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Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL
Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France

{firstname.lastname@univ-lille1.fr}

Abstract—In the context of brain–computer interfacing based
on motor imagery, we propose a method which allows an expert
to select manually time-frequency features. This selection is
performed specifically for each subject, by analysing a set of
curves that emphasize differences of brain activity recorded from
electroencephalographic signals during the execution of various
motor imagery tasks. We will show that expert knowledge is very
valuable to supervise the selection of a sparse set of significant
time-frequency features. Features selection is performed through
a graphical user interface to allow an easy access to experts with
no specific programming skills. In this paper, we compare our
method with three fully-automatic features selection methods,
using dataset 2A of BCI competition IV. Results are better for
five of the nine subjects compared to the best competing method.

Index Terms—brain–computer interface, motor imagery, EEG
signal processing, sparse feature set, feature selection, human
expertise.

I. INTRODUCTION

Since the first works of Vidal [1], researchers paid increas-
ingly attention on brain activity used as a communication
channel. Brain–Computer Interfaces (BCI) are devices that
analyse a user’s brain activity in real-time in order to translate
his/her intent into one or more control signals. It allows
him/her to control an application, bypassing normal output
pathways that are muscles and peripheral nerves. Non invasive
BCI are promising for patients suffering from severe motor
disabilities, allowing them to recover a partial autonomy.
Such a device uses different kind of neurophysiological pat-
terns in order to identify user’s mental states. Event related
desynchronization/synchronization (ERD/ERS) elicited during
motor imagery (MI) are the most commonly used patterns in
BCI. Users consciously control ERD/ERS patterns at their own
pace, i.e by imaging that they realize a specific motor action,
independently from external events [2]. In order to discrim-
inate different MI tasks performed by the user, appropriate
features have to be defined from electroencephalographic
(EEG) signals.

ERD and ERS translate changes of activity in the primary
motor cortex [3]. During a MI task, desynchronization of neu-
ral activity induces a decrease of EEG power, characterizing
an ERD. ERS patterns are characterized by an increase of EEG
power, induced by a synchronization of neural activity at the
end of MI. Spatial distribution of ERD/ERS patterns depends

on the MI task, following the cortical motor homunculus [4].
ERD and ERS are known to be recorded in frequency bands
that are mu (7 - 13 Hz) and beta (13 - 25 Hz) rhythms.
Nevertheless frequency bands and spatial locations that are
the most relevant, depend on each subject and MI task.

The EEG signal processing usually includes a spatial fil-
tering stage in order to increase the signal to noise ratio and
therefore to facilitate the discrimination of different MI tasks.
CSP (Common Spatial Patterns) is an effective linear spatial
filtering method, widely used for MI-based BCI [5], involving
user-specific parameters. A user-tuned CSP filter weights EEG
channels in order to maximize the variance of EEG signal for
one MI task while minimize the variance of EEG signal for
other MI tasks or a idle mental state. The actual discriminative
performance of CSP filters depends on the frequency band and
on the time interval from which CSP features are extracted [6].
For instance, CSP filters computed on unfiltered signals or
with inappropriate frequency bands yield poor discrimination
of mental states.

To solve this problem, several methods have been de-
scribed in the literature. Some approaches aim to improve
the spatial filtering stage, using a wide frequency band, i.e.
encompassing mu and beta rhythms and therefore valid for
any user. For instance, [7] has compared performances of
different regularized CSP (RCSP), showing that the best RCSP
methods outperform classification accuracy of a basic CSP.
Other researchers paid more attention on the selection of
user-specific frequency bands in which ERD/ERS detection
is more effective. For example, [8] proposed a filter bank
common spatial pattern, which bandpass-filter EEG signals
into multiple frequency bands. Then CSP features are extracted
for each band and a feature selection algorithm keeps the most
relevant frequency/CSP features for a given user. Later, [9]
proposed a method of selecting subject specific frequency
bands, based on the analysis of a channel-frequency map, for
multiclass MI classification. Unlike [8], this approach selects
frequency bands whose size is specific for each subject and
MI. Recently, [10] proposed a method called Common Spatial-
Spectral Boosting Pattern (CSSBP), which combines CSP
filtering stage with a boosting strategy, to perform selection
of key channels and frequency bands.

However, all the described techniques perform an au-



tonomous features selection stage, by defining empirically
several meta-parameters, such as the number of features. But
the sparsity of the feature space is not defined by taking
into account some a priori neurophysiological knowledge
during this feature selection stage. Studies have shown that
the sparsity of the feature space decreases the sensitivity of the
BCI to covariate shifts in EEG signals, allowing for good clas-
sification results. For example, Raza et al. aimed to increase
the sparsity using techniques such as forward-elimination or
backward-elimination of features in the space [11]. Never-
theless, they do not use a detailed neurophysiological-based
analysis of ERD/ERS patterns in order to select the most
relevant frequency bands, spatial locations, and time intervals
in which EEG signals should be analysed.

