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Direct adaptive regulation in the vicinity of low damped complex
zeros - Application to active vibration control

Abraham Castellanos Silva∗, Ioan Doré Landau∗,
Petros Ioannou†.

Abstract—The adaptive feedback approach is now widely
used for the rejection of multiple narrow band disturbances
with unknown and time varying frequencies in Active Vibra-
tion Control (AVC) and Active Noise Control (ANC). The
approach is based directly or indirectly on the use of the
Internal Model Principle and the Youla-Kučera parametrization
combined with an adaptive law. All the algorithms associated
with the approach make the assumption that the plant zeros
are different from the poles of the disturbance model in order
to achieve disturbance compensation. However in practice the
problem is more intricate since it is not clear what happens
if the plant have very low damped complex zeros (often
encountered in mechanical structures) and the frequency of
the disturbance is close to the anti-resonance frequency (the
resonance frequency of the plant zeros). A recent international
investigation on adaptive regulation in the presence of unknown
time varying disturbances [16] has considered such a situation
for a benchmark example. Several solutions have been proposed
and the most successful has been based on the appropriate
choice of the desired closed loop poles to be achieved by the
Youla-Kučera central controller [5] using a Q FIR filter with
the minimum number of parameters. Recently in [12] it was
suggested that over parametrization of the Q (FIR) filter can
enhance the robustness of the linear and adaptive scheme in the
vicinity of plant complex zeros. The present paper compares
these two approaches using the same benchmark example as
in [16]. The results from simulations and real time experiments
used to evaluate the two approaches are presented.

Index Terms—Adaptive Regulation, Active Vibration Control,
Inertial Actuators, Multiple Narrow Band Disturbances, Youla-
Kučera Parametrization, Internal Model Principle

I. INTRODUCTION

The basic problem in active vibration control (AVC) and
active noise control (ANC) is the strong attenuation of
multiple narrow band disturbances1 with unknown and vary-
ing frequencies. An adaptive feedback approach (adaptive
regulation) is now widely accepted as the most effective
approach for solving this class of problems. The disturbance
model is assumed to be either a function equal to the sum of
sinusoids with unknown frequencies, amplitudes and phases
or equivalently, a transfer function with unknown complex
poles on the unit circle with white noise or a Dirac impulse as
an input. In general, one can assess from data the structure for
such model of disturbance (using spectral analysis or order
estimation techniques) and assume that the structure does not
change. However, the parameters of the model are unknown
and may be time varying. This will require the use of an

1Called tonal disturbances in active noise control.

adaptive feedback approach in order to adapt to changes in
parameters.
It is also assumed that the plant model is stable and this
property could be the result of a robust control design that is
already incorporated in the system under consideration. The
problem of disturbance rejection and adaptive regulation as
defined above has been previously addressed in a number of
papers ([4], [2], [24], [22], [8], [10], [11], [20], [14], [1], [7],
[9], [3], [23], [6]) among others. [15] presents a survey of
the various techniques (up to 2010) used as well as a review
of a number of applications.

Among them, the Internal Model Principle implemented
through a Youla-Kučera parametrization arises as a very at-
tractive and efficient solution, since it allows to introduce the
model of the disturbance in the controller without modifying
the desired closed loop poles, defined by the designer [24],
[20], [5]. This parametrization allows to obtain a direct
adaptive scheme. The number of parameters to adapt is
defined by the complexity of the assumed disturbance model.
An international competition benchmark example on adaptive
rejection of narrow band disturbances has been organized and
the results are published in a special issue of the European
Journal of Control [16].

