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Abstract

Background: Surface-associated communities of bacteria, known as biofilms, play a critical role in the persistence
and dissemination of bacteria in various environments. Biofilm development is a sequential dynamic process from
an initial bacterial adhesion to a three-dimensional structure formation, and a subsequent bacterial dispersion.
Transitions between these different modes of growth are governed by complex and partially known molecular

pathways.

Results: Using RNA-seq technology, our work provided an exhaustive overview of the transcriptomic behavior of
the opportunistic pathogen Klebsiella pneumoniae derived from free-living, biofilm and biofilm-dispersed states.

For each of these conditions, the combined use of Z-scores and principal component analysis provided a clear
illustration of distinct expression profiles. In particular, biofilm-dispersed cells appeared as a unique stage in the
bacteria lifecycle, different from both planktonic and sessile states. The K-means cluster analysis showed clusters of
Coding DNA Sequences (CDS) and non-coding RNA (ncRNA) genes differentially transcribed between conditions.
Most of them included dominant functional classes, emphasizing the transcriptional changes occurring in the
course of K pneumoniae lifestyle transitions. Furthermore, analysis of the whole transcriptome allowed the selection
of an overall of 40 transcriptional signature genes for the five bacterial physiological states.

Conclusions: This transcriptional study provides additional clues to understand the key molecular mechanisms
involved in the transition between biofilm and the free-living lifestyles, which represents an important challenge to
control both beneficial and harmful biofilm. Moreover, this exhaustive study identified physiological state specific
transcriptomic reference dataset useful for the research community.
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Background

Most bacteria can live in individual or community
lifestyles. In the planktonic mode of growth, bacterial
cells are free to move in suspension, whereas in the
sessile state, they form surface-attached multicellular
communities called biofilms. This dynamic hetero-
genic organization confers to its residents a powerful
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tolerance against stresses and facilitates symbiotic rela-
tionships between members of the communities [1, 2].
The transition between the planktonic and sessile modes
of growth, as well as the biofilm development process are
governed by environmental cues and the coordination of
various molecular pathways linked notably to secondary
messenger cyclic di-GMP and quorum sensing [3, 4]. Bio-
film development progresses in three stages: i) bacterial
attachment to a surface and formation of a monolayer bio-
film, ii) maturation of the biofilm and emergence of a
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three-dimensional structure and iii) dispersion from
mature biofilm.

The adhesion of planktonic cells to the surface is
mostly driven by surface-exposed components like fla-
gella, fimbriae and curli as observed in many bacteria
[5]. Subsequent biofilm maturation is concomitant with
the formation of an extracellular matrix composed of
exopolysaccharides, DNA, lipids and proteins [6]. In
Pseudomonas aeruginosa and Escherichia coli, exopoly-
saccharides and extracellular DNA also play a crucial
role in the maturation process as the absence of these
compounds severely impairs the formation of a three-
dimensional structure [7].

The last step of the biofilm developmental process,
dispersion from mature biofilm, constitutes an essential
stage because of its crucial role in bacterial dissemin-
ation and colonization of new surfaces [8, 9]. It remains
therefore unclear whether bacteria dispersed from bio-
films represent or not a transition stage between biofilm
and the planktonic lifestyle. Dispersion occurs either as
individual cells or clumps [10], but the molecular mech-
anisms and effectors behind this process are still poorly
documented [11]. Nevertheless, secreted effectors such
as glycosidases in Actinobacillus actinomycetemcomitans
[12], proteases in Pseudomonas putida [13], nucleases in
Haemophilus influenzae [14] and biosurfactants in
Staphylococcus [15, 16] are able to destabilize the biofilm
structure and promote dispersion. Activation of pro-
phages in P. aeruginosa and Enterococcus faecalis was
also reported as inducing cell death inside microcolonies
leading to biofilm dispersion [17, 18].

Despite the accumulation of data concerning the tran-
scriptional profile of bacteria grown in different experi-
mental models, there has been no documented overview
of all states of biofilm development and dispersion.
Transcriptomic approaches by microarray or RNA se-
quencing have attempted to address this issue in several
bacterial species like E. coli, P. aeruginosa or Acinetobac-
ter baumannii, and showed distinct expression profiles
between sessile and planktonic stages. However, cells
from dispersed biofilm were not included in these ana-
lyses [19-21].

The aim of this study was to identify the transcrip-
tional landscape of the bacteria Klebsiella pneumoniae
across different experimental growth states, i.e. plank-
tonic, sessile, and spontaneously biofilm-detached bac-
teria. K. pneumoniae is an ubiquitous bacterium found
both in nature and in clinical environments; the molecu-
lar mechanisms leading to biofilm formation have been
previously investigated, mostly by punctual mutant ana-
lysis [22, 23]. In this work, comparison of the different
whole transcriptomes obtained by RNA-seq showed that
each lifestyle of K. pneumoniae was associated with a
unique transcriptional behavior. The comprehensive
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overview provided by this study allowed the identifica-
tion of specific transcriptional fingerprints for each state,
including the biofilm-dispersed cells.