In this paper we propose a method based on a human expert
analysis to select a small number of time-frequency features
during a first stage. Obviously, the raw EEG signal is not
analysed by the expert, which would involve a very high level
of expertise, but by plotting a set of curves using samples
of specific time-frequency processed EEG signals. Then CSP
filters are computed for each selected time-frequency features.
This approach yields a sparse features space, which is defined
by a human expert and not by blindly setting few meta-
parameters in a fully automatic selection technique. Moreover,
neurophysiological informations gathered during a MI task
thanks to our approach are useful to understand performances
of each subject.

II. METHOD

Since our method is supervised, different processing stages
are performed for the training mode as well as for the online
processing mode. The training mode aims to select time-
frequency intervals by analysing a set of labelled EEG trials.
So the BCI protocol must be synchronous to build a set of
training data. Users are informed about the period and the
kind of MI to perform. During the online mode the paradigm
is not necessary synchronous, users can freely perform MI
tasks as their own pace.

The processing pipeline for the training mode, illustrated
in figure 1, involves four successive stages: spatial filtering,
band-pass frequency filtering, power estimation, and aggrega-
tion over trials. As we want to implement the same signal
processing pipeline for all users in the training mode, we
use the surface Laplacian for the initial spatial filtering stage.
It allows spatial artefacts removal and source identification,
without involving user-specific parameters [12]. Then, in order
to highlight user specificities in the frequency domain, we
use as other authors a bank of band-pass filters encompassing
mu and beta rhythms [8], [11]. In order to show ERD/ERS
time course, we compute the log-variance – equivalent to
the power – of filtered signals in a sliding window of fixed
duration. Finally, to better highlight ERD/ERS patterns and
therefore help data analysis by the human expert, we compute
the average and standard-deviation of the signal power, over
all trials of each MI task.

spatial
filtering

bandpass
filtering

feature
computation

feature
selection

power24-28 Hz aggregation

power20-24 Hz aggregation

power16-20 Hz aggregation

power12-16 Hz aggregation

power8-12 Hz aggregation

power4-8 Hz aggregation

raw

EEG
Laplacian

Fig. 1: Processing pipeline for the training mode.

Our method is useful to select time-frequency intervals by
analysing neurophysiological patterns related to each MI task.
The expert reviews, for each MI task, a set of curves that
represent time-course of the EEG signal power filtered with
each frequency band and known to be correlated to a specific
motion. In order to highlight differences between a MI task
and other MI tasks in the time-frequency domain, each curve
of interest is compared to an additional baseline curve. This
baseline curve represents the EEG signal power under review,
averaging over all the trials corresponding to other MI tasks,
i.e. following a one-versus-rest-strategy. By analysing this set
of curves, the expert can select time-frequency intervals that
he/she considers as the most discriminant between a particular
MI and others. The first criterion that the expert pays attention
to concerns the ERD and ERS patterns. He selects the time-
frequency intervals where such patterns are more pronounced.
Then the other criterion, enabling to refine the set of intervals,
is the performance of classification.

For example, figure 2 shows a set of six curves, one for
each frequency band, in order to exhibit differences between
left hand versus right hand MI. The EEG signal recorded at
location C4 over the right sensorimotor cortex is known to
highlight ERD patterns during left hand MI. For this MI task,
the curve of interest in each frequency band (solid red lines in
figure 2) corresponds to the time-course of the EEG signal
power, averaged over all corresponding trials, after spatial
noise removal by a Laplacian filter. Power is computed in a
time window starting one second before MI onset and ending
one second and half after MI offset. Baseline curve in each
frequency band (blue dotted lines in figure 2) is the time-
course of the power from the same signal, averaged over all
trials that do not correspond to the MI task under review. In
order to bring to the expert the statistical significance of signal
variations, we display two additional curves around each curve
at plus and minus half standard deviation. Figure 3 shows
different sets of time-frequency intervals that the expert can
select, according to figure 2, as the best features to discriminate
left hand versus right hand MI. Each set is represented by a
time-frequency map, in which white strips delimit selected
features, and its classification accuracy (in %). The set with
the best trade-off between performance and sparsity should
be selected for the online mode. In this case sparsity and
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(b) 8− 12 Hz
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(c) 12− 16 Hz
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(d) 16− 20 Hz
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(e) 20− 24 Hz
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(f) 24− 28 Hz

Fig. 2: Set of curves for expert review of left hand motor imagery, electrode C4

performance are convergent, allowing to select easily the
second set. Nevertheless, when those parameters are divergent,
sparsity is favoured in order to decrease covariate shifts in
EEG signal, provided that performances are not too degraded.

