
HAL Id: hal-01394062
https://hal.science/hal-01394062v1

Preprint submitted on 8 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Sparse multivariate factorization by mean of a few
bivariate factorizations

Bernard Parisse

To cite this version:
Bernard Parisse. Sparse multivariate factorization by mean of a few bivariate factorizations. 2016.
�hal-01394062�

https://hal.science/hal-01394062v1
https://hal.archives-ouvertes.fr


Sparse multivariate factorization by mean of a

few bivariate factorizations.

Bernard.Parisse@univ-grenoble-alpes.fr

2016

Abstract

We describe an algorithm to factor sparse multivariate polynomials using O(d)
bivariate factorizations where d is the number of variables. This algorithm is im-

plemented in the Giac/Xcas computer algebra system.

1 Introduction

To my knowledge, there are three classes of algorithms to factor multivariate polyno-

mials over Z :

• reduction to bivariate factorization and Hensel lifting (Von zur Gathen and Kaltofen

[3], Bernardin and Monagan [1])

• evaluation of one variable at a sufficiently large z, factorization and reconstruc-

tion by writing coefficients in basis z with symmetric remainders (heuristic fac-

torization)

• Kronecker-like substitution (replace one of the variable by another one to a suf-

ficiently large power).

Bivariate factorization may be obtained by partial differential equation (Gao [2]) or

interpolation or one of the previous method.

We present here a method that is adapted to sparse factors, where the previous

method would require too many ressources. For example Hensel lifting does not work

if a leading coefficient of the factors vanishes once evaluated to 0 at other variables. The

usual trick to avoid this is to translate the origin, but this will densify the polynomial to

be factored.

1



2 The algorithm

2.1 Main idea

Let n ≥ 2 and P (x, x1, ..., xn) be a sparse square-free polynomial that we want to

factor, assume that the factorization is :

P = P1...Pk

The basic idea is replace all variables x1, ..., xn with t, t, ..., t and factor the substituted

bivariate polynomial Pt,...,t, then compare with the factorization of Pt2,t,...,t (where

x1, ..., xn are substituted by t2, t, t, ..., t in P ) or with Pt3,t,...,t or etc. If the factor-

ization is sparse enough, there is a good chance that the factors will be similar (same

number of monomials, same pattern in x, same value for the coefficients), and the

monomial power differences in t will give us the x1 contribution to the monomials.

Doing the same for x2, ..., xn will give us the reconstruction.

The details are a little more complicated, because we must take care of the content

of the substituted polynomials Pt.,t,...,t and of the order of the monomials having the

same x powers in a given factor. The next example that motivated the implementation

in Giac/Xcas will demonstrate the main idea, problems and solutions.

2.2 Example

The following example was discussed on the sage-devel list, it was obtained with

a random generation command returning 2 polynomials in 5 variables. We make the

product and try to factor it back. It was not factored by Sage 7.4 (with Singular 4

inside), but was reported to be factored by magma in 3s.

A:=37324800000000*a^25*b^9*c^25*d^21*E^21 +

186624000000000*a^20*b^9*c^25*d^24*E^21 +

37324800000000*a^20*b^4*c^25*d^22*E^21 +

12441600000000*a^20*b^4*c^28*d^21*E^18 +

373248000000*a^16*b^4*c^25*d^21*E^20 +

1866240000000*a^16*b^4*c^26*d^21*E^18 +

186624000000*a^13*b^6*c^25*d^21*E^17 +

12441600000*a^13*b^5*c^25*d^21*E^12 +

3110400000*a^13*b^7*c^23*d^16*E^12 +

12441600000*a^13*b^4*c^25*d^16*E^13 +

3110400000*a^16*b^4*c^20*d^16*E^12 +

622080000*a^13*b*c^21*d^16*E^12 +

233280000*a^13*b*c^20*d^17*E^8 + 77760000*a^13*b*c^15*d^18*E^8 +

25920000*a^13*b*c^15*d^14*E^10 + 25920000*a^13*b^4*c^15*d^10*E^8 +

17280000*a^8*b*c^15*d^14*E^8 + 3240000*a^8*b^4*c^15*d^6*E^8 +

216000*a^4*b^3*c^15*d^6*E^8 + 216000*a^4*b*c^10*d^9*E^8 +

86400*a^4*b*c^10*d^8*E^7 + 32400*a^7*b*c^10*d^3*E^7 +

2700*a^4*b^4*c^10*d^3*E^3 + 675*a^6*b*c^7*d^3*E^3 +

1125*a^5*b*c^2*d^3*E^3 + 135*b^5*c^2*d^3*E^3 +

2



27*c^2*d^6*E^3 + 12*c^7 + 9*c^3*d^3 + a^2;