Results

Monitoring of biofilm development in a flow-cell model
Monitoring of biofilm development by K. pneumoniae
CH1034 in a flow-cell system with confocal microscopy
showed initially the formation of microcolonies leading
to the development of a flat structure after 7 h of incu-
bation (T,,) (Additional file 1: Movie S1). At Tg,, a
three-dimensional structure was observable and poten-
tial detachment from this mature biofilm was then
assessed. Bacteria in the flow-cell effluent were harvested
throughout the experiment, and CFU determination of
the resulting suspensions indicated that the number of
viable cells decreased in the first 3 h of the experiment,
from 5.10° CFU/mL (Ty;) to 1.10° (Tap), owing probably
to the elimination of planktonic non-adhering cells
(Fig. 1la). Observation of the harvested samples by
optical microscopy revealed mainly individual bacteria
(data not shown). From T3}, to Tgp, the number of viable
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Fig. 1 Number of viable bacteria in the flow-cell effluent. a The flow-
cell with one chamber was inoculated with 10° cells from an overnight
culture of K. pneumoniae CH1034, and viable bacteria in the effluent
were counted by plating every hour for 16 h. b Light microscopy
observation of bacteria in the effluent after 12 h of incubation revealed
the predominance of bacterial aggregates over individual cells
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bacteria in the effluent increased rapidly and then pro-
gressively in the following 10 h (T, to Ti4,) (Fig. 1a).
Microscopic observations revealed a progressive appear-
ance of bacterial aggregates in the effluent, which
predominated over individual cells after 12 h of incuba-
tion (Fig. 1b).

Planktonic, sessile, and biofilm-detached bacteria
presented distinct transcriptional profiles

Transcriptional analysis was performed with sessile bac-
terial cells collected before and after the formation of a
three-dimensional structure, at Ty, and T3y, respectively.
Detached cells isolated in the flow-cell effluent (T;on-
T13n), exponential and stationary growing planktonic cells
were also included. RNAseq analysis indicated that 2 052
of the 5 146 CDS of K. pneumoniae, as well as 19 of the
44 annotated ncRNA genes (excluding tRNA and rRNA
genes), were differentially expressed in at least one of the
ten possible pairs of conditions (|fold-change| >5 and
adjusted P-value <0.01) (Fig. 2a), with fold-changes ran-
ging from -2 780 to 2 182 (Additional file 2: Table S1;
Additional file 3: Table S2). To validate the RNA-seq effi-
ciency, 20 genes differentially expressed between the 13 h-
old biofilm bacteria and the bacteria collected in the efflu-
ent (10 genes overexpressed and 10 genes under-
expressed; P-value < 0.01) were randomly selected. Their
relative expression levels were determined by RT-qPCR
with total RNA extracted from cells harvested in two
conditions: bacteria in the effluent and 13 h-old bio-
film. Results indicated a high correlation between
RNAseq and RT-qPCR data (r=0.97; P-value < 0.0001;
Pearson’s correlation test) (Additional file 4: Figure
S1).

PCA performed with Z-score values of the 2 052 CDS
and 19 ncRNA genes indicated that the first principal
component (PC1) accounted for 36.52 % and the second
principal component (PC2) for 27.88 % of the total vari-
ation in the dataset (Fig. 2b). A plot of these Z-score
values against a heatmap (Additional file 5: Figure S2) and
the proximity of points in the PCA (Fig. 2b) demonstrated
the high reproducibility of the data among the replicates.
In addition, such analysis clearly indicated that all bacter-
ial states (planktonic, sessile and bacteria in the effluent)
exhibited specific transcriptional profiles (Fig. 2b and
Additional file 5: Figure S2), and suggests that bacterial
cells in the effluent are not pieces of biofilm mechanically
detached from the biomass. Hereafter they will be referred
to as biofilm-dispersed cells.

The transcriptome of the biofilm-dispersed cells pre-
sented only 224 CDS and 3 ncRNA genes differentially
expressed (|fold-change| >5 and adjusted P-value < 0.01)
when compared with those of the 7 h-old biofilm state. In
contrast, 454 CDS and 7 ncRNA genes, 486 CDS and 2
ncRNA genes, and 1 080 CDS and 6 ncRNA genes were
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differentially expressed (|fold-change| >5 and adjusted P-
value < 0.01) when compared with those of exponential
planktonic state, 13 h-old biofilm and stationary planktonic
state, respectively (Fig. 2a). Hence, biofilm-dispersed cells
harbored a distinct transcriptional profile, which was closer
to that of bacteria from 7 h-old biofilm than to that of
13 h-old biofilm and planktonic cells.

Gene functional classification of K. pneumoniae lifestyles
through K-means clustering

K-means clustering was then used to visualize the distribu-
tion of the expression levels of the 2 052 CDS and the 19
ncRNA genes differentially expressed (|fold-change| >5
and adjusted P-value<0.01) in the different conditions
(Fig. 3a and b). Owing to the high reproducibility of data,
Z-score values were able to be calculated with average
values from normalized DEseq counts. This clustering
indicated that the clearest representation was obtained
with K=10 for the CDS analysis and K=5 for the
ncRNA genes analysis, and showed different transcrip-
tomic profiles between conditions. In Fig. 3a, with clus-
ters ranging from 76 to 499 CDS for clusters 8 and 10
respectively, column clustering confirmed that dis-
persed cells were transcriptionally closer to 7 h-old bio-
film cells than to those in all the other conditions,
whereas stationary phase cells were the most different
group of this dataset.

In order to highlight groups of genes highly overex-
pressed or under-expressed in a specific condition, the
mean of the Z-scores in each cluster in the Fig. 3a was cal-
culated for each condition. Only the Z-score groups pre-
senting a mean value>1 or< -1, named overexpressed
boxes and under-expressed boxes, respectively (framed in
Fig. 3a), were considered thereafter. All clusters presented
only one overexpressed box, but clusters 5, 8 and 9 also
presented one under-expressed box (Fig. 3a).