First set: 90.97 % Second set: 92.36 %

Third set: 91.67 %

Fig. 3: Time-frequency features of subject 9 and their corre-
sponding classification accuracy.

Then, user-tuned CSP filters are computed using EEG
signals from each selected time-frequency interval, in order
to optimize the spatial filtering stage compared to the non-
adaptive Laplacian. As recommended by [13], we keep three
pairs of CSP filters in order to get a compromise between
performance and classifier overfitting.

Figure 4 depicts the processing pipeline for the online mode,
including four successive stages. First, EEG signals are filtered
in the spatial and frequency domains by CSP/band-pass filters
pairs defined during the training mode. Then, the log-variance
of filtered signals are computed over the time intervals that

were selected as the most relevant for each frequency band
by the expert. Finally, features are used as input of a LDA
classifier. The online processing pipeline can be performed in
an asynchronous mode, using a sliding window.

spatial
filtering

feature
computation

classificationband-pass
filtering

...... ...

power

raw

EEG
CSP2 BP2

LDA
powerCSP1 BP1

Fig. 4: Processing pipeline for the online mode.

When the BCI protocol involves more than two MI tasks,
one processing pipeline is implemented for each MI. As
we perform a one-versus-rest strategy for the time-frequency
selection, the same approach is used for the classification
stage. The confidence score, for instance the distance between
the feature vector and the hyperplane, that each classifier
outputs is used as input to a standard voting procedure to
determine the most appropriate class.

III. RESULTS AND COMPARISON

In order to assess our method, we used EEG signals publicly
available in data set 2A of BCI competition IV, which has
been widely used for comparison purposes [14]. This data set
comprises raw EEG signals recorded by 22 electrodes from 9
subjects who performed left hand, right hand, feet, and tongue
MI. All these MI tasks were performed during four seconds
after the presentation of a cue. Each user achieved two sessions
on different days in order to obtain a training data set and an
evaluation data set, both containing 72 trials for each MI.

Our method is compared with those described in [8], [9],
and [10], that is why we used in this study EEG signals
recorded during left hand, right hand, feet, and tongue MI.
For the training mode, the EEG signals are spatially filtered
with surface Laplacians centred on locations C3, C4, and Cz.



EEG signals from C3 (resp. C4, and Cz) are known to exhibit
an ERD pattern when the user performs right hand (resp. left
hand and feet) MI. According to [15], EEG signals from C3
and C4 are known to exhibit an enhancement of the mu rhythm
during tongue and feet MI. Each signal was filtered in the
frequency domain by a bank of six band-pass filters (5th order
Butterworth), yielding eighteen signals of interest. Finally,
their log-variance was computed over a sliding window, and
aggregated over trials to determine time-course of average and
standard deviation.

For each MI the expert reviewed curves of each frequency
band in order to keep the most discriminant time-frequency
intervals between one MI and others. Using data of the training
set, CSP filters are then determined for each time-frequency
intervals, LDA classifiers trained, and kappa scores computed.
As we have one classifier for each MI, trials are labelled by
the classifier with the highest confidence score.

Using the online processing pipeline described in figure 4,
our method was compared to: 1) the Event-Related Brain
Dynamics Analysis (ERBDA) [9]; 2) the Filter Bank Com-
mon Spatial Pattern algorithm (FBCSP) [8]; 3) the Common
Spatial-Spectral Boosting Pattern (CSSBP) [10]. For those
methods CSP filters are computed on user-specific frequency
bands and time interval between 0.5 and 2.5 s after the cue.
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Fig. 5: Kappa scores for each subject.
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Fig. 6: Box plots for each method.

As these methods are assessed using kappa score, we use
the same performance indicator for comparison purpose, as
shown in figure 5. Our method (mean kappa score m = 0.59±
0.27 std) outperforms the best competing method for 5 of the
9 subjects. According to these results, our method is mainly
profitable for subjects 3 and 9 for whom kappa score increases

respectively by 0.08 and 0.06 compared to the best competing
method. On the other hand, performances of subjects 2 and 5
decrease respectively by 0.24 and 0.14 compared to the CSSBP
method. In figure 6, we showed the box plots for each method.
Although our method presents the best median, an important
difference of performance is observed between subjects, as
illustrated by the value of the first and the third quartiles.

Figure 7 shows performance of each classifier, using our
method. We observe for subjects 1, 3, 7, 8, and 9 that at least
three classifiers have kappa score above 0.81. This threshold
is considered as an almost perfect result according to [16].
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Fig. 7: Kappa scores for each MI.

