cooperation for their own users, this choice of one-station-
out-of-two is random for the typical user point of view. This
[MAX/OFF] case shows a 15% absolute gain from the non
cooperative case, which is around 9% for the [NSC] (see Fig.
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Fig. 8: Coverage gains from Nearest Neighbor cooperation
compared to no cooperation, β = 3. (a) Fixed transmitter
and (b) closest transmitter.

8(b)). This gain is almost equal with the dynamic clustering
in [11].

7 MODEL BENEFITS AND FUTURE RESEARCH

The static grouping model presented in this paper has the
following network benefits.

• By definition, the MNNR reduces the generated in-
terference.

• The percentage of stations that are in cooperative
pairs and the percentage of those left single (both for
the PPP and the hexagonal grid model) show that the
MNNR is a reasonable grouping strategy.

• Our approach can be applied to many cooperation
variations, ranging from simple coordination of the
BSs in group, to fully cooperative transmission using
knowledge of the channel states.

The mathematical innovations are the following.

• The derivation of structural properties for Φ(1) and
Φ(2) by classical Stochastic Geometry tools comes
naturally.

• Two repulsive point processes can be constructed in
a natural way.

• Based on simple geometrical concepts, the MNNR
can be easily implemented in any programming lan-
guage. This simplifies the numerical evaluation of
the system.

• The superposition approach makes possible a com-
plete analysis of the coverage probability, which can
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be extended to other performance metric, such as the
throughput.

• The superposition is equal in distribution to a Gauss-
Poisson process. However, the mark related to each
pair is chosen in an original way that allows the
derivation of simple formulas, that cannot be ob-
tained by directly using a Gauss-Poisson.

As stated in Theorem 5, the resulting edge effects of
the MNNR are negligible for a PPP. This makes possible a
finite window analysis for the interference generated by the
singles and pairs. Part of the current research of the authors
is the convergence rate for this result, as well as bounds and
the respective convergence rate for Theorem 6.

The static cluster methodology proposed is based on
the Euclidean distance between BSs, and fixes groups of
singles and pairs over time. This approach doest not allow
for flexibility in the way the groups are created. We could
imagine introducing different methods, for the formation of
the desirable clusters, that take into account the availability
of each BS as well as the Euclidean disatnce among them.
Analysis and applications of this type of cooperation can be
considered as future extensions of the MNNR.

8 CONCLUSIONS

The MNNR is a reasonable methodology to define single BSs
and cooperative pairs. In spite of the analytical difficulties
(due to overlapping discs with different radii), it is possible
to use an approximate model and provide a complete anal-
ysis of SINR-related metrics. Moreover, it could be possible
to generalise the idea and include clusters of size greater
than two. The analysis should remain the same and similar
results could be derived via Monte Carlo simulations.

The coverage benefits of the MNNR, with respect to the
non-cooperative case, can reach a 15% of absolute gain,
although around 32% of stations is single and do not co-
operate. Similar gains can be achieved by some dynamic
clustering methodologies. For the MNNR, this is impressive,
considering that only 62% of the BSs cooperate. Different
kinds of cooperative signals reported different coverage
benefits. Thus, cooperation benefits fundamentally depend
on the choice of the grouping method, the allowed max-
imum cluster size, as well as the appropriate cooperation
signals. This works provides an important step towards
resolving this complex problem.
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APPENDIX A (SUPPLEMENTAL MATERIAL)
Proof of Proposition 1
Denote by (R,Θ) the polar coordinates of the closest Φ atom from the
typical user. The r.v. R is Rayleigh distributed, with scale parameter
(λ2π)−1/2. Because of the isotropy of a stationary PPP, R and Θ are
independent r. v. and Θ is uniformly distributed over [0, 2π). Therefore,
its density function is given by

f(R,Θ)(r, θ) = λre−λπr
2
1{r>0}1{θ∈[0,2π)}

Then,

P(0 y Φ(2)) = E
(
P(0 y Φ(2)|R,Θ)

)
=

∫ ∞
0

∫ 2π

0
P(0 y Φ(2)|R = r,Θ = θ)λre−λπr

2
dθdr

Fix a realisation φ. Denote by x and y two different atoms from φ,
whose polar coordinates are (r, θ) and (s, ϕ), respectively. If ρ denotes
the Euclidean distance between x1 and x2, then,