A common challenge of all the up to date efforts and
proposed methods is the following: the disturbance is
considered to be periodic, i.e. the poles of the disturbance
models are on the unit circle. All the adaptation algorithms
make the assumption that the plant zeros are different from
the poles of the disturbance model in order to achieve
disturbance compensation. However in practice the problem
is more intricate since it is not clear what happens if
the plant has very low damped complex zeros (often
encountered in mechanical structures) and the frequency of
the disturbance is close to the anti-resonance frequency (the
resonance frequency of the plant zeros). Obviously even in
the linear case with known parameters the design of the
controller in this region is difficult for robustness reasons. In
the international benchmark example on adaptive regulation
in the presence of unknown time varying disturbances [16]
such a situation has been explicitly considered. Several
solutions have been proposed and the most successful has
been based on the appropriate choice of the desired closed
loop poles to be achieved by the Youla-Kučera central
controller [5] and by using a Q-FIR filter with the minimum
number of parameters. Recently [12] it was suggested that
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Fig. 1. Active vibration control using an inertial actuator (photo).

over parametrization of the Q-(FIR) filter can enhance
the robustness of the linear and adaptive scheme in the
vicinity of plant complex zeros2. In this paper these two
approaches are compared using the benchmark example and
the simulation and real time results are presented.

II. AN ACTIVE VIBRATION CONTROL SYSTEM USING AN
INERTIAL ACTUATOR

A. System structure

The photo of the active vibration control experimental
set up used in this study is presented in fig. 1. Figure 1
also shows the description of the basic actions. The shaker
acts as a disturbance source by introducing vibration forces
and the inertial actuator can be used to counteract them
by introducing vibrational forces in the opposite direction
(inertial actuators use a similar principle as loudspeakers).
This test bed was used in the international benchmark in
adaptive regulation, whose results were published in [16].
The equivalent control scheme is shown in figure 2. The
system input, u(t) is the position of the mobile part (mag-
net) of the inertial actuator, the output y(t) is the residual
force measured by a force sensor. The transfer function
(H = q−d1 C

D ), between the disturbance force, δ (t), and the
residual force y(t) is called primary path. In our case (for
testing purposes), the primary force is generated by a shaker
driven by a signal delivered by the computer. The plant
transfer function (G= q−d B

A ) between the input of the inertial
actuator, u(t), and the residual force is called secondary path.
The sampling frequency is Fs = 800 Hz.

Figure 3 gives the frequency characteristics of the identi-
fied parametric model for the secondary path (the excitation
signal was a PRBS). The system itself in the absence of
the disturbances features a number of low damped vibra-
tion modes as well as low damped complex zeros (anti-
resonance). This makes the design of the controller difficult

2This idea has not been explored by the participants to the benchmark.
Note that the over parametrization of the Q filter for robustness with respect
to uncertainties in the plant model has been proposed in [24], [12], however,
here the objective of over parametrization is different.
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Fig. 2. Active suspension system (scheme).

for rejecting disturbances close to the location of low damped
complex zeros (low or no system gain). The most significant
are those near 50, 100 and 110 Hz (see the zoom of the
frequency characteristics of the secondary path in figure 3).
Note that the design of a linear controller for rejecting a
disturbance at 95 Hz (as required by the benchmark) is
difficult since this frequency is close to a pair of very low
damped zeros (around of 0.005). The parametric model of the
secondary path has a significant order, nA = 22 and nB = 25.
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Fig. 3. Magnitude of the frequency response for secondary path model
(top). Zoom at the low damped complex poles and zeros (bottom).

III. PLANT/DISTURBANCE REPRESENTATION AND
CONTROLLER STRUCTURE

The structure of the linear time invariant discrete time
model of the plant - the secondary path - used for controller
design is:

G(z−1) =
z−dB(z−1)

A(z−1)
=

z−d−1B∗(z−1)

A(z−1)
, (1)

with:

d = the plant pure time delay in
number of sampling periods

A = 1+a1z−1 + · · ·+anAz−nA ;

B = b1z−1 + · · ·+bnB z−nB = z−1B∗ ;

B∗ = b1 + · · ·+bnB z−nB+1 ,



where A(z−1), B(z−1), B∗(z−1) are polynomials in the com-
plex variable z−1 and nA, nB and nB − 1 represent their
orders3. The model of the plant may be obtained by system
identification. Details on system identification of the models
considered in this paper can be found in [21], [19], [18].