Analysis of the potential function of protein-coding genes
in the under-expressed and overexpressed boxes by the
Clusters of Orthologous Groups (COG) classification is
represented in Fig. 3c and Additional file 6: Figure S3. A
large number of genes were poorly characterized and there-
fore categorized in the “unknown function” class. Exponen-
tial planktonic cells exhibited two overexpressed boxes
(clusters 1 and 6) (Fig. 3a), containing CDS mainly involved
in inorganic ion transport and metabolism (14.9 and 15.1 %
of the genes present in clusters 1 and 6, respectively) (Fig. 3¢
and Table 1). In parallel, two under-expressed boxes (clus-
ters 5 and 8) were identified in the exponential planktonic
condition. They contained mainly CDS involved in amino
acid transport and metabolism, and energy production and
conversion, as defined by the COG classification. Stationary
planktonic cells exhibited three overexpressed boxes (clus-
ters 7, 8 and 10) that contained CDS mostly implied in en-
ergy production and conversion, and in amino acid and
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Fig. 2 Comparison of the K. pneumoniae CH1034 gene expression levels across the different conditions. a The expression levels of the 5 146 CDS
and the 44 ncRNA genes of the K. pneumoniae CH1034 genome were compared in each of the 10 possible pairs of conditions. The number of
differentially expressed (| fold-change| > 5 and adjusted P-value < 0.01) CDS and the number of ncRNA genes, shown in parentheses, are indicated for
each comparison. b Principal component analysis (PCA) of gene expression in the five growth conditions. PCA was performed with Z-score values of
the 2 052 CDS and 19 ncRNA genes differentially expressed (| fold-change | > 5 and adjusted P-value < 0.01) in at least one of the 10 possible pairs of
conditions. Z-score values were calculated with absolute expression values normalized by the DESeq package, and were used as a matrix to perform a
PCA with package FactoMineR of R/Bioconductor. Each dot indicates a biological replicate. The lists of these 2 052 CDS and the 19 ncRNA genes are
provided respectively in Additional file 2: Table ST and Additional file 3: Table S2

J

carbohydrate transport and metabolism. The 7 h-old bio-
film cells exhibited two overexpressed boxes (clusters 5 and
9) (Fig. 3a), which contained CDS chiefly involved in amino
acid transport and metabolism (21.7 and 24 % of the genes
present in clusters 5 and 9, respectively) (Fig. 3c and
Table 1). The 13 h-old biofilm cells exhibited one overex-
pressed box (cluster 3), with CDS chiefly involved in carbo-
hydrate transport and metabolism (21 % of the genes
present in cluster 3). Finally, dispersed cells exhibited two
overexpressed boxes (clusters 2 and 4), containing CDS

chiefly involved in translation, ribosomal structure and bio-
genesis (21.9 and 9.3 % of the genes present in clusters 2
and 4, respectively).

Identification of a set of signature genes for each
condition

Since clustering suggested the existence of specific sig-
nature genes for each condition, different stringent
threshold fold-changes were applied to extract the most
relevant transcriptional signature genes, up- or down-
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Fig. 3 K-means clustering of the Z-score values of each differentially expressed CDS and ncRNA genes in the five different growth conditions,
and Clusters of Orthologous Group (COG) affiliation of the CDS of each K-means cluster. a Heatmap depicting the K-means clustering of the 2
052 differentially expressed CDS in 10 clusters with column hierarchical clustering. The average Z-scores of the 10 clusters was calculated for each
condition, and the 13 clusters presenting an average Z-score value > 1 or < —1 were framed. Blue and red clusters gathered genes under- or
overexpressed compared to the mean, respectively (b) K-means clustering of the 19 differentially expressed ncRNA genes in 5 clusters. Locus tag
of each ncRNA gene, and its respective annotation in parentheses, are indicated. Blue and red clusters gathered genes under- or overexpressed
compared to the mean, respectively (c) Clusters of Orthologous Group (COG) affiliation of the CDS of each K-means cluster. Only COG categories
containing more than 10 % of the CDS of one cluster are presented. The circle size is proportional to the percentage of CDS (indicated by
numbers) affiliated to a COG category for one given cluster group. Percentages in red correspond to the major part of each cluster. COG
categories not presented are grouped in the “other COG" category. An exhaustive view of the CDS composition of each cluster and their COG
affiliation is provided in Additional file 2: Table S1 and in Additional file 6: Figure S3
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Table 1 Summary of the COG affiliation for the under-expressed and overexpressed boxes in each condition

Condition Cluster containing Cluster containing COG affiliation *
under-expressed box overexpressed box
Exponential 5and 8 Amino acid transport and metabolism - Energy production
planktonic and conversion
1and 6 Inorganic ion transport and metabolism - Function unknown
Stationary 9 Amino acid transport and metabolism - Function unknown
lanktonic ) )
P 7 and 10 Carbohydrate transport and metabolism - Function unknown
8 Energy production and conversion - Amino acid transport and
metabolism
7 h-old biofilm 5 Energy production and conversion
Amino acid transport and
metabolism
9 Function unknown
13 h-old biofilm 3 Carbohydrate transport and metabolism - Function unknown
Biofilm-dispersed 2 Translation, ribosomal structure and
biogenesis Function unknown
4 Amino acid transport and metabolism

Only the two most representative COG affiliations of each cluster were displayed

regulated, for each condition (Additional file 7: Figure
S4). Forty signature CDS were identified, 11 associated
with the exponential and the stationary planktonic
states, 4 with the 7 h-old and the 13 h-old biofilm cells,
and 10 with biofilm dispersal (Table 2). In the stationary
planktonic and 13 h-old biofilm conditions, all signature
CDS were upregulated, and in the 7 h-old biofilm condi-
tion, all were down-regulated, whereas exponential
planktonic cells and biofilm-dispersed cells displayed
both up- and down-regulated signature CDS (Table 2
and Fig. 4). The Z-score values of these 40 CDS plotted
against a heatmap (Fig. 4a) and their relative expression
level (Fig. 4b) confirmed their signature singularity. Pu-
tative functions of these protein encoding signatures
CDS are listed in Table 2 and concern mainly transport,
transcriptional regulation and metabolic pathways.

