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Abstract

The derivation of Green’s correlation naturally arises when identifying a linear

propagation medium with uncontrolled random sources or ambient noise. As

expected, this involves convolution of the well known Green’s function with its

time-reversed version. The purpose of this paper is to derive a general expres-

sion of the Green’s correlation function of a linear visco-acoustic propagation

medium, in which the pressure field satisfies Stokes’ equation. From the expres-

sion obtained for a visco-acoustic medium, the Ward identity that was recently

obtained for unbounded media is extended to the case of bounded propagation

media. This extension appears necessary as the unbounded model is not valid

in many practical cases, as for acoustic rooms for example. It is illustrated with

both simulations and real-world aerial acoustics experimental data recorded in

a closed room and in the framework of passive identification. In these exper-

iments, Green’s correlation is estimated by the classical coda-based approach,

and the performances are studied in this new context.
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1. Introduction

Retrieving the parameters of a linear propagation medium is still an active re-

search topic in many domains, such as wave celerity map estimation in medium

tomography, impulse response estimation in wireless communications, and modal

pulsation estimation in modal analysis of mechanical structures. Indeed, this list

is not exhaustive. When controlled sources can be used, the Green’s function of

the explored propagation medium relates a known excitation source to the gen-

erated wave measured by a set of sensors. In this situation, received and emitted

signals are processed to estimate the Green’s function and then to extract the

parameters related to the propagation medium and the sensor positions. In a

passive context, ambient sources are used (see for example the tutorial [18]).

Green’s functions cannot be extracted directly, as no deterministic information

on the source is available. To circumvent this lack of information, many studies

have considered ambient (spatio-temporal) white noise (see [11, 2, 8, 17, 5, 4], for

a non exhaustive list). For this type of ambient sources, the cross-correlations

between two received signals are known as Green’s correlation (and also called

noise correlation). Green’s correlation has a role similar to the Green’s function,

as it relates the auto-correlation of a source to the auto-correlation of the wave

generated by this source.

The ambient noise that issues from uncontrolled white sources can be created by

thermal noise [11], and by external random excitation [18]. Seismologists have

shown a very interesting way to raise the number of ’useful’ ambient sources

[2]. They have shown experimentally that the cross-correlation of a coda gen-

erated by a propagated impulsion source (such as an earthquake) is a good

approximation of white noise cross-correlation (the mathematical proof is still
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an open problem; see section 6 of [5]). Briefly, and approximately, this can be

explained through ergodic cavity theory. A localized impulse source snared in

such a cavity will be ’converted’ to a white source during the propagation inside

the cavity, as after a certain time (i.e., the mixing time), the cavity ’randomizes’

both the directions and the times of arrival. Therefore, the propagated source

’becomes’ white after this mixing time, and the origin of the source disappears.

This codas-based result is valid in the acoustic framework, and this significantly

increases interest in the study of propagation media parameter retrieval from

cross-correlations of uncontrolled white sources.

It has been shown that Green’s correlation is the space-time convolution of the

Green’s function with its time-reversed version [19, 5]. This convolution exists

(mathematically) only if the associated propagation equation contains a dissipa-

tion term. Many studies have used a constant dissipation model [11, 2, 13, 8, 5],

which is not realistic in acoustics and elastic propagation media [4]. Indeed,

in the presence of dissipation, Stokes’ equation [14, 1] describes the propaga-

tion of acoustic waves, and, P-waves and S-waves in the elastic context [14].

Green’s correlation of Stokes’ equation was studied for an unbounded propaga-

tion medium in [4], and the Ward identity relating Green’s correlation to the

Green’s function [19] was derived for that case. To the best of our knowledge,

Green’s correlation for Stokes’ equation has never been studied in a general

framework (see [17] for Green’s correlation derivations in other practical physi-

cal contexts).

In this paper, we derive an exact expression of Green’s correlation in the time

domain. From this expression that is obtained through a modal decomposition,

we extend the Ward identity for Stokes’ equation obtained in [4] for unbounded

3



propagation media, to any bounded visco-acoustic propagation media. Further-

more, this expression is used to simulate the visco-acoustic Green’s correlation,

to improve its interpretation, as this is difficult to obtain directly from the equa-

tions. Then indoor aerial acoustics experiments with microphones are presented.

These illustrate the possibility to retrieve the visco-acoustic Green’s correlation

with a coda-based approach. The results obtained in these experiments are

compared with the theoretical ones developed in the first part of this paper.

This paper is organized as follows:

• Section 2 first introduces Stokes’ equation. The associated dispersion relations

and modes are computed. Then the visco-acoustic Green’s function is derived

from a modal decomposition. Codas are presented in the particular regime that

combines semi-classical approximation (see part B of [10]) and low attenuation

approximation (see section A of [1]). Finally, Green’s correlation of Stokes’

equation is introduced and an exact expression is derived in the time domain.

From that expression, we establish the Ward identity for Stokes’ equation in any

bounded media in the presence of low attenuation. Simulations are presented

to illustrate the expressions derived.

