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Abstract-The adaptive feedback approach is now widely used for the rejection of multiple narrow band disturbances with unknown and time varying frequencies in Active Vibration Control (AVC) and Active Noise Control (ANC). The approach is based directly or indirectly on the use of the Internal Model Principle and the Youla-Kučera parametrization combined with an adaptive law. All the algorithms associated with the approach make the assumption that the plant zeros are different from the poles of the disturbance model in order to achieve disturbance compensation. However in practice the problem is more intricate since it is not clear what happens if the plant have very low damped complex zeros (often encountered in mechanical structures) and the frequency of the disturbance is close to the anti-resonance frequency (the resonance frequency of the plant zeros). A recent international investigation on adaptive regulation in the presence of unknown time varying disturbances [START_REF] Landau | Benchmark on adaptive regulation -rejection of unknown/time-varying multiple narrow band disturbances[END_REF] has considered such a situation for a benchmark example. Several solutions have been proposed and the most successful has been based on the appropriate choice of the desired closed loop poles to be achieved by the Youla-Kučera central controller [START_REF] Silva | Direct adaptive rejection of unknown time-varying narrow band disturbances applied to a benchmark problem[END_REF] using a Q FIR filter with the minimum number of parameters. Recently in [START_REF] Jafari | Robust stability and performance of adaptive jitter supression in laser beam pointing[END_REF] it was suggested that over parametrization of the Q (FIR) filter can enhance the robustness of the linear and adaptive scheme in the vicinity of plant complex zeros. The present paper compares these two approaches using the same benchmark example as in [START_REF] Landau | Benchmark on adaptive regulation -rejection of unknown/time-varying multiple narrow band disturbances[END_REF]. The results from simulations and real time experiments used to evaluate the two approaches are presented.
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I. INTRODUCTION

The basic problem in active vibration control (AVC) and active noise control (ANC) is the strong attenuation of multiple narrow band disturbances 1 with unknown and varying frequencies. An adaptive feedback approach (adaptive regulation) is now widely accepted as the most effective approach for solving this class of problems. The disturbance model is assumed to be either a function equal to the sum of sinusoids with unknown frequencies, amplitudes and phases or equivalently, a transfer function with unknown complex poles on the unit circle with white noise or a Dirac impulse as an input. In general, one can assess from data the structure for such model of disturbance (using spectral analysis or order estimation techniques) and assume that the structure does not change. However, the parameters of the model are unknown and may be time varying. This will require the use of an 1 Called tonal disturbances in active noise control.

adaptive feedback approach in order to adapt to changes in parameters.

It is also assumed that the plant model is stable and this property could be the result of a robust control design that is already incorporated in the system under consideration. The problem of disturbance rejection and adaptive regulation as defined above has been previously addressed in a number of papers ([4], [START_REF] Ben Amara | Adaptive sinusoidal disturbance rejection in linear discrete-time systems -Part I: Theory[END_REF], [START_REF] Valentinotti | Adaptive Rejection of Unstable Disturbances: Application to a Fed-Batch Fermentation[END_REF], [START_REF] Marino | Robust adaptive compensation of biased sinusoidal disturbances with unknown frequency[END_REF], [START_REF] Ding | Global stabilization and disturbance suppression of a class of nonlinear systems with uncertain internal model[END_REF], [START_REF] Gouraud | Design of robust and frequency adaptive controllers for harmonic disturbance rejection in a single-phase power network[END_REF], [START_REF] Hillerstrom | Rejection of periodic disturbances with unknown period -a frequency domain approach[END_REF], [START_REF] Landau | Adaptive narrow band disturbance rejection applied to an active suspension -an internal model principle approach[END_REF], [START_REF] Kinney | Robust estimation and automatic controller tuning in vibration control of time varying harmonic disturbances[END_REF], [START_REF] Aranovskiy | Identification of frequency of biased harmonic signal[END_REF], [START_REF] Chen | A minimum parameter adaptive approach for rejecting multiple narrow-band disturbances with application to hard disk drives[END_REF], [START_REF] Emedi | Fixed-order lpv controller design for rejection of a sinusoidal disturbance with time-varying frequency[END_REF], [START_REF] Bobtsov | An iterative algorithm of adaptive output control with complete compensation for unknown sinusoidal disturbance[END_REF], [START_REF] Marino | Output feedback stabilization of linear systems with unknown additive output sinusoidal disturbances[END_REF], [START_REF] Celani | Output regulation for the tora benchmark via rotational position feedback[END_REF]) among others. [START_REF] Landau | Adaptive regulation-rejection of unknown multiple narrow band disturbances (a review on algorithms and applications)[END_REF] presents a survey of the various techniques (up to 2010) used as well as a review of a number of applications.