ρ2 = r2 + s2 − 2rscos(θ − ϕ)

If we suppose that x is the nearest neighbor atom from φ to the origin,
then, the atoms x and y are in MNNR iff

D(x, y) := (B(x, ρ) ∪B(y, ρ))\B(0, r) (27)

is empty of atoms from φ\{x, y}. Denote by F (r, s, θ, ϕ) the Euclidean
surface of D(x, y), the empty space function of a PPP implies that

P(0 yΦ(2)|R = r,Θ = θ)

=

∫ ∞
0

∫ 2π

0
e−λF (r,s,θ,ϕ)sdsdϕ,

and therefore,

P(0 y Φ(2))

= λ2

∫ ∞
0

∫ 2π

0

∫ ∞
0

∫ 2π

0
e−λF (r,s,θ,ϕ)−λπr2rsdsdϕdθdr

In some cases, it is actually possible to find explicit values for
F (r, s, θ, ϕ). For example, the case ρ ≥ 2r implies that B(0, r) ⊂
B(x, ρ). Thus,

S(D(x, y)) = S(B(y, ρ)\B(x, ρ)) + S(B(x, ρ))− S(B(0, r))

Then, we have that

S(B(y, ρ)\B(x, ρ)) = πρ2(1− γ),

and
S(B(x, ρ))− S(B(0, r)) = πρ2 − πr2.

Unfortunately, in other cases is arduous to obtain F (r, s, θ, ϕ).

APPENDIX B (SUPPLEMENTAL MATERIAL)
Proof of Theorem 5
For a natural number n, denote Bn := B(0, n) and fix Φn := Φ

(1)
Bn

, as
done in equation (13). We will prove that, for every compact subset E
of R2,

(i)
lim
n→∞

P(Φn(E) = 0) = P(Φ(1)(E) = 0)

(ii)
lim sup
n→∞

P(Φn(E) ≤ 1) ≥ P(Φ(1)(E) ≤ 1)

(iii)
lim
t↗∞

lim sup
n→∞

P(Φn(E) > t) = 0

The previous being equivalent to convergence in distribution of the
sequence of point processes (Φn) to Φ(1) [31]. Fix a compact E ⊂ R2.
Let us start to prove (i). Being Φn a thinning of the PPP Φ,

P(Φn(E) = 0) =e−λS(E)

+ P(Φn(E) = 0,Φ(E) > 0)

=e−λS(E)

+ P(Φn(E) = 0,Φ(1)(E) = 0,Φ(E) > 0)

+ P(Φn(E) = 0,Φ(1)(E) > 0,Φ(E) > 0)

Given that the compact subset E is fixed, take a natural number n1

such that

n1 > 3supy∈E‖y‖

and such that E ⊂ Bn, for every n > n1. Therefore, for every atom
belonging to Φ(1), but not to Φn, the distance to its nearest neighbor
must exceed 2

3
supy∈E‖y‖. Thus, there exits a constant C1 > 0 such

that, for every n > n1,

P(Φn(E) = 0,Φ(1)(E) > 0,Φ(E) > 0) ≤ e−λπC1n
2

In the same fashion,

P(Φ(1)(E) = 0) = e−λS(E)

+ P(Φn(E) = 0,Φ(1)(E) = 0,Φ(E) > 0)

+ P(Φ(1)(E) = 0,Φn(E) > 0,Φ(E) > 0)

and there must exists a natural number n2, and a constant C2 > 0 such
that, for every n > n2,

P(Φ(1)(E) = 0,Φn(E) > 0,Φ(E) > 0) ≤ e−λπC2n
2

Take N = max{n1, n2}, then, for every n > N ,

|P(Φn(E) = 0)− P(Φ(1)(E) = 0)| ≤ e−λπC1n
2

+ e−λπC2n
2

We conclude that

lim
n→∞

P(Φn(E) = 0) = P(Φ(1)(E) = 0)

To prove (ii), remark that

P(Φn(E) = 1) = P(Φn(E) = 1,Φ(1)(E) 6= 1)

+ P(Φn(E) = 1,Φ(1)(E) = 1)

P(Φ(1)(E) = 1) = P(Φ(1)(E) = 1,Φn(E) 6= 1)

+ P(Φ(1)(E) = 1,Φn(E) = 1)

hence

|P(Φn(E) = 1)− P(Φ(1)(E) = 1)|
≤| P(Φn(E) = 1,Φ(1)(E) 6= 1)