The first time-frequency interval that our expert considered
as the most discriminant between MI under review (red solid
lines) and other MI (blue dashed lines) are shown in figure 8
for subjects 2, 3, 5, and 9. For each frequency band, the time
interval selected by our expert is delineated by vertical black
dashed lines. According to this figure, differences between MI
are more pronounced for subjects 3 and 9 than for subjects 2
and 5.

IV. DISCUSSION

According to figure 5, our method outperforms others for
five of the nine subjects, demonstrating its efficiency to deal
with a multi-class classification problem in the context of
MI-based BCI. Performances of subjects 3, 7, and 9 are
above 0.81, using our method. As mentioned, this threshold
is considered as an almost perfect result, expecting that those
subjects have a better control of the BCI in an online session
that other subjects.

Nevertheless, in the other cases, especially for subjects 2
and 5, the expert supervised selection is not superior to an
automatic method such as the CSSBP. It is all the more a
drawback that their performance are already low, compared
to other subjects. As shown in figure 8, differences between
MI are not enough highlighted for subjects 2 and 5 to easily
select the most relevant time-frequency intervals. It explains
why the expert choose a standard time-frequency interval,
encompassing µ and β rhythms, for tongue motions of subject
2. Therefore in these cases an automatic machine learning
method seems to be more adapted to select features that best
discriminate the different MI.
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Fig. 8: First time-frequency feature for each MI reviewing and subjects 2, 3, 5, and 9, the vertical black dashed lines indicate
the time interval

However, in order to assess the relevance of the features,
the performance is not the only parameter to take into account.
The sparsity of the feature space is also an important parameter
to consider during the features selection step. Indeed the use
of a sparse set of features enables to prevent the effect of over
fitting, that an automatic method is more prone to. Although
over fitting can obtain better performances on a single session,
it decreases the stability of the features over time. Moreover
the selection of the most discriminant features, using an auto-
matic method, can be due to temporary artefacts that disappear
in the next session. That is why we expect by selecting a
set of time-frequency intervals based on neurophysiological
knowledge, that features are more relevant and stable.

Results presented in figure 7 are useful to analyse perfor-
mances of each subject. We observe that subjects for whom
classifiers have the highest kappa scores perform better than
other subjects. That is why subjects 1, 3, 7, 8, and 9, who
have at least three classifiers with performance above 0.81,
perform better than subjects 2, 4, 5, and 6. Figure 8 is
interesting to bring explanation, from a neurophysiological
point of view, about classifiers performances for the two
subjects with the best (3 and 9) and the worst (2 and 5)
performances. Differences between MI are more pronounced
for subjects 3 and 9 compared to subjects 2 and 5, confirming
results in figure 7.

Figure 8 brings also some interesting neurophysiological

informations about ERD/ERS patterns. During right hand MI,
an ERD is elicited on the contralateral hemisphere (C3),
confirming the literature. An ERD pattern is observed during
left hand MI on the contralateral hemisphere (C4), except for
EEG signal of subject 5 which elicited a desynchronization on
the ipsilateral side (C3). During feet MI, no ERD is observed
on EEG signal from Cz as expected, except for subject 9 who
has a low desynchronization. In the other hand, for subject
2 a strong ERS is observed from the same signal, allowing
a better discrimination between classes. It partly explains the
good result (0.79) of classifier for feet MI compared to other
classifiers. For subjects 3 and 5, a low ERS is observed on
EEG signal from C3, showing no clear differences between
feet MI and other motions in the latter case. For subject 3,
the difference observed between feet MI and other MI is
mainly due to the strong desynchronization elicited during
right hand MI in the same signal (C3). During tongue MI an
ERS is observed on EEG signals from C3 and C4 respectively
for subjects 3 and 5, and 9, as mentioned by [15]. This
synchronization is useful to select the most relevant time-
frequency intervals. Nevertheless for subject 2, no ERD/ERS
are observed during tongue MI in EEG signal filtered from
each frequency bands. That is why the expert chose a standard
time-frequency interval, as used in other studies [7].



V. CONCLUSION

We described a method which allows an expert to select
time-frequency intervals that he/she considers as the most
relevant in order to discriminate different classes in the context
of MI-based BCI. Our method is adapted to each subject and is
performed off-line, using a set of EEG signals recorded during
a cue-based paradigm. The human expert is able to select
time-frequency intervals by reviewing a set of curves plotted
for each MI. According to our results, CSP performances
depend on the selected time-frequency intervals, confirming
the literature. Our method is also interesting to analyse specific
variation of brain activity elicited during MI, by gathering
neurophysiological informations from EEG signals. Such in-
formations are useful to better understand performances of
each subject. Finally, a graphical user interface is developing
to easily implement the proposed method by an expert.
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