Since the control objective is focused on regulation, the
controller to be designed (K) corresponds to a RS polynomial
digital controller, ([17], [21] - see also figure 2). The con-
troller is K = R

S , where R(z−1) and S(z−1) are polynomials
in z−1 having the orders nR and nS, respectively, with the
following expressions:

R(z−1) = r0 + r1z−1 + . . .+ rnR z−nR = R′(z−1) ·HR(z−1) ; (2)

S(z−1) = 1+ s1z−1 + . . .+ snS z−nS = S′(z−1) ·HS(z−1) , (3)

where HR and HS are pre-specified parts of the controller
(used for example to incorporate the internal model of a
disturbance or to open the loop at certain frequencies).

The output of the plant y(t) and the input u(t) may be
written as:

y(t) =
q−dB(q−1)

A(q−1)
·u(t)+ p(t) ; (4)

S(q−1) ·u(t) =−R(q−1) · y(t) , (5)

where q−1 is the delay (shift) operator (x(t) = q−1x(t + 1))
and p(t) is the resulting additive disturbance on the output
of the system.

We define the following sensitivity functions:
• Output sensitivity function (the transfer function be-

tween the disturbance p(t) and the output of the system
y(t)):

Syp(z−1) =
1

1+GK
=

A(z−1)S(z−1)

P(z−1)
; (6)

• Input sensitivity function (the transfer function between
the disturbance p(t) and the input of the system u(t)):

Sup(z−1) =
−K

1+GK
=−A(z−1)R(z−1)

P(z−1)
, (7)

where

P(z−1) = A(z−1)S(z−1)+ z−dB(z−1)R(z−1)

= A(z−1)S′(z−1) ·HS(z−1)+ z−dB(z−1)R′(z−1) ·HR(z−1)
(8)

defines the poles of the closed loop (roots of P(z−1)).
In pole placement design, the polynomial P(z−1) specifies
the desired closed loop poles and the controller polynomials
R(z−1) and S(z−1) are minimal degree solutions of (8) where
the degrees of P, R and S are given by: nP ≤ nA+nB+d−1,
nS = nB +d−1 and nR = nA−1.
Using equations (4) and (5), one can write the output of the
system as:

y(t) =
A(q−1)S(q−1)

P(q−1)
· p(t) = Syp(q−1) · p(t) . (9)

3The complex variable z−1 will be used for characterizing the system’s
behaviour in the frequency domain and the delay operator q−1 will be used
for describing the system’s behaviour in the time domain.

For more details on RS-type controllers and sensitivity
functions see [21].

Suppose that p(t) is a deterministic disturbance, so it can
be written as

p(t) =
Np(q−1)

Dp(q−1)
·δ (t) , (10)

where δ (t) is a Dirac impulse and Np(z−1), Dp(z−1) are
coprime polynomials in z−1, of degrees nNp and nDp , respec-
tively. In the case of persistent (stationary) disturbances the
roots of Dp(z−1) are on the unit circle (which will be the case
for this work). The energy of the disturbance is essentially
represented by Dp. The contribution of the terms of Np is
weak compared to the effect of Dp, so one can neglect the
effect of Np.

IV. LOW DAMPED COMPLEX ZEROS

An important remark is that in order to be able to reject the
disturbance introduced by the primary path, the secondary
path has to provide enough gain. Looking at eq. (6), total
rejection at a frequency ω is achieved when

Syp(e− jω) = 0 → S(e− jω) = 0, (11)

nevertheless, in such case the modulus of the input sensitivity
function (eq. (7)) becomes∣∣Sup(e− jω)

∣∣= ∣∣∣∣A(e− jω)

B(e− jω)

∣∣∣∣, (12)

meaning that the robustness against additive plant model
uncertainties is reduced and the stress on the actuator will
be important if low damped complex zeros are located near
or at the frequency ω . Therefore, the cancelation (or in
general an important attenuation) of disturbance effect on
the output should be done only in frequency regions where
the system gain is large enough.