− P(Φ(1)(E) = 1,Φn(E) 6= 1)|

In the same way as we did before, we can prove that

lim
n→∞

| P(Φn(E) = 1,Φ(1)(E) 6= 1)

− P(Φ(1)(E) = 1,Φn(E) 6= 1)| = 0,

and this leads to

lim
n→∞

P(Φn(E) = 1) = P(Φ(1)(E) = 1)

Finally, we prove (iii). Being Φn a thinning of the PPP Φ,

P(Φn(E) > t) ≤ P(Φ(E) > t)

≤
EΦ(E)

t

=
λS(E)

t

which goes to zero, as t↗∞.
Take a sequence (An) of compact sets. To conclude that (Φ

(1)
An

)

converges in distribution to Φ(1)), then it must fulfil that, for every
natural number m, there exits another natural number N such that, for
every n > N , then, Bm ⊂ An. We can prove that (Φ

(2)
An

) converges in
distribution to Φ(2).
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APPENDIX C (SUPPLEMENTAL MATERIAL)
Proof of Proposition 2.
Denote by A and B the Cartesian coordinates of the nearest parent
to the typical user and his daughter, respectively, and also denote
by (R2,Θ) and (Z2,Ψ) their respective polar coordinates. Define
C := A − B and denote its polar coordinates by (W,Ω) (see Figure
9). The random variables R2 and W are Rayleigh distributed, with
scale parameters ζ and α, respectively. Moreover, the random angles Θ,
Ψ and Ω are considered uniformly distributed over [0, 2π), to preserve
the isotropy in the PPP case. Also, the random variables R2, Θ, W , and
Ω are independent between them, as in the PPP case.

Our first goal is to find the joint distribution of the random vector
(R2, Z2) and, as a consequence, find also the distribution of Z2. The
cartesian coordinates of a point around a center, wich has rayleigh
radial distance from the origin and uniform angle, are distibuted as
an independent Gaussian vector [38, pp. 276, Ex. 7b]. Hence, there
exist independent random variables Ax, Ay , Cx, Cy , where Ax, Ay
are Normal distributed, with parameter (0, ζ2), and Cx, Cy are also
Normal distributed, with parameters (0, α2), and such that

(Ax, Ay)
d
= (R2cosΘ, R2sinΘ),

(Cx, Cy)
d
= (WcosΩ,WsinΩ).

By definition,

(a)

Fig. 9

Ax
d
= R2cosΘ, Cx

d
= R2cosΘ− Z2cosΨ,

Ay
d
= R2sinΘ, Cy

d
= R2sinΘ− Z2sinΨ.

The absolute value of the Jacobian of the above transformation is R2Z2.
Denote by fAx,Ay,Cx,Cy the joint PDF of (Ax, Ay , Cx, Cy), if fR,Θ,Z,Ψ
denotes the joint PDF of (R2,Θ, Z2,Ψ), then, by the change of variable
Theorem [38, pp. 274],

fR,Θ,Z,Ψ(r, θ, z, ψ)

= fAx,Ay,Cx,Cy (rcosθ, rsinθ, rcosθ − zcosψ, rsinθ − zsinψ)rz

(a)
=

rz

(2παζ)2
e
−
(
r2cos2θ

2ζ2
+ r2sin2θ

2ζ2
+

(rcosθ−zcosψ)2

2α2 +
(rsinθ−zsinψ)2

2α2

)

(b)
=

rz

(2παζ)2
e
−
(
r2

2

(
1
α2 + 1

ζ2

)
+ z2

2α2−
rzcos(θ−ψ)

α2

)
,

where (a) comes from the formula of the distribution of independent
Gaussian random variables, and (b) follows from the trigonometric
identities cos2θ+sin2θ = 1 and cosθcosψ+sinθsinψ = cos(θ−ψ). To
obtain the joint PDF of (R2, Z2), denoted by fR2,Z2 , we integrate the
previous expression over [0, 2π)× [0, 2π), with respect to the variables
θ and ψ,

fR2,Z2 (r, z)

(c)
=

rz

(αζ)2
e
−
(
r2

2

(
1
α2 + 1

ζ2

)
+ z2

2α2

)
1

2π

∫ 2π

0
e
rzcosw
α2 dw

(d)
=

rz

(αζ)2
e
−
(
r2

2

(
1
α2 + 1

ζ2

)
+ z2

2α2

)
I0
( rz
α2

)
,

where (c) comes from the change of variable w = θ−ψ and (d) follows
because the integral representation I0(x) = 1