Among them, the Internal Model Principle implemented through a Youla-Kučera parametrization arises as a very attractive and efficient solution, since it allows to introduce the model of the disturbance in the controller without modifying the desired closed loop poles, defined by the designer [START_REF] Valentinotti | Adaptive Rejection of Unstable Disturbances: Application to a Fed-Batch Fermentation[END_REF], [START_REF] Landau | Adaptive narrow band disturbance rejection applied to an active suspension -an internal model principle approach[END_REF], [START_REF] Silva | Direct adaptive rejection of unknown time-varying narrow band disturbances applied to a benchmark problem[END_REF]. This parametrization allows to obtain a direct adaptive scheme. The number of parameters to adapt is defined by the complexity of the assumed disturbance model. An international competition benchmark example on adaptive rejection of narrow band disturbances has been organized and the results are published in a special issue of the European Journal of Control [START_REF] Landau | Benchmark on adaptive regulation -rejection of unknown/time-varying multiple narrow band disturbances[END_REF].

A common challenge of all the up to date efforts and proposed methods is the following: the disturbance is considered to be periodic, i.e. the poles of the disturbance models are on the unit circle. All the adaptation algorithms make the assumption that the plant zeros are different from the poles of the disturbance model in order to achieve disturbance compensation. However in practice the problem is more intricate since it is not clear what happens if the plant has very low damped complex zeros (often encountered in mechanical structures) and the frequency of the disturbance is close to the anti-resonance frequency (the resonance frequency of the plant zeros). Obviously even in the linear case with known parameters the design of the controller in this region is difficult for robustness reasons. In the international benchmark example on adaptive regulation in the presence of unknown time varying disturbances [START_REF] Landau | Benchmark on adaptive regulation -rejection of unknown/time-varying multiple narrow band disturbances[END_REF] such a situation has been explicitly considered. Several solutions have been proposed and the most successful has been based on the appropriate choice of the desired closed loop poles to be achieved by the Youla-Kučera central controller [START_REF] Silva | Direct adaptive rejection of unknown time-varying narrow band disturbances applied to a benchmark problem[END_REF] and by using a Q-FIR filter with the minimum number of parameters. Recently [START_REF] Jafari | Robust stability and performance of adaptive jitter supression in laser beam pointing[END_REF] it was suggested that over parametrization of the Q-(FIR) filter can enhance the robustness of the linear and adaptive scheme in the vicinity of plant complex zeros 2 . In this paper these two approaches are compared using the benchmark example and the simulation and real time results are presented.

II. AN ACTIVE VIBRATION CONTROL SYSTEM USING AN INERTIAL ACTUATOR

A. System structure

The photo of the active vibration control experimental set up used in this study is presented in fig. 1. Figure 1 also shows the description of the basic actions. The shaker acts as a disturbance source by introducing vibration forces and the inertial actuator can be used to counteract them by introducing vibrational forces in the opposite direction (inertial actuators use a similar principle as loudspeakers). This test bed was used in the international benchmark in adaptive regulation, whose results were published in [START_REF] Landau | Benchmark on adaptive regulation -rejection of unknown/time-varying multiple narrow band disturbances[END_REF]. The equivalent control scheme is shown in figure 2. The system input, u(t) is the position of the mobile part (magnet) of the inertial actuator, the output y(t) is the residual force measured by a force sensor. The transfer function (H = q -d 1 C D ), between the disturbance force, δ (t), and the residual force y(t) is called primary path. In our case (for testing purposes), the primary force is generated by a shaker driven by a signal delivered by the computer. The plant transfer function (G = q -d B A ) between the input of the inertial actuator, u(t), and the residual force is called secondary path. The sampling frequency is F s = 800 Hz.