Discussion

In the present study, the transcriptional changes occur-
ring in the course of K. pneumoniae biofilm formation
and biofilm-detachment were characterized by RNAseq.
To date, the few data available on biofilm dispersion
were obtained with artificial dispersion signals such as c-
di-GMP depletion [24, 25]. In contrast, we investigated
spontaneous biofilm-detached cells. Results indicated
that each of the tested K pneumoniae lifestyles, i.e.
planktonic (exponential and stationary phases), sessile
(7 h-old and 13 h-old biofilms) and biofilm-dispersed
cells, exhibit unique and specific transcriptional profiles.
The comprehensive overview presented in this study

allowed the analysis of the transcriptional fate of all K
pneumoniae genes in different bacteria lifestyles.

The stationary planktonic mode of growth displayed
the most particular pattern with 499 genes highly over-
expressed in the K-means cluster 10. Entry in the sta-
tionary phase is the result of nutrient starvation and in
consequence bacteria modulate the expression level of a
considerable number of genes, many of them being
under the control of the stationary-phase sigma S factor
(6°) [26]. On the basis of a study referencing the 100
most RpoS-dependent genes in stationary phase of a
pathogenic E. coli strain [27], 54 of the 82 genes present
in the K pneumoniae genome were found in the K-
means cluster 10, including 4 transcriptional signature
genes of the stationary phase (ygaT (also named csiD),
astA, astD and astE). Overall, the predominance of o°-
dependent genes upregulated in stationary phase cells
emphasized the accuracy of our data. With 1 123 differ-
entially expressed genes, stationary planktonic cells were
transcriptionally different from exponential planktonic
cells (Fig. 2a), as reported elsewhere [20]. Interestingly,
three genes belonging to the same operon, cydA, cydB
and ybgT (also named cydX), were under-expressed in
exponential planktonic cells, and two of them, cydA and
cydB, were selected as signature genes. In E. coli, the cyd
operon encodes the three subunits of the cytochrome bd
oxygen reductase complex, whose expression is in-
duced under stressful growth conditions [28, 29]. The
non-nutrient-limited early planktonic mode of growth
explains the under-expression of this complex but
also, more generally, the under-expression of



Table 2 List of the 40 selected signature genes with their respective annotation and their DESeq normalized counts for each experimental condition

Signature Locus Tag Name Annotation DESeq normalized expression (baseMeans?)
condition Exponential Stationary 7 h-old 13 h-old Biofilm- K-means cluster
planktonic planktonic biofilm biofilm dispersed affiliation

Exponential CH1034_160111 c¢ydA  cytochrome d terminal oxidase, polypeptide subunit | 1265.85 39855.85 25832.68 32264.31 3248000 8

planktonic CH1034_270098 yiD  Autonomous glycyl radical cofactor 751.58 2525154 4748165 4658209 4276211 5
CH1034_230111 sodB  superoxide dismutase, Fe 556.16 14965.09 16289.86 25654.59 1959748 3
CH1034_160112 cydB  cytochrome d terminal oxidase, subunit Il 53842 25053.85 12872.09 13297.53 2093248 8
CH1034_130065 DNA polymerase 10233.37 426.38 947.64 642.98 93275 6
CH1034_190127 Short-chain dehydrogenase/reductase SDR 226929 139.01 107.51 59.95 13954 6
CH1034_280153 TonB-dependent receptor 77058.51 476.51 469.04 460.15 54880 6
CH1034_280151 conserved protein of unknown function 3482.87 166.75 226.75 109.19 139.51 6
CH1034_280070 GntR-family bacterial regulatory protein 355242 331.98 281.55 33291 25867 6
CH1034_190125 ybiX  Fe(ll)-dependant oxygenase 5077.73 9332 59.63 7273 12667 6
CH1034_250006 irp High-molecular-weight protein 2 260772.06 836.60 383.18 377.66 39089 6

Stationary CH1034_130044 ygal  Carbon starvation induced protein 4.91 1192.69 393 8.99 523 10

planktonic CH1034_240015 Ferric iron ABC transporter, permease protein 3036 8565.31 2554 4818 377210
CH1034_130056 IpdA  Dihydrolipoyl dehydrogenase 138.96 17648.19 131.68 244.32 123.71 10
CH1034_240014 fbpC  Fe(3+) ions import ATP-binding protein FopC 3443 10241.53 3818 56.29 33.07 10
CH1034_190101 astE  succinylglutamate desuccinylase 2492 2503.60 20.16 2031 2851 10
CH1034_190098 astA  arginine succinyltransferase 68.46 3714.09 49.29 102.14 4899 10
CH1034_190322 astD  succinylglutamate semialdehyde dehydrogenase 10.78 78881 1046 20.76 1992 10
CH1034_60005 aceK isocitrate dehydrogenase kinase/phosphatase 38473 194088.29 34777 34245 696.83 10
CH1034_190201 Glycoside hydrolase 15045 14489.44 140.46 218.27 11628 10
CH1034_190202 Histidine kinase 253.69 1713761 266.30 405.62 17346 10
CH1034_220300 narY Nitrate reductase 2 subunit beta 168.04 10624.15 26791 294.28 14435 10

7 h-old biofilm ~ CH1034_260051 ypfE  Carboxysome structural protein 2140 1137 2.19 26.02 1763 3
CH1034_220103 yncC  MFS transporter 634.15 47867 84.96 713.34 34006 1
CH1034_180150 bssS  biofilm regulator 24731.65 10960.85 174759 16844.60 1045260 1
CH1034_250228 yejG  hypothetical protein 11084.19 4607.89 407.32 658861 579871 1

13 h-old biofilm  CH1034_220106 yidP  Transcriptional regulator, GntR family protein 109.08 20843 197.27 361798 12567 3
CH1034_300308 rspB  putative oxidoreductase, Zn-dependent and NAD(P)-binding 180.70 24845 12242 1590.79 10696 3
CH1034_10036 ibpA  heat shock chaperone 3204.61 4686.30 225281 29872.19 492476 3
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Table 2 List of the 40 selected signature genes with their respective annotation and their DESeq normalized counts for each experimental condition (Continued)