2π

∫ 2π
0 excoswdw [39]. Let

us denote by fZ2 the PDF of the random variable Z2 and by η =

(
1
α2 + 1

ζ2

)
. To obtain fZ2

, we integrate over [0,∞) with respect to the
variable r the preceding equation

fZ2
(z)

(e)
=

∫ ∞
0

rz

(αζ)2
e
−
(
r2

2
η+ z2

2α2

) ∞∑
n=0

(1/4)n

(n!)2

( rz
α2

)2n
dr

=
z

(αζ)2
e
− z2

2α2

∞∑
n=0

(1/4)n

(n!)2

(
z2

α4

)n ∫ ∞
0

r2ne−
r2

2
ηrdr

(f)
=

z

(αζ)2η
e
− z2

2α2

∞∑
n=0

(
z2

2α4η

)n
n!

=
z

(αζ)2η
e
− z2

2α2 e
z2

2α4η

(g)
=

z

α2 + ζ2
e
− z2

2(α2+ζ2) ,

where (e) comes from the series representation I0(x) =∑∞
n=0

(1/4)n

(n!)2
x2n [39], while (f) follows after the formula∫ ∞

0
r2ne−

r2

2
ηrdr =

2n

ηn+1
n!,

and (g) after soma algebraic manipulations and from the definition of
η.

APPENDIX D (SUPPLEMENTAL MATERIAL)
Proof of Proposition 4
We split the proof in three parts.

A first expression
The events {R1 < min{R2, Z2}}, {R2 < min{R1, Z2}}, and {Z2 <
min{R1, R2}} are mutually independent, then, from equation (26),

P(SINR > T )

= P

(
f̃ (R1)

σ2 + Î(R1, R1)
> T,R1 < min{R2, Z2}

)

+ P

(
g̃ (R2, Z2)

σ2 + Î(R2, R2)
> T,R2 < min{R1, Z2}

)

+ P

(
g̃ (R2, Z2)

σ2 + Î(Z2, R2)
, Z2 < min{R1, R2}

)

= E

[
1{ f̃(R1)

σ2+Î(R1,R1)
>T

}1{R1<min{R2,Z2}}

]

+ E

[
1{ g̃(R2,Z2)

σ2+Î(R2,R2)
>T

}1{R2<min{R1,Z2}}

]

+ E

[
1{ g̃(R2,Z2)

σ2+Î(Z2,R2)
>T

}1{Z2<min{R1,R2}}

]

(28)

For the first term we have that

E

[
1{

f̃(R1)

σ2+Î(R1,R1)
>T

}1{R1<min {R2,Z2}}

]

= E

[
E

[
1{

f̃(R1)

σ2+Î(R1,R1)
>T

}1{R1<min {R2,Z2}}

∣∣∣R1, R2, Z2

]]
(a)
= E

[
1{R1<min {R2,Z2}}E

[
1{

f̃(R1)

σ2+Î(R1,R1)
>T

}∣∣∣R1, R2, Z2

]]
(b)
= E

[
1{R1<min {R2,Z2}}E

[
1{

f̃(R1)

σ2+Î(R1,R1)
>T

}∣∣∣R1

]]

= E

[
1{R1<min {R2,Z2}}P

(
f̃ (R1)

σ2 + Î(R1, R1)
> T

∣∣∣R1

)]
,

where (a) comes from the properties of the conditional expectation and
(b) follows because the event

{
f̃(R1)

σ2+Î(R1,R1)
> T

}
is independent of

R2 and Z2.
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After a similar analysis for the two terms with the cooperative
signal

E

[
1{

g̃(R2,Z2)

σ2+Î(R2,R2)
>T

}1{R2<min {R1,Z2}}

]

= E

[
1{R2<min {R1,Z2}}P

(
g̃ (R2, Z2)

σ2 + Î(R2, R2)
> T

∣∣∣R2, Z2

)]
,

E

[
1{

g̃(R2,Z2)

σ2+Î(Z2,R2)
>T

}1{Z2<min {R1,R2}}

]

= E

[
1{Z2<min {R1,R2}}P

(
g̃ (R2, Z2)

σ2 + Î(Z2, R2)
> T

∣∣∣R2, Z2

)]

Some functions
Denote by

Ĝ(r) := P

(
f̃ (R1)

σ2 + Î(R1, R1)
> T

∣∣∣R1 = r

)

Ĥ(r, z) := P

(
g̃ (R2, Z2)

σ2 + Î(R2, R2)
> T

∣∣∣R2 = r, Z2 = z

)

K̂(r, z) := P

(
g̃ (R2, Z2)

σ2 + Î(Z2, R2)
> T

∣∣∣R2 = r, Z2 = z

)
.