In [16], several approaches were used in the benchmark
example to reject a disturbance at 95 Hz. It was found that
stability and performance issues arises due the proximity
of the low damped zeros; furthermore, if the gain of the
input sensitivity function is not low enough (below −10 dB)
above 100 Hz, important amplifications (and even instability)
can appear on the real system. One of the best results was
presented in [5], using a Yula-Kučera (YK) parametrization
of the controller, a specific choice for the desired closed loop
poles location and a direct adaptive approach.

V. DIRECT ADAPTIVE FEEDBACK REGULATION - A
YOULA-KUČERA APPROACH

The YK-parametrization proposed is depicted in the fig. 4,
where both fixed and adaptive parts are pointed out. For
this paper a YK-parametrization using an equation-error
disturbance observer is used, along with a finite impulse
response (FIR) filter representation of the optimal Q filter

Q(z−1) = q0 +q1z−1 + · · ·+qnQz−nQ . (13)
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Fig. 4. Direct adaptive scheme using a YK-parametrization of the controller.
Dashed box: fixed part, Point-dash box: adaptive part.

Using this parametrization, the controller polynomials R
and S are defined by4

R(z−1) = R0 +HS0HR0QA (14)

S(z−1) = S0−HS0HR0Qz−dB, (15)

It is easy to show that for any arbitrary Q(z−1), the closed
loop poles remain unchanged; they are defined by

P(z1) = A(z−1)S0(z−1)+ z−dB(z−1)R0(z−1). (16)

A. Internal Model Principle

Looking at the output sensitivity function (eq. (6)) and the
assumed model of the disturbance (eq. (10)), total rejection
of a disturbance is possible if S(z−1) = S′(z−1) ·Dp(z−1),
meaning that the controller incorporates the model of the
disturbance (internal model principle).
Consider eq. (9) and eq. (15), then the output of the system
can be expressed as follows:

y(t) =
A
[
S0−HS0HR0Qq−dB

]
P

· p(t). (17)

In order that the numerator polynomial contains the model
of the disturbance, the following diophantine equation has to
be solved

S′Dp +HS0HR0Qz−dB = S0 (18)

where Dp, HS0 , HR0 , d, B and S0 are known, and S′ and
Q are unknown. Eq. (18) has a unique and minimal de-
gree solution for S′ and Q with nS0 ≤ nDp + nB + d − 1,
nS′ = nB +d +nHR0

+nHS0
−1 and nQ = nDp −1.

Remark: It is assumed that Dp and B do not have common
factors but nothing is said of the feasibility of the solution
if some complex zeros of Dp are very close to some low
damped complex zeros of B (of course the Bezout equation
to be solved will be ”ill conditioned” as we approach
cancellation).

From eqs. (17) and (18), and using a standard parameter
adaptation algorithm (PAA) as explained in [21], a direct
adaptive algorithm for the rejection of multiple unknown

4The arguments (z−1) and (q−1) will be omitted in some of the following
equations to make them more compact.

TABLE I
FREQUENCY DOMAIN RESULTS IN SIMULATION AND REAL TIME

Case 1 Case 2
Closed Plant Poles Plant Poles
Loop + + 2 pairs of
Poles 12 real poles resonant poles

+ 4 real poles
a) b) a) b)

nQ = 1 2 3 4 5 1 5

G
A RT 1.2 6.5 8.0 13.0 11.7 21.0 22.0

SIM 9.8 15.6 16.1 16.1 17.0 25.4 27.3

D
A RT 4.5 6.7 8.2 11.6 12.5 39.4 38.0

SIM 9.5 15.2 15.6 15.9 16.8 39.8 46.5

M
A RT 30.8 26.3 19.4 15.6 18.3 8.1 7.2

SIM 21.0 16.9 15.7 16.5 15.4 10.0 8.5
RT: Real time, SIM: Simulation, GA: Global attenuation, DA: Distur-
bance attenuation, MA: Maximum amplification, a): minimal solution
and b): augmented solution.