CH1034_270020 bglk

Biofilm- CH1034_200013

dispersed CH1034_220241
CH1034_300259 truB
CH1034_240296 yebE
CH1034_190182 pspB
CH1034_190181 pspA
CH1034_100015 cusA
CH1034_240148
CH1034_330036 envR
CH1034_130003 ytbD

Beta-glucoside kinase

conserved protein of unknown function

Transcriptional regulator, LysR family

tRNA pseudouridine synthase B

conserved hypothetical protein; putative inner membrane protein
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pathways involved in energy production and conver-
sion (see COQG affiliation of clusters 5 and 8 in Fig. 3¢
and Table 1).

The response regulator CsgD, a master transcriptional
regulator in biofilm formation, functions by assisting
bacterial cells in transitioning from the planktonic stage
to the multicellular state through the activation of ex-
pression of biofilm-linked genes [30, 31]. Accordingly,
CsgD encoding gene was 25.0-fold overexpressed in 7 h-
old biofilm compared to stationary planktonic growing
cells, although its expression did not significantly change
between the two sessile conditions. However, transcrip-
tomic profiles of the 7 h-old and 13 h-old biofilm cells
contained 290 differentially expressed CDS (]fold-
change| >5 and adjusted P-value < 0.01) (Fig. 2a), which
shows an evolution of the biofilm structure between
these two time points and validates our experimental
model. These findings are in agreement with those of
previous studies showing distinct transcriptomic profiles
in developing and confluent biofilm states [20, 21].
Genes of clusters 5 and 9 were specifically overexpressed
in 7 h-old biofilm, showing that amino acid transport
and metabolism (see COG affiliation in Table 1) is an es-
sential process during the biofilm growth, as observed
previously [32-34]. The bssS gene, encoding a biofilm
regulator whose inactivation leads to an increase in both
the biomass and thickness of biofilm in E. coli [35], was
an under-expressed signature gene of the 7 h-old biofilm
condition. In a more mature biofilm, 13 h-old biofilm,
the overexpression of genes involved in carbohydrate
transport and metabolism (cluster 3; Table 1) reflect the
importance of sugar in the formation of the extracellular
matrix, a crucial component for biofilm maturation [6].
The ibpA gene was identified among the overexpressed
signature genes of the 13 h-old biofilm condition, and
encodes a heat shock protein whose overexpression is
crucial in E. coli during biofilm growth [36].

The transcriptional pattern of bacteria harvested in
the effluent was also specific. Surprisingly, according to
K-means column clustering and the number of differen-
tially expressed genes in the different conditions,
biofilm-dispersed cells were transcriptionally closer to
the 7 h-old biofilm cells than to the planktonic cells.
Our results showed that dispersed cells represent a dis-
tinct stage in the bacteria lifecycle, different from both
the planktonic and the biofilm states. Environmental
pressure could then influence the fate of these cells con-
verting them either into planktonic cells as suggested by
Chua et al. [24] or into new biofilm structures.

Because spontaneously dispersed-cells were analyzed,
the question of any potential input signal triggering the
dispersion process was assessed. Quorum-sensing signal-
ing is important for the proper regulation of biofilm de-
velopment in several species, including K. pneumoniae
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[7, 37]. In our study, the operons IsrACDBFG and IsrRK
encoding the regulatory network for AI-2 did present a
strong up-regulation between 7 h-old biofilm and 13 h-
old biofilm conditions. Interestingly, these genes were
significantly under-expressed in dispersed cells com-
pared to 13 h-old biofilm cells. Since the IsrACDBFG
operon is transcriptionally regulated by both the LsrR
repressor and the phosphoenolpyruvate phosphotrans-
ferase system (PTS), its expression could depend on the
availability of certain substrates and the global metabolic
status of the cell [38]. In this way, our data suggested
that /sr gene modulation and the subsequent down-regu-
lation of the biofilm-linked genes trigger the dispersal
process. Biofilm dispersal involving high concentrations of
extracellular AI-2 was recently reported in E. faecalis
and has been shown to be associated with phages re-
lease by sessile cells [18]. A biofilm dispersal mechan-
ism mediated by filamentous prophage-induced cell
death has also been reported in P. aeruginosa [17, 39].
In our study, among the 10 transcriptional signature
genes of biofilm-dispersed cells, pspA and pspB, encod-
ing phage shock proteins A and B, were overexpressed
(Fig. 4 and Table 2). Since the phage-shock protein A
was overproduced in E. coli during filamentous phage
infection [40, 41], it is tempting to hypothesize that the
overexpression of the pspABCDE operon in K. pneumo-
niae dispersed cells is the consequence of bacterio-
phage activation, which leads to local cell death and
therefore biofilm dispersal.