• Section 3 is dedicated to the experimental Green’s correlation retrieval in visco-

acoustic propagation media. We introduce the coda-based method, for which

performances are established with real data and compared to simulations.

• Section 4 summarizes the results obtained in the previous sections and dis-

cusses the identified perspectives in Green’s correlation interpretation, and pas-

sive parameters retrieval with a coda-based method.
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2. Green’s correlation of Stokes’ equation

2.1. Stokes’ equation.

Throughout this paper, we consider a three-dimensional (3D) visco-acoustic

propagation medium denoted by X and assumed to be linear and homogeneous.

We denote the surface of X by ∂X when this latter is bounded. Bounded and

unbounded cases are considered.

We denote the pressure field by p (fields are in bold). It is a function of time t

and position x ∈ X (vectors are underlined): p(t, x) is the pressure at time t and

position x. In many applications, dissipation is discarded from the propagation

model. However, this is no longer affordable for passive identification purposes

[5, 19, 4]. Based on the results from [4], the viscous dissipation model is con-

sidered in the present study. This equation, called Stokes’ equation, relates the

pressure field generated by an excitation source field f and writes [14, 1]:

∂2p(t, x)

∂t2
− α2 ∂

∂t
∆Xp(t, x)− v2∆Xp(t, x) = f(t, x) (1)

where v is the sound speed in the propagation medium, α2 is the damping co-

efficient. ∆X is the Laplace operator defined on X and takes null values on its

boundaries ∂X. To fully described the propagation of the pressure field, Equa-

tion (1) is completed by the initial conditions: causality of the pressure field

and of its first derivative with respect to time.

2.2. Spatial modes of Stokes’ equation.

We introduce the spatial modes of Stokes’ equation. Modes formalism will be

used to derive exact expressions of the visco-acoustic Green’s function and of
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the visco-acoustic Green’s correlation. To derive the modes, we compute the

dispersion relation of Stokes’ equation. Before, let:

p̂(ω, x) =

∫
R
p(t, x) exp(iωt)dt (2)

be the Fourier transform over the time variable t of field p. In the Fourier

domain, all of the fields will be capped by the symbol ∧. By considering the

Fourier transform of Equation (1), we get:

−ω2p̂(ω, x)−
(
iα2ω + v2

)
∆X p̂(ω, x) = f̂(ω, x) (3)

The modes are the spatial solutions of Equation (3) when there is no source

(f̂ = 0). They are the stationary responses of the propagation medium. Let m

be such a solution, from Equation (3), this satisfies:

∆Xm(x) = −k2(ω)m(x) (4)

where:

k2(ω) =
ω2

v2 + iα2ω
(5)

Equation (5) is the dispersion relation associated to Stokes’ equation: it re-

lates the spatial frequency k to the temporal frequency ω. Equation (4) shows

that a mode is an eigenvector of the Laplace operator ∆X . When this lat-

ter is unbounded, there is an infinity of modes m(x) = exp(ik(ω)Tx) where

k(ω)T k(ω) = k2(ω); here T is the transpose operator. When the medium

is bounded with sufficiently regular boundaries (as it is the case for instance

for moderately reverberating environments), the modes form a countable set

(mn)n∈N associated to a countable set of eigenvalues (kn)n∈N. Those two sets
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depend only on the boundary ∂X.

From the dispersion relation (Equation (5)), we can derive the modal pulsations

(ω±n )n∈N of the propagation medium X. For a given integer n, ω±n is a solution

of Equation (5) when k(ω) = kn; i.e.:

ω±n = idn ± qn (6)

where:

dn =
α2k2n

2
(7)

qn =
√
v2k2n − d2n (8)

Modal pulsations are fundamental in modal analysis of mechanical structures,

and of propagation media in general. As discussed later here, they explicitly ap-

pear in the Green’s function and Green’s correlation expressions in the Fourier

domain.

To finish this subsection, we introduce the example of an acoustic cubic room

of length L i.e., X = [0 , L]3. For this particular case, the modes are written:

mn(x) =
L3

8π3
sin
(n1πx1

L

)
sin
(n2πx2

L

)
sin
(n3πx3

L

)
(9)

k2n =
(
n21 + n22 + n23

) π2

L2
(10)

dn =
(
n21 + n22 + n23

) π2α2

2L2
(11)

where x = [x1 , x2 , x3]
T

and where n1, n2 and n3 are integers. This simple

example will be used throughout the paper.
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2.3. Green’s function of Stokes’ equation.

In this subsection, we introduce the Green’s function associated with Stokes’

equation for a bounded visco-acoustic propagation medium. Using the modal

decomposition, we derive exact expressions in the Fourier domain and then in

the time domain. Thereafter, we consider the particular regime of low damping

and high frequency (also called semi-classical). This case allows acoustic codas

to be introduced, based on ergodic cavity analysis, which is fundamental in pas-

sive Green’s correlation retrieval.

The Green’s function of a propagation medium X, is denoted by G and is the

causal solution of Equation (1) when the source is a localized impulse source.