time-varying narrow band disturbances can be developed, by
considering an adaptive Q̂ filter of the form

Q̂(z−1) = q̂0 + q̂1z−1 + · · ·+ q̂nQz−nQ . (19)

The details of the adaptation algorithm are given in [18] and
a stability analysis is provided in [20].

VI. ADAPTIVE REGULATION IN THE VICINITY OF LOW
DAMPED ZEROS

Eq. (18) has a unique and minimal solution for Q(z−1)
when the roots of Dp(z−1) are not contained in B(z−1),
nevertheless the modulus of the output sensitivity function
Syp(z−1) may becomes larger, specially when B(z−1) has
roots close to those of Dp(z−1), e.g. presence of low damped
zeros in the system at frequencies where attenuation is intro-
duced. To overcome such situation, in [12] the augmentation
of the order of the polynomial Q̂(z−1) is proposed, claiming
that if the solution of (18) is not unique, and an infinity
possible values for the coefficients Q(z−1) exist to have the
internal model as a factor, then there is a structural freedom to
choose the optimum set of coefficients that provide the best
performance by minimizing the output sensitivity function,
(e.g. the modulus margin will be minimized)5. Note that
the controller considered in [12] uses an ”output error” type
Youla-Kučera disturbance observer6.

In [5] it was shown that using the plant model information
(frequency characteristics), it is possible to keep the modulus
of Syp(z−1) under an imposed maximum value by choosing
appropriately the desired closed loop poles in P(z−1). In this
approach the minimal degree for the polynomial Q̂(z−1) is
maintained and an ”equation error” Youla-Kučera observer
is used.

The objective will be subsequently to compare the two
approaches in the context of the international benchmark
on adaptive regulation. The experiments were conducted in

5
∣∣Syp(e− jω )

∣∣
max corresponds to the H∞ norm of the output sensitivity

function.
6For a definition of the various types of Youla-Kučera disturbance

observers see [16].



the international test bed proposed in [16], where a single
sinusoidal disturbance at 95 Hz will be introduced.

VII. COMPARISON OF THE TWO APPROACHES -
SIMULATION AND REAL TIME RESULTS

The comparison of the two approaches has been done on
the active vibration control system described in Section II.
Two main cases have been considered, with two options each:

1) P(z−1) contains the stable poles (SP) of the plant model
along with 12 real poles (RP) (This will reduce the
modulus of Sup(z−1) in high frequencies. Without these
poles the control signal is saturated in the real-time
application due to the presence of the harmonics of
the disturbance).
• a) With the minimal solution nQ = nDp −1.
• b) With an augmented solution nQ > nDp −1.

2) P(z−1) has the stable poles (SP) of the plant along
with some auxiliary poles (AP): 2 pairs of low damped
complex poles and 4 real poles.
• a) With the minimal solution nQ = nDp −1.
• b) With an augmented solution nQ > nDp −1.

Simulations (SIM) and real-time (RT) experiments were
conducted using both approaches. The results were classified
in frequency and time domain. Time domain results are
provided only for real-time experiments.