Since c¢-di-GMP depletion plays an important role in
the dispersal from mature biofilms in many species [4,
42], we analyzed the expression of genes encoding pro-
teins containing GGDEF (diguanylate cyclases) and EAL
domains (phosphodiesterases), which catalyze the forma-
tion and the degradation of c-di-GMP, respectively. Two
diguanylate cyclases encoding genes (CH1034_220201
and CH1034_50012) and one phosphodiesterase encod-
ing gene (CH1034 280331 or mrk]) were, respectively,
under- and overexpressed in dispersed cells compared to
13 h-old biofilm cells. The phosphodiesterase activity of
Mrk] in K. pneumoniae is an important factor in the
regulation of type 3 fimbriae expression, which mediates
the formation and disassembly of the biofilm [43].
Among the other candidates potentially involved in the dis-
persal process, some degrading matrix enzyme-encoding
genes were overexpressed in dispersed cells compared to
13 h-old biofilm, such as the protease-encoding gene ycbZ,
the glucosidase-encoding gene malZ and the nucleases en-
coding genes endA, rnhB, nth, and yihG. Interestingly, genes
involved in the SOS response (dinB, dink dinG, dinl, sulA,
recA and recX) were also overexpressed in dispersed cells
compared to 13 h-biofilm cells, suggesting a role of the stress
response in biofilm dispersal. Although SOS stress response
had not been directly related to biofilm dispersion, several
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studies reported the impact of nitrosative and nutrient
stress on biofilm dispersal [13, 44]. Regarding the tran-
scriptional status of the biofilm-dispersed cells, 21.9 and
9.3 % of the overexpressed genes in the K-means clusters
2 and 4, respectively, were categorized in the “translation,
ribosomal structure and biogenesis” COG group (Fig. 3c).
Dispersal probably requires high metabolic activity, even
higher than that of the exponential planktonic cells.
Indeed, only 4.3 and 3.5 % of the genes categorized in the
K-means clusters 1 and 6, respectively (and therefore over-
expressed in exponential planktonic condition), also be-
long to this COG group (Fig. 3c). However, ribosomal
proteins could act not only in protein synthesis but also as
regulators of the biofilm life cycle, as recently shown with
the ribosomal proteins S11 (rpsK) and S21 (rpsl) in Bacillus
subtilis [45]. Another interesting feature of dispersed cells
was the overexpression of cusA (Fig. 4 and Table 2), a mem-
ber of the cusCFBA operon encoding a cation tripartite efflux
pump involved in the detoxification of cooper and silver ions
in the periplasm of E. coli [46]. Two cusCFBA operons are
present in the K pneumoniae CH1034 genome and both
were specifically overexpressed in dispersed cells (Additional
file 2: Table S1). Because efflux systems have a major role in
host colonization [47], we can therefore hypothesize that K
pneumoniae dispersed cells display specific phenotypes with
high adaptive ability to colonize a new hostile environment.
This hypothesis is reinforced by the fact that RyeE and t44,
ncRNA genes, were overexpressed in dispersed cells (cluster
5, Fig. 3b); RyeE is upregulated in Yersinia pestis during lung
infection [48] and the t44 expression level increases during
initial invasion of fibroblast by Salmonella serovar Typhi-
murium [49].

Conclusions

Several works have already described the transcriptomic pro-
file of biofilm cells [19-21] but none of them ever considered
the overall cycle of bacterial life. The present study provides
an exhaustive view of the transcriptional behavior of K preu-
moniae in the course of planktonic, biofilm formation and
dispersion steps. By structuring data in clusters, we achieved
a clear illustration of the specific expression profiles and
functions, and identified signature genes as potential bio-
markers of the different bacterial states. Further research on
the genes evidenced in our work will provide a better under-
standing of the molecular mechanisms involved in the transi-
tion between planktonic, sessile and dispersed states.

Methods

Bacterial strains and culture conditions

K. pneumoniae CH1034 was grown in Lysogeny broth
(LB) or in 04 % glucose M63B1 minimal medium
(M63B1) at 37 °C with shaking and stored at -80 °C in
LB broth containing 15 % glycerol. For subsequent RNA
extraction, planktonic bacteria were cultured at 37 °C in

Page 11 of 15

M63B1 broth under aerobic conditions and harvested at
ODg0 =0.25 (exponential phase) or after overnight
growth (stationary phase).

GFP-tagged strain construction

The K. pneumoniae CH1034 GFP-tagged strain was con-
structed after replacement of the SHV-1 p-lactamase-
encoding gene (chromosomal ampicillin resistance) by
the selectable aadA7-gfpmut3 cassette. Briefly, the
aadA7-gfpmut3 cassette flanked by 60-bp fragments,
which correspond to the encoding upstream and down-
stream regions of shv, was generated using pKD4 plas-
mid as template, primers shv-GFP-Fw and shv-GFP-Rv
and Phusion high-Fidelity DNA polymerase (Thermo
Fisher Scientific, Waltham, Massachusetts, USA) accord-
ing to the manufacturers’ recommendations. Primers
were designed on the basis of information about the K
pneumoniae CH1034 genome sequence previously de-
posited in the ENA/EMBL-EBI database under the ac-
cession number: PRJEB9899 [50]. The PCR fragment
was then transformed by electroporation into the 0.4 %
arabinose-induced K. pneumoniae CH1034 strain har-
boring the pKOBEG199, which contains the lambda-red
proteins encoding genes under the control of a promoter
induced by L-arabinose [22]. The K pneumoniae
CH1034 GFP-tagged strain, named K. pneumoniae
CH1034-gfp, was selected onto LB agar containing spec-
tinomycin (70 pg/mL), and the loss of the pKOBEG199
plasmid was then checked by plating onto LB agar con-
taining tetracycline (35 pg/mL).

Flow-cell experiments

Two types of flow-cell devices were used in this study, a
flow-cell with three individual chambers (dimension: 35 x
1 x 5 mm; 175 mm®) to monitor biofilm development by
confocal laser scanning microscopy, and a flow-cell with
one chamber (dimension: 54 x 19 x 6 mm; 6156 mm?) for
i) quantification and microscopic observations of the bac-
teria detached from biofilm, and ii) bacterial recovery for
RNA-extraction. On both flow-cells, a glass cover slip en-
suring a surface for biofilm development was glued with
silicon glue (3 M, Saint Paul, Minnesota, USA). All com-
ponents of the flow-cell system, including tubing, bubble
traps, medium/waste bottles and flow-cell, were assem-
bled as described previously [51]. Before experiments, the
system was sterilized by pumping 10 % (wt/vol) hypo-
chlorite sodium for 1 h and then ethanol 100 % (vol/vol)
for 15 min. Thereafter, the system was rinsed with M63B1
medium overnight at 37 °C. The inoculum composed of
an overnight culture of K. pneumoniae CH1034 in M63B1
(4.10° and 10°® cells for the three- and one-chamber flow-
cells, respectively) was injected with a syringe into each
compartment of the flow-cells. After 1 h of incubation at
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37 °C without flow to allow bacterial adhesion, M63B1
medium was pumped at a constant rate of 0.08 mL/min
(three-chamber flow-cell) or 0.9 mL/min (one-chamber
flow-cell) through the devices.