Thus, the Green’s function is the impulse response of the propagation medium

seen as a generalized linear filter. This interpretation is enhanced by the fun-

damental relation:

p(t, x) =

∫
R×X

G(t− s, x|x′)f(s, x′)dsdx′ (12)

= (G⊗T ⊗Sf) (t, x) (13)

where ⊗T is the classical time convolution and ⊗S is the generalized space con-

volution (Fredholm operator). [1] and [9] provide derivations and discussions of

the Green’s function of Stokes’ equation for a free propagation medium.

As the Green’s function is a solution of a partial differential equation with

constant coefficients (with respect to time and space) when the source is a

spatio-temporal impulse, its Fourier transform admits a modal decomposition
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given by [5]:

Ĝ(ω, x|x′) = −
∑
n≥0

mn(x)mn(x′)(
ω − ω+

n

) (
ω − ω−n

) (14)

The inverse Fourier transform of Equation (14) leads to the exact Green’s func-

tion in the time domain [5]:

G(t, x|x′) = H(t)
∑
n≥0

exp
(
−dnt2

)
sin(qnt)

qn
mn(x)mn(x′) (15)

where H is the Heaviside distribution. Even if Equations (14) and (15) are

exact, their interpretation remains difficult. However, these equations are in-

teresting for at least two reasons: they allow simulation of the visco-acoustic

Green’s function (see Figure 1 for an example in an acoustic cubic room), and

they allow the derivation of exact expressions of the visco-acoustic Green’s cor-

relation.

The visco-acoustic Green’s function provides a representation simpler than Equa-

tion (15) when we consider the two following regimes: the high frequency regime

(also called the semi-classical regime [10]) and the low dissipation regime (see

Appendix 5.2 for a ’quantified definition’ of this regime). To derive this simpler

representation, we start by considering the case when there is no dissipation

i.e., α = 0. With this condition, the Green’s function satisfies [10]:

G(t, x|x′) =
∑
n≥1

an(x, x′)δ(t− tn(x, x′)) (16)

where δ is the Dirac distribution. In this expression, tn(x, x′) is the n-th time-

of-arrival received at x if an impulse was emitted at x′ at time t = 0. Coefficient

an(x, x′) models the geometrical attenuation due to the propagation of the im-
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pulsion in the medium. In particular:

t1 =
||x− x′||2

v
(17)

where ||.||2 is the Euclidean norm, as the travel-time between points x and

x′. The travel-time is a relevant example of a parameter retrieved in a passive

context. Indeed, it allows passive tomography to be processed [3] and passive

sensor network location [15]. We will briefly return to this parameter in the

next sections.

Equation (16) shows that the Green’s function can be related to the trajectory

of a propagating wavefront. Thus, the bounded propagation medium acts as a

billiard [10]. When this latter is ergodic, there exists a time - called the mixing

time and denoted by tH - after which an impulse source ’becomes’ a propagated

white noise. This interpretation, which is classical in indoor acoustics [6], al-

lows the definition of acoustic codas that are part of the signal that starts after

the mixing time. As indicated in the Introduction, it has been experimentally

shown that the cross-correlation of codas generated by the same source and

recorded at two different points is a good approximation of the cross-correlation

of spatio-temporal white noise [2].

In the presence of low dissipation, the Green’s function of Stokes’ equation can

be approximated by Equation (16), where the Dirac distributions δ(t−tn(x, x′))

are substituted by Gaussian functions centered on the times of arrival tn(x, x′)

(coefficients an(x, x′) are also redefined; [1]). Other approximations have been

proposed in the literature [1, 9]. In all cases, codas and the travel-time are valid

limiting cases in the presence of low dissipation. This latter point is illustrated

by Figure 1, where two examples of simulated visco-acoustic Green’s functions
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(obtained with the modal decomposition of Equation (15)) appear to be the

sums of attenuated Gaussian functions centered on the times of arrival. This

approximation of the visco-acoustic Green’s function is no longer causal [1, 9].

We will return briefly to this consequence in the next subsection.

2.4. Green’s correlation and Ward identity of Stokes’ equation.

Here, we introduce Green’s correlation of Stokes’ equation, and we derive an

exact expression in the time domain, as for the Green’s function in the previous

subsection. Then we obtain a Ward identity for Stokes’ equation in the presence

of low attenuation. Simulations are presented to display the relations derived

in this subsection.

Before introducing Green’s correlation, we present first a generalized interference

formula that involves cross-correlation of fields. This formula will be central to

the interpretation of Green’s correlation. The cross-correlation of a stationary

pressure field p is defined by:

Cp(t, x|x′) = E [p(t+ τ, x)p(τ, x′)] (18)

where E[.] is the expectation operator. Thus, if f (defined in section 2.1) is a

stationary source and if p is the generated pressure field, Equations (1) and (18)

imply (see Appendix 5.2):

Cp = G⊗T ⊗SCf ⊗T ⊗SG− (19)

where Cf is the cross-correlation of the source f defined similar to Equation

(18), and G− is the time-reversed Green’s function:

G−(t, x|x′) = G(−t, x′|x) (20)
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Equation (19) is the so-called generalized interference formula (see for example,

chapter 10 page 422 of [12]) that relates input/ output second-order statistics

of a linear system. In this context, it relates the pressure field correlation to

the source field correlation, and it can be interpreted as the ”order 2” version of

Equation (1).