Figure 3 gives the frequency characteristics of the identified parametric model for the secondary path (the excitation signal was a PRBS). The system itself in the absence of the disturbances features a number of low damped vibration modes as well as low damped complex zeros (antiresonance). This makes the design of the controller difficult 2 This idea has not been explored by the participants to the benchmark. Note that the over parametrization of the Q filter for robustness with respect to uncertainties in the plant model has been proposed in [START_REF] Valentinotti | Adaptive Rejection of Unstable Disturbances: Application to a Fed-Batch Fermentation[END_REF], [START_REF] Jafari | Robust stability and performance of adaptive jitter supression in laser beam pointing[END_REF], however, here the objective of over parametrization is different. for rejecting disturbances close to the location of low damped complex zeros (low or no system gain). The most significant are those near 50, 100 and 110 Hz (see the zoom of the frequency characteristics of the secondary path in figure 3). Note that the design of a linear controller for rejecting a disturbance at 95 Hz (as required by the benchmark) is difficult since this frequency is close to a pair of very low damped zeros (around of 0.005). The parametric model of the secondary path has a significant order, n A = 22 and n B = 25. 

III. PLANT/DISTURBANCE REPRESENTATION AND CONTROLLER STRUCTURE

The structure of the linear time invariant discrete time model of the plant -the secondary path -used for controller design is:

G(z -1 ) = z -d B(z -1 ) A(z -1 ) = z -d-1 B * (z -1 ) A(z -1 ) , (1) 
with: d = the plant pure time delay in number of sampling periods

A = 1 + a 1 z -1 + • • • + a n A z -n A ; B = b 1 z -1 + • • • + b n B z -n B = z -1 B * ; B * = b 1 + • • • + b n B z -n B +1 ,
where A(z -1 ), B(z -1 ), B * (z -1 ) are polynomials in the complex variable z -1 and n A , n B and n B -1 represent their orders 3 . The model of the plant may be obtained by system identification. Details on system identification of the models considered in this paper can be found in [START_REF] Landau | Digital Control Systems -Design, Identification and Implementation[END_REF], [START_REF] Landau | A methodology for the design of feedback active vibration control systems[END_REF], [START_REF] Landau | Adaptive suppression of multiple time-varying unknown vibrations using an inertial actuator[END_REF]. Since the control objective is focused on regulation, the controller to be designed (K) corresponds to a RS polynomial digital controller, ( [START_REF] Landau | Adaptive control[END_REF], [START_REF] Landau | Digital Control Systems -Design, Identification and Implementation[END_REF] -see also figure 2). The controller is K = R S , where R(z -1 ) and S(z -1 ) are polynomials in z -1 having the orders n R and n S , respectively, with the following expressions:

R(z -1 ) = r 0 + r 1 z -1 + . . . + r n R z -n R = R (z -1 ) • H R (z -1 ) ; (2) S(z -1 ) = 1 + s 1 z -1 + . . . + s n S z -n S = S (z -1 ) • H S (z -1 ) , (3) 
where H R and H S are pre-specified parts of the controller (used for example to incorporate the internal model of a disturbance or to open the loop at certain frequencies).

The output of the plant y(t) and the input u(t) may be written as:

y(t) = q -d B(q -1 ) A(q -1 ) • u(t) + p(t) ; (4) 
S(q -1 ) • u(t) = -R(q -1 ) • y(t) , (5) 
where q -1 is the delay (shift) operator (x(t) = q -1 x(t + 1)) and p(t) is the resulting additive disturbance on the output of the system. We define the following sensitivity functions:

• Output sensitivity function (the transfer function between the disturbance p(t) and the output of the system y(t)):

S yp (z -1 ) = 1 1 + GK = A(z -1 )S(z -1 ) P(z -1 ) ; (6) 
• Input sensitivity function (the transfer function between the disturbance p(t) and the input of the system u(t)):

S up (z -1 ) = -K 1 + GK = - A(z -1 )R(z -1 ) P(z -1 ) , (7) 
where

P(z -1 ) = A(z -1 )S(z -1 ) + z -d B(z -1 )R(z -1 ) = A(z -1 )S (z -1 ) • H S (z -1 ) + z -d B(z -1 )R (z -1 ) • H R (z -1 ) (8) 
defines the poles of the closed loop (roots of P(z -1 )).