Table I summarizes the results in frequency domain (mea-
sured in dB) obtained for simulations and real-time experi-
ments. The objective is to strongly attenuate the disturbance
with a limited amplification of the other frequencies. To
evaluate the performance three indicators have been defined
together with there target values according to [16]: Distur-
bance Attenuation (DA) (min = 40 dB), Global Attenuation
(GA) (min = 25 dB), and Maximum Amplification (MA)
(max = 6 dB)7. The effects of the vicinity of the low damped
complex zeros is noted for the Case 1 a), where the global
attenuation is minimum and a significant amplification was
found, both for RT and SIM. For Case 1 b) with nQ = 5, the
improvements of the augmentation of the size of Q̂(z−1) are
evident. Better attenuation and decreasing of the unwanted
amplification are obtained8. When AP are used with a
minimal solution (Case 2 a)), the results are significantly
improved for the three specifications. It is important to
observe that for the Case 2 b), augmenting the size of the
Q-filter improves further all the performance indicators in
simulation. In real time the performance is improved by
reducing the maximum of the unwanted amplification and
augmenting the global attenuation, however the disturbance
attenuation is slightly lower with respect to the case of
minimal order for the Q̂(z−1).

7GA and MA give indication about the quality of the control which is
supposed to introduce a very limited amplification at frequencies difeerent
from the frequency of the disturbance

8Due to the presence of harmonics of the disturbance in real time
experiments, differences arise between the RT and SIM results for the Case
1 since the gain of Sup(z−1) above 100 Hz is not low enough.

TABLE II
TIME DOMAIN RESULTS

Case 1 Case 2
SP+RP SP+AP

a) b) a) b)
nQ = 1 2 3 4 5 1 5
TE % 0 97.21 96 72.84 97.78 100 100
CT µs 2.8 3.0 3.5 3.8 4.5 2.8 4.2

TE: transient behaviour indicator (desired = 100%). CT: com-
putation time.

Table II summarizes the results obtained in real-time with
respect to the transient performance and computation time.
Two specifications were considered according to [16]: a
Transient Evaluation (TE in %) and the Computation Time
(CT in µs). The transient evaluation criterion establishes that
the transient duration when a disturbance is applied, has to
be smaller than 2 s. A percentage was established for the
fulfilment of this criterion. TE = 0% indicates a transient
duration of 4 s and TE = 100% a transient duration smaller
than 2 s. The detailed computation formulas can be found
in [16].

The computation time is calculated from the Task Execu-
tion Time evaluated in the MATLAB c©’s xPC-Target envi-
ronment. The computational time only consider the closed
loop calculations9.

The use of SP+AP shows its efficiency since 100% ful-
filment of the transient evaluation criterion is achieved. The
results are slightly less good when augmentation of the size
of the Q̂(z−1) is considered. As was expected, the increase of
the number of parameters (order of Q̂) implies an increase in
the computation time, but this effect is not very significant.

Figure 5 shows the disturbance attenuation comparison
between the two cases with the minimal (nQ = 1) and
highest order (nQ = 5) solution. The figure shows real-time
experimental results. As can be seen in the figure, some im-
provements are introduced when the order of Q is increased,
such as lower amplifications in high frequencies and a larger
attenuation (differences between the dashed blue line and
dotted red line). Nevertheless, choosing appropriately the
fixed closed loop poles (Case 2, a) and b)), the adaptive
scheme introduce a significant attenuation with a minimum
amplification. This can be seen also in the resulting output
sensitivity function calculated with the estimated parameters
of Q̂(z−1) for each case, from the real-time experiments.
Figure 6 displays the modulus of each sensitivity function.
It is noticed that passing from the Case 2 a) to Case
2 b) the characteristics of the output sensitivity function
remains almost unchanged in high frequencies, while the
maximum amplification is reduced. keeping the water bed
effect bounded in the frequency zone of interest [5].

VIII. CONCLUDING REMARKS

Careful selection of the closed loop poles for the design
of the central controller combined with a minimum order

9The CT for an open loop test is 12.9 µs.
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adaptive Q filter or over parametrization of the adaptive
Q filter are two interesting solutions for improving the
performance of adaptive regulation schemes in the vicinity of
low damped complex zeros. The two approaches can also be
combined. However over parametrization of the Q filter will
require to use robust parameter estimation in order to avoid
parameter drift. This case has been considered in a recent
paper [13].
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