Now, we define Green’s correlation:

C = G⊗T ⊗SG− (21)

As recalled from the previous subsection, the Green’s function is the medium re-

sponse to an impulse source. This result can be transposed to Green’s correlation

through Equation (19). Indeed, Green’s correlation is the cross-correlation of the

medium response to a spatio-temporal white source of power unity i.e., a source

f such that: Cf (t, x|x′) = δ(t)δ(x−x′). This result justifies the strong interest of

acousticians and seismologists in Green’s correlation of a propagation medium,

as there are ambient sources (e.g., codas generated by earthquakes) such that

the cross-correlation provides good approximations of the cross-correlation of a

white (in time and space) noise source.

It has been shown in a general framework [19, 5] (beyond the Stokes’ equation

framework) that Equation (21) is valid if and only if the medium is dissipative,

eventually with a low dissipation coefficient. This has also been highlighted for

particular damping models: for constant damping [8] and viscous damping [4].

Now, we derive exact expressions of Green’s correlation for Stokes’ equation in

the Fourier domain and in the time domain. The Fourier transform of Equation
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(21) leads to:

Ĉ = Ĝ⊗S Ĝ∗ (22)

where ∗ is a complex conjugate operator. Using Equation (14) and the orthog-

onality of modes for the spatial convolution, we get:

Ĉ(ω, x|x′) =
∑
n≥0

mn(x)mn(x′)∣∣ω − ω+
n

∣∣2 ∣∣ω − ω−n ∣∣2 (23)

This exact expression reveals that the poles of Green’s correlation are equal to

the modal pulsation of the propagation medium. This result is interesting for

passive modal analysis. In particular, this has already been highlighted in the

context of structural monitoring, where the propagation equation is the discrete

Navier equation for elastic solids (see for example [7, 16] where [7] is a pioneer

article in this context).

The inverse Fourier transform of Equation (23) leads to an exact expression of

Green’s correlation in the time domain [5]:

C(t, x|x′) =
∑
n≥0

exp
(
−dn|t|2

)
(qn cos(qnt) + dn sin(qn|t|))

dnqnk2n
mn(x)mn(x′) (24)

From Equation (7), we note that Equation (24) diverges when α goes to 0. This

emphasizes the fundamental role of dissipation: Green’s correlation does not ex-

ist if the dissipation is not taken into consideration. As recalled at the beginning

of this subsection, this comment can be generalized beyond the visco-acoustic

context.

As discussed in the previous subsection about the Green’s function of Stokes’
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equation, Equation (24) is similarly difficult to interpret. This difficulty is high-

lighted in Figure 2, where two examples are plotted of simulated Green’s cor-

relations obtained from the exact Equation (24) with the same parameters as

Figure 1. In the presence of low dissipation, the interpretation can be facilitated

through the derivation of a Ward identity, which relates Green’s correlation to

the Green’s function, which is valid in this framework. It is important to recall

that derivations of Ward identities are historically explained, as the Green’s

function was the parameter of interest in linear media identification, because

only active methods where considered (i.e., using controlled sources). Thus,

for passive linear media identification, a step is missing to retrieve the Green’s

function from Green’s correlation estimated with ambient noise only. When the

propagation of the medium is modeled by a linear propagation equation that in-

cludes a dissipation operator (as Stokes’ equation in the acoustic case), a Ward

identity can be derived [19, 5]. Thus, the Green’s function can be retrieved due

to this identity and to the estimated Green’s correlation.

The Ward identity generally used was obtained from a constant damping model

(e.g., valid for vibrating strings and membranes) [8, 19, 5]:

∂C

∂t
= −a−1OddG (25)

where a is the damping coefficient, and where:

OddG(t, x, x′) =
1

2
(G(t, x, x′)−G(−t, x, x′)) (26)

is the odd part of the Green’s function. This relation is exact, but the constant

damping model is not really valid in the 3D acoustic framework. When the

viscous damping is considered, a Ward identity for Stokes’ equation has been
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derived [4] for a free propagation medium and in the presence of low attenuation:

∂3C

∂t3
≈ v2

α2
OddG (27)

Through Equations (24) and (15), we show in Appendix 5.2 that the Ward iden-

tity of Equation (27) is still valid for any bounded propagation media. One can

observed in simulation the validity of this Ward identity for the two examples

presented in Figures 1 and 2. Furthermore, the Ward identity of Equation (27)

allows the interpretation of Green’s correlation of Stokes’ equation as the third-

order primitive of (the odd part of) the Green’s function of Stokes’ equation.

This latter admits a ’simple’ representation Equation (16) in the high-frequency

regime, as it is the sum of the attenuated times of arrival. Thus, as shown in

Appendix 5.3, Green’s correlation is the sum of piecewise quadratic functions.

This result facilitates the understanding of this function, and in particular, of

the examples plotted in Figure 2.