In pole placement design, the polynomial P(z -1 ) specifies the desired closed loop poles and the controller polynomials R(z -1 ) and S(z -1 ) are minimal degree solutions of [START_REF] Ding | Global stabilization and disturbance suppression of a class of nonlinear systems with uncertain internal model[END_REF] where the degrees of P, R and S are given by: n

P ≤ n A + n B + d -1, n S = n B + d -1 and n R = n A -1.
Using equations ( 4) and ( 5), one can write the output of the system as:

y(t) = A(q -1 )S(q -1 ) P(q -1 ) • p(t) = S yp (q -1 ) • p(t) . (9) 
For more details on RS-type controllers and sensitivity functions see [START_REF] Landau | Digital Control Systems -Design, Identification and Implementation[END_REF].

Suppose that p(t) is a deterministic disturbance, so it can be written as

p(t) = N p (q -1 ) D p (q -1 ) • δ (t) , (10) 
where δ (t) is a Dirac impulse and N p (z -1 ), D p (z -1 ) are coprime polynomials in z -1 , of degrees n N p and n D p , respectively. In the case of persistent (stationary) disturbances the roots of D p (z -1 ) are on the unit circle (which will be the case for this work). The energy of the disturbance is essentially represented by D p . The contribution of the terms of N p is weak compared to the effect of D p , so one can neglect the effect of N p .

IV. LOW DAMPED COMPLEX ZEROS

An important remark is that in order to be able to reject the disturbance introduced by the primary path, the secondary path has to provide enough gain. Looking at eq. ( 6), total rejection at a frequency ω is achieved when

S yp (e -jω ) = 0 → S(e -jω ) = 0, (11) 
nevertheless, in such case the modulus of the input sensitivity function (eq. ( 7)) becomes

S up (e -jω ) = A(e -jω ) B(e -jω ) , (12) 
meaning that the robustness against additive plant model uncertainties is reduced and the stress on the actuator will be important if low damped complex zeros are located near or at the frequency ω. Therefore, the cancelation (or in general an important attenuation) of disturbance effect on the output should be done only in frequency regions where the system gain is large enough.

In [START_REF] Landau | Benchmark on adaptive regulation -rejection of unknown/time-varying multiple narrow band disturbances[END_REF], several approaches were used in the benchmark example to reject a disturbance at 95 Hz. It was found that stability and performance issues arises due the proximity of the low damped zeros; furthermore, if the gain of the input sensitivity function is not low enough (below -10 dB) above 100 Hz, important amplifications (and even instability) can appear on the real system. One of the best results was presented in [START_REF] Silva | Direct adaptive rejection of unknown time-varying narrow band disturbances applied to a benchmark problem[END_REF], using a Yula-Kučera (YK) parametrization of the controller, a specific choice for the desired closed loop poles location and a direct adaptive approach.

V. DIRECT ADAPTIVE FEEDBACK REGULATION -A YOULA-KU ČERA APPROACH

The YK-parametrization proposed is depicted in the fig. 4, where both fixed and adaptive parts are pointed out. For this paper a YK-parametrization using an equation-error disturbance observer is used, along with a finite impulse response (FIR) filter representation of the optimal Q filter Using this parametrization, the controller polynomials R and S are defined by4 

Q(z -1 ) = q 0 + q 1 z -1 + • • • + q n Q z -n Q . ( 13 
)
R(z -1 ) = R 0 + H S 0 H R 0 QA (14) 
S(z -1 ) = S 0 -H S 0 H R 0 Qz -d B, (15) 
It is easy to show that for any arbitrary Q(z -1 ), the closed loop poles remain unchanged; they are defined by

P(z 1 ) = A(z -1 )S 0 (z -1 ) + z -d B(z -1 )R 0 (z -1 ). (16) 

A. Internal Model Principle

Looking at the output sensitivity function (eq. ( 6)) and the assumed model of the disturbance (eq. ( 10)), total rejection of a disturbance is possible if S(z -1 ) = S (z -1 ) • D p (z -1 ), meaning that the controller incorporates the model of the disturbance (internal model principle). Consider eq. ( 9) and eq. ( 15), then the output of the system can be expressed as follows:

y(t) = A S 0 -H S 0 H R 0 Qq -d B P • p(t). (17) 
In order that the numerator polynomial contains the model of the disturbance, the following diophantine equation has to be solved

S D p + H S 0 H R 0 Qz -d B = S 0 ( 18 
)
where D p , H S 0 , H R 0 , d, B and S 0 are known, and S and Q are unknown. Eq. ( 18) has a unique and minimal degree solution for S and