For a given r > 0, because R1 is independent from Î(R1, R1),

Ĝ(r) = P
(
f̃ (r) > T (σ2 + Î(r, r))

)
Consider f̃(r) as in (6), then it follows an exponential distribution with
parameter r

β

p
. Since Î(r, r) is independent of f̃(r),

Ĝ(r) = E
[
P
(
f̃(r) > T

(
σ2 + Î(r, r)

) ∣∣∣Î(r, r)
)]

= e
−Trβ
p

σ2

LÎ(1)

(
Trβ

p
; r

)
LÎ(2)

(
Trβ

p
; r

)
,

where the deterministic functions LÎ(1) (s; ρ) and LÎ(2) (s; ρ) are given
by (22).

In the same fashion, for r > 0 and z > 0, because (R2, Z2) is
independent of Î(R2, R2),

Ĥ(r, z) = P
(
g̃ (r, z) > T

(
σ2 + Î(r, r)

))
Using the general expression in (8) for g̃(r, z),

Ĥ(r, z) =
n∑
i=1

ci
(
r, z
)
e−Tdi(r,z)σ

2
LÎ(1)

(
Tdi(r, z); r

)
LÎ(2)

(
Tdi(r, z); r

)
We do the same to find and expression for K̂(r, z).

Final expression
To complete the analysis, we need to find the coverage probability
expressed in equation (28), thus, we need expressions for

E
[
Ĝ(R1)1{R1<min{R2,Z2}}

]
,

E
[
Ĥ(R2, Z2)1{R2<min{R1,Z2}}

]
,

E
[
K̂(R2, Z2)1{Z2<min{R1,R2}}

]
.

Let us begin by the first one,

E
[
Ĝ(R1)1{R1<minR2,Z2}

]
(a)
= E

[
E
[
Ĝ(R1)1{R1<minR2,Z2}|R1

]]
= E

[
Ĝ(R1)E

[
1{R1<minR2,Z2}|R1

]]
= E

[
Ĝ(R1)P (min{R2, Z2} > R1|R1)

]
,

where (a) follows by properties of the conditional expectation. Define

G(r) = Ĝ(r)P (min{R2, Z2} > R1|R1 = r) ,

we only have left to find an explicit expression for
P (min{R2, Z2} > R1|R1 = r). Because R1 is independent of
(R2, Z2),

P(min {R2, Z2} > R1|R1 = r) = P(min {R2, Z2} > r),

and then

P(min {R2, Z2} > r) = 1− FR2
(r)− FZ2

(r) + FR2,Z2
(r, r),

where FR2
, FZ2

, and FR2,Z2
are the CDF of R2, Z2, and (R2, Z2) that

can be explicitly obtained from equation (17).
In the same fashion,

E
[
Ĥ(R2, Z2)1{R2<minR1,Z2}

]
= E

[
Ĥ(R2, Z2)P(min{R1, Z2} > R2|R2, Z2)

]
,

E
[
K̂(R2, Z2)1{Z2<minR1,R2}

]
= E

[
K̂(R2, Z2)P(min{R1, R2} > Z2|R2, Z2)

]
Define

H(r, z) :=Ĥ(r, z)P(min{R1, Z2} > R2|R2 = r, Z2 = z),

K(r, z) :=K̂(r, z)P(min{R1, R2} > Z2|R2 = r, Z2 = z)

To obtain explicit formulas for H(r, z) and K(r, z), we proceed as
before to find out that

P(min {R1, Z2} > R2|R2 = r, Z2 = z) = (1− FR1 (r))1{z>r},

P(min {R1, R2} > Z2|R2 = r, Z2 = z) = (1− FR1
(z))1{r>z},

where FR1
is the CDF of R1. Having done this, we can evaluate the

coverage probability given by equation (28).