However, even if the viscous damping model is adapted in 3D acoustics, this in-

volves a third time derivative to retrieve the Green’s function. More generally,

whatever the considered Ward identity, of Equations (25) and (27), or see [19],

for a general derivation, Green’s function retrieval is subject to uncertainties

due to the derivatives in time and to the limit of the validity of the damping

model used. A relevant improvement will be to avoid the use of a Ward iden-

tity in passive media parameter identification. Indeed, the passive identification

process leads first to an estimation of Green’s correlation of the studied prop-

agation medium. Similar to the Green’s function, Green’s correlation contains

information on the researched medium parameters (e.g., as described in the sub-

section about modal pulsations). This appears to be relevant to retrieve these

parameters directly from this function.
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To conclude this section, we briefly discuss the nonrespected causality of the

approximated visco-acoustic Green’s function in the presence of low attenuation

(as mentioned in the previous subsection). The Ward identities of Equations

(25) or (27) involve the odd part of the Green’s function. The Green’s function

can be retrieved from its odd part if and only if it is a causal function. Thus,

if this latter is not causal, the Ward identity is not sufficient to completely

retrieve the Green’s function from Green’s correlation. However, in the presence

of low attenuation, the causality is quasi-respected as the Gaussian functions,

which substitute the Dirac distributions in Equation (16), admit a variance

proportional to the damping coefficient α [1] and thus exhibit a strong decay.

When this latter goes to 0, Gaussian functions (which are not causal) converge

to causal Dirac distributions.

3. Green’s correlation retrieval

Green’s correlation retrieval is the main step in passive identification. In the

previous sections, we introduced codas that are a fundamental tool to provide

a good approximation of white ambient noise. In this section, we describe the

Green’s correlation retrieval process from the use of codas. Then we present

experimental results obtained with the acoustic signals recorded by microphones

in an air room. The performances are discussed.

3.1. Determination of the coda

The rigorous definition of a coda is difficult to explain (see [3] for a definition in

the seismic context). In [3], and in many papers related to passive homogeneous

media identification, the coda is defined as the tail of a propagated impulse

signal. The beginning of the tail is the Heisenberg time (also called the mixing-

time) of the medium seen as an ergodic cavity (if it is one). The tail stops when
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its magnitude is at the same level as the magnitude of the experimental noise

(including the electronic measurement noise). Figure 5 (top) shows a signal gen-

erated by the propagation of an impulse source (a localized snap in an acoustic

room of size 5 m × 5 m × 2.5 m) and recorded by a microphone (sampling

at 44.1 kHz on 16 bits). Figure 5 (bottom) shows the plot of the signal power

evolution versus time.

Green’s correlation is retrieved by cross-correlation of the codas extracted from

different snaps. [3] presented the impact of coda extraction on Green’s func-

tion retrieval in a seismic context. It is important to note that the beginning

time of the extracted codas needs to be overestimated, and the end time of the

extracted codas needs to be underestimated. If the beginning time is underes-

timated, a coherent part of the signal is considered. This introduces a bias in

Green’s correlation estimation. If the end time of the coda is overestimated,

the signal-to-noise ratio of the cross-correlation estimate decreases under the

influence of this part of the coda, which does not contains the signature of the

propagation. The main difficulty relies on the estimation of the beginning of

the coda, which is a well-known complex problem in the room acoustics domain

(see [6], where they give an example of such an estimator).

We estimated the beginning time of the coda by considering a threshold in the

decreasing part of the signal power (see Figure 5). For the experiments described

below, the threshold is such that the signal is in the coda when it has lost a

certain ratio, denoted by rb (rb < 1), of its maximum power. The end of the

coda is also determined by a threshold. The coda ends when its power is less

than a certain ratio, denoted by re (re > 1), of the experimental noise power

measured on the record before the arrival of the snap excitation.
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3.2. Determination of Green’s correlation

Now, we describe the experimental results concerning the visco-acoustic Green’s

correlation extraction using a series of uncontrolled impulse sources generated

in an air acoustic room and recorded by a pair of microphones. The protocol is

as follows:

• The observation time window [−T, T ] for Green’s correlation is fixed. In prac-

tice, the value of T is conditioned by the application (T = 6 ms in the presented

experiments, as times of arrival lower than 6 ms are searched).

• For each impulse, the coda recorded by the two sensors is extracted, as de-

scribed in the previous section, with the thresholds rb and re (rb = 1/2 and

re = 2 in the presented experiments).

• All of the extracted codas are segmented into parts of length T .

• The sub-signals of the two sensors corresponding to the same coda part are

cross-correlated, giving a ’coda correlation’.

• All of the coda correlations are normalized and averaged.

This protocol provides an estimation of the normalized visco-acoustic Green’s

correlation between two sensors. These experiments were carried out in dif-

ferent acoustic air rooms and for various distances between the sensors. We

will limit our illustration to two realizations that are significant for all of the

experimentation. Figures 6 and 7 show examples of the estimated Green’s cor-

relation obtained with this protocol and its third time derivative (obtained by

a classical finite difference method). For those examples, sensors were placed in

an acoustic ’uncontrolled’ air room (’uncontrolled’ indicates that the geometry

of the room was not controlled). We present in the three following paragraphs

the conclusions that emerged from these experiments.
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We observed that the convergence of Green’s correlation estimation is sensitive

to the parameters rb, re, T , and to the number of coda correlations averaged.