Q with n S 0 ≤ n D p + n B + d -1, n S = n B + d + n H R 0 + n H S 0 -1 and n Q = n D p -1.
Remark: It is assumed that D p and B do not have common factors but nothing is said of the feasibility of the solution if some complex zeros of D p are very close to some low damped complex zeros of B (of course the Bezout equation to be solved will be "ill conditioned" as we approach cancellation). From eqs. ( 17) and ( 18), and using a standard parameter adaptation algorithm (PAA) as explained in [START_REF] Landau | Digital Control Systems -Design, Identification and Implementation[END_REF], a direct adaptive algorithm for the rejection of multiple unknown time-varying narrow band disturbances can be developed, by considering an adaptive Q filter of the form

Q(z -1 ) = q0 + q1 z -1 + • • • + qn Q z -n Q . ( 19 
)
The details of the adaptation algorithm are given in [START_REF] Landau | Adaptive suppression of multiple time-varying unknown vibrations using an inertial actuator[END_REF] and a stability analysis is provided in [START_REF] Landau | Adaptive narrow band disturbance rejection applied to an active suspension -an internal model principle approach[END_REF].

VI. ADAPTIVE REGULATION IN THE VICINITY OF LOW DAMPED ZEROS

Eq. ( 18) has a unique and minimal solution for Q(z -1 ) when the roots of D p (z -1 ) are not contained in B(z -1 ), nevertheless the modulus of the output sensitivity function S yp (z -1 ) may becomes larger, specially when B(z -1 ) has roots close to those of D p (z -1 ), e.g. presence of low damped zeros in the system at frequencies where attenuation is introduced. To overcome such situation, in [START_REF] Jafari | Robust stability and performance of adaptive jitter supression in laser beam pointing[END_REF] the augmentation of the order of the polynomial Q(z -1 ) is proposed, claiming that if the solution of ( 18) is not unique, and an infinity possible values for the coefficients Q(z -1 ) exist to have the internal model as a factor, then there is a structural freedom to choose the optimum set of coefficients that provide the best performance by minimizing the output sensitivity function, (e.g. the modulus margin will be minimized) 5 . Note that the controller considered in [START_REF] Jafari | Robust stability and performance of adaptive jitter supression in laser beam pointing[END_REF] uses an "output error" type Youla-Kučera disturbance observer 6 .

In [START_REF] Silva | Direct adaptive rejection of unknown time-varying narrow band disturbances applied to a benchmark problem[END_REF] it was shown that using the plant model information (frequency characteristics), it is possible to keep the modulus of S yp (z -1 ) under an imposed maximum value by choosing appropriately the desired closed loop poles in P(z -1 ). In this approach the minimal degree for the polynomial Q(z -1 ) is maintained and an "equation error" Youla-Kučera observer is used.

The objective will be subsequently to compare the two approaches in the context of the international benchmark on adaptive regulation. The experiments were conducted in the international test bed proposed in [START_REF] Landau | Benchmark on adaptive regulation -rejection of unknown/time-varying multiple narrow band disturbances[END_REF], where a single sinusoidal disturbance at 95 Hz will be introduced.

VII. COMPARISON OF THE TWO APPROACHES -SIMULATION AND REAL TIME RESULTS

The comparison of the two approaches has been done on the active vibration control system described in Section II. Two main cases have been considered, with two options each:

1) P(z -1 ) contains the stable poles (SP) of the plant model along with 12 real poles (RP) (This will reduce the modulus of S up (z -1 ) in high frequencies. Without these poles the control signal is saturated in the real-time application due to the presence of the harmonics of the disturbance).

• a) With the minimal solution n Q = n D p -1.

• b) With an augmented solution n Q > n D p -1. 2) P(z -1 ) has the stable poles (SP) of the plant along with some auxiliary poles (AP): 2 pairs of low damped complex poles and 4 real poles.

• a) With the minimal solution n Q = n D p -1.

• b) With an augmented solution n Q > n D p -1. Simulations (SIM) and real-time (RT) experiments were conducted using both approaches. The results were classified in frequency and time domain. Time domain results are provided only for real-time experiments.