Biofilm development was monitored in real time with
an SP5 confocal laser microscope (Leica, Wetzlar,
Germany) and a x40 oil objective. Images were proc-
essed with IMARIS software (Bitplane, Belfast, United
Kingdom). Bacteria present in the effluent of the one-
chamber flow-cell were observed with the Leica
DM1000 optical microscope (Leica) and the Leica
DFC295 camera (Leica). To quantify bacteria detached
from the biofilm, viable bacteria present in the effluent
were counted every hour for 16 h by serial dilution and
plating on LB agar. For RNA extraction, biofilms devel-
oped on glass slide were recovered after 7 h or 13 h of
incubation, and bacteria detached from the biofilm were
recovered in the flow-cell effluent for 1 h after 12 h of
incubation.

RNA-seq and RT-qPCR

For RNA-sequencing, total RNA was extracted from bio-
logical triplicate of planktonic, sessile or biofilm-detached
bacteria prepared as described below. To avoid transcrip-
tional changes and RNA degradation, all bacteria sampled
were prepared in RNA/later” solution (Thermo Fisher Sci-
entific) and then stored at 4 °C until RNA extraction. For
exponential phase and stationary phase planktonic sam-
ples, an equivalent of 10*° CFU were pelleted by centrifu-
gation at 6 000 g for 5 min at 4 °C, and pellets were
resuspended in 2 mL of RNA/ater” solution. To prepare
the 7 h-old biofilm and the 13 h-old biofilm samples, bio-
films developed on the glass slide of the flow-cell after the
defined incubation period were scrapped in 1 mL of RNA-
later” solution. In order to recover biofilm-detached bac-
teria, effluent of the flow-cells was directly collected in
RNA/ater® solution. After 1 h of collection, samples were
centrifuged at 6 000 g for 5 min at 4 °C, and pellets were
resuspended in 2 mL of RNA/ater” solution. Before RNA
extraction, bacteria were washed twice with 1X PBS. Total
RNA was extracted according to the method described by
Toledo-Arana et al. [52]. Briefly, bacteria were mechanic-
ally lysed with the PreCellys 24 system (Bertin Technolo-
gies, Montigny le Bretonneux, France) at speed of 6
500 rpm for two consecutive cycles of 30 s. After acid phe-
nol (Thermo Fisher Scientific) and TRIzol® (Thermo
Fisher Scientific) extraction, total RNA was precipitated
with isopropanol and treated with 10 units of TURBO
DNase (Thermo Fisher Scientific). After a second phenol-
chloroform extraction and ethanol precipitation, RNA pel-
lets were suspended in DEPC-treated water. RNA concen-
trations were quantified with the Qubit system (Thermo
Fisher Scientific) and RNA qualities were determined with
Agilent RNA 6000 Pico chip (Agilent Technologies, Santa
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Clara, California, USA). Ribosomal RNA (rRNA) were re-
moved from each total RNA sample with the Ribo-Zero
Magnetic Kit (Bacteria) (Epicentre Biotechnologies, Madi-
son, Wisconsin, USA), and rRNA-depleted samples were
checked with Agilent RNA 6000 Pico chip. RNA-
sequencing (RNA-seq) was conducted by MGX GenomiX
(Montpellier, France). Libraries were produced by the Illu-
mina TruSeq Stranded messenger RNA Sample Prepar-
ation Kit, and sequenced with the HiSeq 2000 system
(lumina, San Diego, California, USA) with a single-
end protocol and read lengths of 50-bp. Short reads
were mapped against the genome of K. pneumoniae
CH1034 with the Burrows-Wheeler Alignment-
backtrack mapper (version 0.7.12-r1039) [53], which al-
lows a maximum of two mismatches within the first
32-bp. Counting was performed with the software
HTSeq-count using the union mode. As data come
from a strand-specific assay, the read has to be mapped
to the reverse strand of the gene. Analysis of the reads
mapped to intergenic regions confirmed the overall
quality of the genome annotation and therefore
strengthen the choice to focus on CDS and ncRNA fea-
tures. Differentially expressed CDS and ncRNA genes
between any pair comparisons of the five groups were
determined by a negative binomial test with the DESeq
package of R/Bioconductor. Transcripts were considered
as differentially expressed using the following criteria: P-
value<0.01 and |fold-change| >5. Transcriptome se-
quencing data were deposited in the Gene Expression
Omnibus (GEO) database under the GEO accession num-
ber: GSE71754.