The two first parameters, rb and re, must be adjusted to ensure good coda ex-

traction (as already mentioned in the previous paragraph). Experiments confirm

that if ’useless’ parts of the codas are extracted, the estimated Green’s correla-

tion cannot be exploited. The mixing of ’coherent’ parts (too high a value of rb),

and ’parasite experimental noise’ (too low a value of re) destroy the structure

of the estimated Green’s correlation (here, we have not tried to determine the

optimal values of these parameters). The number of coda correlations (around

900 for the two examples presented) and the time window T impact on the

signal-to-noise ratio. These averaging parameters need to be high in order to

apply the Ward identity to retrieve the Green’s function from the estimated

Green’s correlation. Such identities involve time derivatives so the signal-to-

noise ratio on the estimated Green’s function is drastically decreased, leading

to nonexploitable estimations. This is illustrated by Figures 6 and 7, where the

noise fluctuations of the higher magnitude of these appearing in the Green’s

correlation estimate (Figures 6a and 7a), appear in the estimated Green func-

tion (Figures 6b and 7b). The increasing magnitude of the fluctuations between

Green’s correlation and the Green’s function is due to the time derivatives, and

this can be critical if, e.g., travel-time is the parameter to estimate. In practice,

the number of coda correlations is limited by the number of snaps.

For the retrieved Green’s correlation (Figures 6a and 7a), the conclusions are

similar to those in the previous section: it is difficult to interpret this function

and to deduce directly from it an estimator of the medium parameters (travel-

time, speed propagation v, damping coefficient α, and others). This lack of
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interpretation makes it difficult to quantify the performances of Green’s cor-

relation estimation in an experimental context. However, as discussed in the

previous section, the retrieval quality can be measured by the use of Ward iden-

tity and a comparison with a reliable Green’s function model. This is the case

for visco-acoustic and homogeneous propagation media with low attenuation (as

in an acoustic air room), as discussed in section 2. This is illustrated in Figures

6b and 7b, where the third time derivative of the estimated Green’s correla-

tion matches with the theoretical odd part of the Green’s function, which is, in

this time window, a pure delay localized at the travel-time between the sensors

(= 0.68 ms for the first example, = 1.41 ms for the second example). Fur-

thermore, the retrieval quality can also be observed through simulated Green’s

correlations if the modes of the acoustic room are known. In this context, Figure

8 shows the qualitative similarity between a simulated Green’s correlation (ob-

tained through Equation (15) for a cubic acoustic air room) and the estimated

Green’s correlation in Figure 6a (for an ’uncontrolled’ real acoustic air room),

for the same space between the microphones. This comparison shows that the

structure of the two curves is identical, except around the delay 0. This dis-

crepancy might be due to the nonperfect convergence of the coda-based method

around the 0 delay. More precisely, we can illustrate with simulations that the

quadratic shape of Green’s correlation around the 0 delay is difficult to retrieve,

as it involves the first modes of the decomposition of Equation (24). In practice,

the measured codas emulate white noise in a frequency band [fmin; fmax] where

fmin > 0. Missing low frequencies impact on the Green’s correlation retrieval,

as clearly observed in Figure 7a for the times centered around 0, and lower than

the time of flight. However, as mentioned in this paragraph, a part of the struc-

ture of this function is preserved as the time of arrival is well retrieved through

the Ward identity (Figure 7b).
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Finally, comparisons using simulations (for the estimated Green’s correlation)

and the Ward identity (for the third time derivative of Green’s correlation) val-

idate the efficiency of the coda-based Green’s correlation estimation. A direct

perspective is to extend the use of simulations into more complex rooms, to

qualify more precisely the performances of passive Green’s correlation estima-

tion.

4. Discussion and conclusions.

Passive identification has been presented, and Green’s correlation estimations

of linear propagation media have been introduced. In the context of Stokes’

equation, an exact expression of Green’s correlation has been derived. These

results have been used to simulate the Green’s correlation function, the inter-

pretation of which is complex. The use of the Ward identity of Equation (27),

first derived by [4] for an unbounded visco-acoustic medium, has been extended

for any bounded medium in the presence of low attenuation. Through this

Ward identity, the third time derivative of Green’s correlation is related to the

Green’s function of Stokes’ equation. The Green’s function can be more eas-

ily interpreted through ergodic billiards theory in the high frequency regime [10].

Green’s correlation estimation based on coda correlations has been presented.

The protocol and the performances have been discussed. The reliability of the

approach has been reinforced from comparisons with simulations and from the

use of the Ward identity derived in Equation (27). This study allows the valid-

ity to be established for the transposition in homogeneous acoustic propagation

media of the coda-based Green’s correlation retrieval initially introduced in seis-

mology [2, 3].
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Two main perspectives can be proposed.