Table I summarizes the results in frequency domain (measured in dB) obtained for simulations and real-time experiments. The objective is to strongly attenuate the disturbance with a limited amplification of the other frequencies. To evaluate the performance three indicators have been defined together with there target values according to [START_REF] Landau | Benchmark on adaptive regulation -rejection of unknown/time-varying multiple narrow band disturbances[END_REF]: Disturbance Attenuation (DA) (min = 40 dB), Global Attenuation (GA) (min = 25 dB), and Maximum Amplification (MA) (max = 6 dB) 7 . The effects of the vicinity of the low damped complex zeros is noted for the Case 1 a), where the global attenuation is minimum and a significant amplification was found, both for RT and SIM. For Case 1 b) with n Q = 5, the improvements of the augmentation of the size of Q(z -1 ) are evident. Better attenuation and decreasing of the unwanted amplification are obtained 8 . When AP are used with a minimal solution (Case 2 a)), the results are significantly improved for the three specifications. It is important to observe that for the Case 2 b), augmenting the size of the Q-filter improves further all the performance indicators in simulation. In real time the performance is improved by reducing the maximum of the unwanted amplification and augmenting the global attenuation, however the disturbance attenuation is slightly lower with respect to the case of minimal order for the Q(z -1 ). 7 GA and MA give indication about the quality of the control which is supposed to introduce a very limited amplification at frequencies difeerent from the frequency of the disturbance 8 Due to the presence of harmonics of the disturbance in real time experiments, differences arise between the RT and SIM results for the Case 1 since the gain of S up (z -1 ) above 100 Hz is not low enough. Table II summarizes the results obtained in real-time with respect to the transient performance and computation time. Two specifications were considered according to [START_REF] Landau | Benchmark on adaptive regulation -rejection of unknown/time-varying multiple narrow band disturbances[END_REF]: a Transient Evaluation (TE in %) and the Computation Time (CT in µs). The transient evaluation criterion establishes that the transient duration when a disturbance is applied, has to be smaller than 2 s. A percentage was established for the fulfilment of this criterion. TE = 0% indicates a transient duration of 4 s and TE = 100% a transient duration smaller than 2 s. The detailed computation formulas can be found in [START_REF] Landau | Benchmark on adaptive regulation -rejection of unknown/time-varying multiple narrow band disturbances[END_REF].

The computation time is calculated from the Task Execution Time evaluated in the MATLAB c 's xPC-Target environment. The computational time only consider the closed loop calculations 9 .

The use of SP+AP shows its efficiency since 100% fulfilment of the transient evaluation criterion is achieved. The results are slightly less good when augmentation of the size of the Q(z -1 ) is considered. As was expected, the increase of the number of parameters (order of Q) implies an increase in the computation time, but this effect is not very significant.

Figure 5 shows the disturbance attenuation comparison between the two cases with the minimal (n Q = 1) and highest order (n Q = 5) solution. The figure shows real-time experimental results. As can be seen in the figure, some improvements are introduced when the order of Q is increased, such as lower amplifications in high frequencies and a larger attenuation (differences between the dashed blue line and dotted red line). Nevertheless, choosing appropriately the fixed closed loop poles (Case 2, a) and b)), the adaptive scheme introduce a significant attenuation with a minimum amplification. This can be seen also in the resulting output sensitivity function calculated with the estimated parameters of Q(z -1 ) for each case, from the real-time experiments. adaptive Q filter or over parametrization of the adaptive Q filter are two interesting solutions for improving the performance of adaptive regulation schemes in the vicinity of low damped complex zeros. The two approaches can also be combined. However over parametrization of the Q filter will require to use robust parameter estimation in order to avoid parameter drift. This case has been considered in a recent paper [START_REF] Jafari | Robustness and performance of adaptive suppresion of unknown periodic disturbances[END_REF].
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 656 Fig. 5. Disturbance attenuation comparison between the three cases, realtime results.

The complex variable z -1 will be used for characterizing the system's behaviour in the frequency domain and the delay operator q -1 will be used for describing the system's behaviour in the time domain.

The arguments (z -1 ) and (q -1 ) will be omitted in some of the following equations to make them more compact.

S yp (e -jω ) max corresponds to the H ∞ norm of the output sensitivity function.

For a definition of the various types of Youla-Kučera disturbance observers see[START_REF] Landau | Benchmark on adaptive regulation -rejection of unknown/time-varying multiple narrow band disturbances[END_REF].

The CT for an open loop test is 12.9 µs.