Reverse transcription was performed with 500 ng of total
RNA prepared as described above, and the absence of DNA
contamination was verified by qPCRs performed with primer
pair RT-cpxR-Fw/RT-cpxR-Rv and the SsoAdvanced SYBR®
Green Supermix (Bio-Rad, Hercules, California, USA) ac-
cording to the manufacturer’s recommendations. cDNA
were prepared with the iScript cDNA Synthesis kit (Bio-Rad)
under the following conditions: 5 min at 25 °C, 30 min at
42 °C and 5 min at 85 °C. qPCRs were carried out in the
CFX96 Real Time System (Bio-Rad) with the SsoAdvanced
SYBR® Green Supermix (Bio-Rad) under the following condi-
tions: initial denaturation at 95 °C for 30 s, and 40 cycles of
5sat 95 °C and 20 s at 59 °C. qPCRs were performed in
10 pL total volume per well containing 1X SYBR® Green,
625 nM of each gene-specific primer and 2 pL of 20X di-
luted cDNA. Primers were designed on the basis of K. pneu-
moniae CH1034 genome sequence information [50] and are
listed in Additional file 8: Table S3. Melting curve analysis
was used to verify the specific single-product amplification.
The gene expression levels were normalized relative to the
expression levels of the cpxR housekeeping gene and relative
quantifications were determined with CEX Manager software
(Bio-Rad) by the E(-Delta Delta C(T)). The amplification
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efficiency (E) of each primer pair used for the quantification
was calculated from a standard amplification curve obtained
by four dilution series of genomic DNA. All assays were per-
formed in technical triplicates with three independently iso-
lated RNA samples.

Data analysis
Correlation between RNAseq and RT-qPCR was ana-
lyzed using Pearson’s correlation test in GraphPad Prism.
Z-scores were calculated from the normalized DESeq
expression data by the following formula: (X-Y)/Z (X:
normalized DESeq counts of the sample; Y: average nor-
malized DESeq counts of all the considered samples; Z:
standard error of the counts mean for all the considered
samples). Z-score values were used as a matrix to per-
form a principal component analysis and heatmaps with
packages of R/Bioconductor: FactoMineR and Heat-
map.2 (gplots), respectively. Column clustering was hier-
archical, and two methods were used to cluster lines:
hierarchical clustering and K-means clustering methods
[54]. K-means clustering was applied with different
values of K (i.e. the number of clusters): 1 to 13. The
clearest representation for each condition of the dataset
was obtained with K=10 for CDS clustering and K=5
for ncRNA genes clustering. To highlight groups of CDS
highly overexpressed or under-expressed in a specific
condition, the mean of the Z-scores in each cluster was
calculated for each condition, and the Z-score groups
presenting a mean value > 1 or < -1 were named overex-
pressed boxes and under-expressed boxes, respectively.
The most relevant signature genes in the dataset were
extracted using two fold-change thresholds, the Identity
Threshold Fold-Change and the Differential Threshold
Fold-Change. These thresholds were modulated as de-
scribed in Figure S4 (Additional file 7) to obtain the
most stringent signature genes for each condition.

Availability of supporting data

The RNA-seq data sets supporting the results of this art-
icle have been deposited in NCBI's Gene Expression
Omnibus and are accessible through GEO Series acces-
sion number GSE71754 (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE71754). All the supporting
data are included as Additional files.

Additional files

Additional file 1: Movie S1. Biofilm development of K. pneumoniae
CH1034. K. pneumoniae CH1034-gfp was cultivated in flow-cell at 37 °C
with a constant flux of medium. Biofilm development and maturation
were monitored by confocal microscopy. The biofilm structure evolved
from a flat to a three-dimensional structure. (MPG 3450 kb)

Additional file 2: Table S1. Data relative to the 2 052 selected CDS.
(XLSX 974 kb)
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Additional file 3: Table S2. Data relative to the 19 selected ncRNA
genes. (XLSX 18 kb)

Additional file 4: Figure S1. Determination of the correlation index
between RNAseq and RT-gPCR data. Relative expression levels of 20
randomly selected genes were determined in bacteria collected in the
effluent compared to the 13 h-old biofilm. The RNAseq and RT-qPCR
ratios were then log2 transformed and values were plotted against each
other to evaluate their correlation. The correlation coefficient was
deduced from a linear regression of the plotted values using Pearson’s
correlation test in GraphPad Prism. RT-gPCRs were performed with three
biological replicates of total RNA extracts. Data were normalized to the
endogenous reference gene cpxR, whose expression did not show
significant variation between the tested conditions according to the
RNAseq data. (PDF 123 kb)

Additional file 5: Figure S2. Representation of the transcriptomic
profiles of planktonic, sessile and biofilm-dispersed cells. The heatmap
represents the hierarchical clustering of the Z-score of each of the 2 052
genes differentially expressed in at least one of the 10 possible pairs of
conditions. Each condition was composed of three biological replicates,
which were clustered together. Columns were clustered with the
hierarchical clustering. (PDF 926 kb)

Additional file 6: Figure S3. Clusters of Orthologous Group (COG)
affiliation of the genes of each K-means cluster. The circle size is proportional
to the percentage of genes (indicated by numbers) affiliated to a COG
category for one given cluster group. Percentages in bold characters
correspond to the major part of each cluster. (PDF 311 kb)

Additional file 7: Figure S4. Strategy used for signature gene
identification. Two thresholds were used: an “Identity Threshold Fold-
Change” and a “Differential Threshold Fold-Change. Their respective values
are indicated below. As an example, here is presented the strategy
employed to identify one signature gene of the 13 h-old biofilm
condition. The absolute expression (baseMeans) of the gene is
represented by a filled circle in the 13 h-old biofilm condition, and by
empty circles in the other conditions. Signature gene is defined
according to two characteristics: i) differential expression levels between
the 13 h-old biofilm condition (filled circle) and the other conditions
(empty circles) higher than 4 (Differential Threshold Fold-Change), and ii)
differential expression levels between all other conditions (empty circles)
less than 2.5 (Identity Threshold Fold-Change). BaseMeans correspond to
the absolute expression values averaged for triplicates of a condition as
calculated by the DESeq package. (PDF 147 kb)

Additional file 8: Table S3. List of primers used in this study.
(XLSX 12 kb)
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throughput sequencing of RNA; rRNA: ribosomal RNA; RT-qPCR: reverse
transcription-quantitative polymerase chain reaction; tRNA: transfer RNA; vol/
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