First, travel-time estimation is today achieved using a Ward identity, which in-

volves time derivatives, to estimate this parameter from the Green’s function.

A deeper study might avoid the use of a Ward identity to retrieve the time

of flight directly from Green’s correlation. This idea is reinforced by Figure 9,

which shows with two examples that the travel-time can be extracted from the

primitive of Green’s correlation, which is a more robust estimation that needs

fewer ’coda-correlations’. However, this empirical estimator needs to be theo-

retically justified (maybe from Equation (24)), by proving that the travel-time

is a zero of Green’s correlation. This question is still open.

Secondly, there is a more general question in passive media identification: the

study of parameter estimation performances with respect to model uncertainties

and to the ’performances’ of the ambient sources used (where the concept of

performances is here related to the capacity of the sources used to provide

cross-correlation close to the cross-correlation of white noise). This study enters

into the estimation theory domain. From our knowledge, no such study has

been done even beyond the Stokes’ equation.

5. Appendix.

5.1. Proof of Equation (19).

In this Appendix, we derive the generalized interference formula of Equation

(19).

22



First, we expand the two terms appearing in Equation (18). From Equation (1),

the first term is written as:

p(t+ τ, x) =

∫
R×X

G(t+ τ − s, x|z)f(s, z)dsdz

=

∫
R×X

G(s, x|z)f(t+ τ − s, z)dτdz (28)

Similarly, the second term is written as:

p(τ, x′) =

∫
R×X

G(s′, x′|z′)f(τ − s′, z)ds′dz′ (29)

Using Equations (18), (28) and (29), the cross-correlation of the pressure field

is:

Cp(t, x|x′) =

∫
R×X

∫
R×X

dsdzds′dz′ ×

G(s, x|z)E [f(t+ τ − s, z)f(τ − s′, z′)]G(s′, x′|z′) (30)

In this expression, only the source is stochastic, which explains why the expec-

tation operates only on this, and not on the Green’s function. The source is

assumed to be a stationary process, therefore:

E [f(t+ τ − s, z)f(τ − s′, z′)] = Cf (t− s+ s′, z|z′) (31)

Now, Equation (30) is written as:

Cp(t, x|x′) =

∫
R×X

dsdzG(s, x|z)
∫
R×X

ds′dz′Cf (t− s+ s′, z|z′)G(s′, x′|z′)

=

∫
R×X

dsdzG(s, x|z)
∫
R×X

ds′dz′Cf (t− s− s′, z|z′)G(−s′, x′|z′)

=

∫
R×X

dsdzG(s, x|z)
(
Cf ⊗T ⊗SG−

)
(t− s, z|x′)

=
(
G⊗T ⊗SCf ⊗T ⊗SG−

)
(t, x|x′) (32)
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The second equality was obtained using the transform s′ 7→ −s′ in the second

integral. In the third equality, the definitions of Equation (20) of G− and of the

operator ⊗T⊗S were used. The proof is complete, as Equation (19) matches

with Equation (32).

5.2. Proof of Equation (27) for bounded propagation media.

In this Appendix, we derive approximate expressions of the Green’s function and

Green’s correlation of Stokes’ equation for a bounded medium and in the pres-

ence of low attenuation. From these approximations, we extend to any bounded

propagation media the Ward identity of Stokes’ equation established in [4] for

an unbounded propagation medium.

The sums appearing in Equations (15) and (24) can be approximated by finite

sums ending at a certain mode of index denoted by N . This index is such that

each sum indexed from this N -th mode to infinity is negligible with respect to

the same sum indexed from 0 to this N -th mode. Then the low dissipation

approximation is formalized by the following approximation: qn ≈ vkn valid for

all modes n between 0 and N . Note that this approximation is equivalent to

the following one: α2 << 4v2k−2N . With this approximation, Equation (15) of

the visco-acoustic Green’s function is now written as:

G(t, x|x′) ≈ H(t)
∑
n≥0

exp
(
−α

2k2nt
2

)
sin(vknt)

vkn
mn(x)mn(x′) (33)

Similarly, Equation (24) of the visco-acoustic Green’s correlation is now written

as:

C(t, x|x′) ≈
∑
n≥0

exp
(
−α

2k2n|t|
2

)
cos(vknt)

vα2k4n
mn(x)mn(x′) (34)
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Thus, by considering the third time derivative of this expression, and using at

each derivation the approximation qn ≈ vkn, we obtain the Ward identity for

Stokes’ Equation (27) for any bounded propagation medium.

5.3. Interpretation of Green’s correlation of Stokes’ equation in the presence of

low attenuation and in the high-frequency regime.

In this Appendix, we show that the visco-acoustic Green’s correlation can be

decomposed into a sum of piecewise quadratic functions in the presence of low

attenuation and in the high-frequency regime.

First, we consider the case of an infinite visco-acoustic propagation medium.

The general case will be easily deduced from this first study. From Equation

(16), the odd part of the Green’s function is written as:

OddG(t, x|x′) = a0δ(t−
r

v
)− a0δ(t+

r

v
) (35)

where a0 is the attenuation coefficient and r = ||x − x′||2. Due to the Ward

identity of Equation (27), we can compute Green’s correlation by integrating

Equation (35) three times. The first integration leads to:

∂2C(t, x|x′)
∂t2

= b0H(t− r

v
)− b0H(t+

r

v
) (36)

where b0 = a0v
2 α2. The second time derivative of Green’s correlation appears

to be a door function. The second integration leads to:

∂C(t, x|x′)
∂t

= b0(t− r

v
)H(t− r

v
)− b0(t+

r

v
)H(t+

r

v
) +

b0r

v
(37)

The constant b0r
v ensures that ∂C/∂t is an odd function with respect to time.

This property is justified by Equation (24), which shows that Green’s correlation
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is an even function with respect to time. Thus, the derivative of an even function

is an odd function. Finally, the third integration leads to:

C(t, x|x′) = b0(t− r

v
)2H(t− r

v
)− b0(t+

r

v
)2H(t+

r

v
) +

b0rt

v
+ β (38)

The constant β is difficult to determine. It can be deduced by considering t = 0

in Equation (24). In Equation (38), Green’s correlation appears to be a piece-

wise quadratic function.

We can generalize the results obtained in the previous paragraph through Equa-

tion (16) of the Green’s function. In a bounded propagation medium, the odd

part of the Green’s function is the sum of the terms of Equation (35), where

the coefficients are bn = anv
2α2 and the times of arrival are tn, both of which

were introduced in section 2. Thus, the second time derivative of Green’s corre-

lation is a sum of piecewise constant functions (illustrated by Figure 4). Then

the first time derivative of Green’s correlation is a sum of piecewise linear func-

tions (illustrated by Figure 3). Finally, Green’s correlation is a sum of piecewise

quadratic functions (illustrated by Figure 2).
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Figure 1: Simulated visco-acoustic Green’s functions between two points (1a: x = [2 ; .75 ; 2]
and x′ = [2 ; 1.25 ; 2]; 1b: x = [2 ; .75 ; 2] and x′ = [2 ; 2.25 ; 2]) of a cubic room of length
L = 2.5 m, speed propagation v = 343 m.s−2, and damping coefficient α2 = 0.1 m2.s−1.
Time is sampled at 44.1 kHz. In both configurations, the Green’s functions obtained are
the sum of the attenuated times of arrival, which can be fully deduced from the geometrical
configuration. These simulations involve a truncation at the 50th term (mode) of the infinite
sum appearing in Equation (15). This truncation corresponds to low pass filtering, which
explains the oscillations that appear around the times of arrival.
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Figure 2: Simulated visco-acoustic Green’s correlations between two points (the same config-
uration as Figure 1). These simulations involve a truncation at the 50th term (mode) of the
infinite sum appearing in Equation (24). Through the Ward identity of Equation (27) and the
approximation of Equation (16) of the visco-acoustic Green’s function in the presence of low
attenuation and in the high-frequency regime, these Green’s correlations appear to be sums
of piecewise quadratic functions.
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Figure 3: Time derivative of the simulated Green’s correlations (the same configuration as
Figure 1. Similar to Green’s correlations shown in Figure 2, these functions appear to be sums
of piecewise linear functions.
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Figure 4: Second time derivative of the simulated Green’s correlations (the same configuration
as Figure 1). Similar to Green’s correlations shown in Figure 2 and their first derivative shown
in Figure 3, these functions appear to be sums of piecewise constant functions.
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Figure 5: Top: Signal measured using a microphone of a propagated impulse source. The
rectangle indicates the sub-signal corresponding to the extracted coda. Bottom: Signal power
in which an increasing part appears, and then a decreasing part. The coda is localized in this
second part, and it is extracted due to the two thresholds introduced in this subsection (here,
rb = 1/2 and re = 2).
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Figure 6: 6a: Retrieved Green’s correlation with the coda-based method when the sensors are
spaced at 23 cm. 6b: Third time derivative of the retrieved Green’s correlation. The peaks
are localized at |t| = 0.68 ms, which corresponds to the travel-time between the sensors spaced
at 23 cm in an air room where the sound speed is v = 343 m.s−1 at 20◦C.
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Figure 7: 7a: Retrieved Green’s correlation with the coda-based method when the sensors
are spaced at 48.5 cm. 7b: Third time derivative of the retrieved Green’s correlation. The
peaks are localized at |t| = 1.41 ms, which corresponds to the travel-time between the sensors
spaced at 48.5 cm in an air room where the sound speed is v = 343 m.s−1 at 20◦C.
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Figure 8: Comparison between Green’s correlation obtained with simulations in a perfect
cubic acoustic air room (dotted line) and Green’s correlation obtained with real data in a real
and uncontrolled acoustic air room (plain line).
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Figure 9: Primitive of estimated Green’s correlations in Figures 6 (9a) and 7 (9b). Maximum
arguments are localized at times |t| = 0.68 ms and |t| = 1.41 ms, respectively. These times
correspond to the travel-times of an acoustic air impulse between sensors spaced at 23 cm and
48.5 cm, respectively.
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