B:=1105920000000000*E^36*a^7*b^16*c^6*d^33+

276480000000000*E^35*a^7*b^16*c^6*d^33+

20736000000000*E^32*a^2*b^15*c^6*d^33+

345600000000000*E^31*a^7*b^16*c^6*d^33+

69120000000000*E^29*a^7*b^15*c^8*d^33+

103680000000000*E^29*a^7*b^15*c^6*d^33+

10368000000000*E^26*a^2*b^15*c^6*d^33+7680000*E^21*a*b^9*d^18+

57600000000*E^20*a^7*b^14*c^2*d^29+

11520000000*E^20*a^6*b^12*c^2*d^29+

2400000000*E^20*a^6*b^9*d^29+

1728000000000*E^20*a^2*b^19*c^6*d^33+

216000000000*E^20*a^2*b^14*c^10*d^31+

864000000000*E^20*a^2*b^14*c^6*d^37+

216000000000*E^20*a^2*b^14*c^2*d^32+3840000000*E^20*a^2*b^14*d^29+

480000000*E^20*a*b^9*d^34+96000000*E^18*a*b^9*c^3*d^29+

76800000*E^18*a*b^9*d^31+28800000*E^17*a*b^9*c^5*d^26+

5760000*E^17*a*b^9*c^4*d^23+384000*E^17*b^14*d^16+

76800*E^17*b^12*d^16+1920000*E^17*b^9*d^22+

11520*E^14*b^4*d^13+46080*E^12*b^8*d^21+

38400*E^12*b^4*d^19+3840*E^8*b^6*d^13+768*E^8*b^4*c*d^11+

24*E^3*b^7*d^8+96*E^3*b^4*c^2*d^11+96*E^3*c^2*d^8+

6*E^3*d^8+2*b^2*d^3+3*b*d^7+c^5;

The smallest partial degree of the product is 9+19 in b, therefore bwill be our x variable,

while a, c, d, E are our x1, ..., x4 variables. A and B are irreducible, we set P = AB.

Factoring P (x, t, t, t, t) gives

t^5*

(37324800000000*b^9*t^90+186624000000000*b^9*t^88

+3110400000*b^7*t^62+186624000000*b^6*t^74+

12441600000*b^5*t^69+135*b^5*t^6+

37324800000000*b^4*t^86+12441600000000*b^4*t^85+

373248000000*b^4*t^80+1866240000000*b^4*t^79

+12441600000*b^4*t^65+3110400000*b^4*t^62+25920000*b^4*t^44

+3240000*b^4*t^35+2700*b^4*t^18+

216000*b^3*t^31+

622080000*b*t^60+233280000*b*t^56+77760000*b*t^52

+25920000*b*t^50+17280000*b*t^43+216000*b*t^29

+86400*b*t^27+32400*b*t^25+675*b*t^17+1125*b*t^11

+27*t^9+12*t^5+9*t^4+1)*...

Factoring P (x, t2, t, t, t) gives

t^7*

3



(37324800000000*b^9*t^113+186624000000000*b^9*t^106

+3110400000*b^7*t^73+186624000000*b^6*t^85+

12441600000*b^5*t^80+135*b^5*t^4+

37324800000000*b^4*t^104+12441600000000*b^4*t^103+

373248000000*b^4*t^94+1866240000000*b^4*t^93+

15552000000*b^4*t^76+25920000*b^4*t^55+

3240000*b^4*t^41+2700*b^4*t^20+216000*b^3*t^33+

622080000*b*t^71+233280000*b*t^67+77760000*b*t^63+

25920000*b*t^61+17280000*b*t^49+216000*b*t^31

+32400*b*t^30+86400*b*t^29+675*b*t^21+1125*b*t^14+

27*t^7+12*t^3+9*t^2+1)*...

It is clearly a similar factorization, the number of monomials differ only by 1 (12441600000∗
b4∗t65+3110400000∗b4∗t62 is grouped in one monomial in the second factorization),

and the order is not the same for the coefficient of b. Note that there is also a content

term in t. In fact, we just got an unlucky evaluation at x1 = a = t2, x1 = a = t3 is

also unlucky, while x1 = a = t4 returns 30 monomials like t.

t^9*

(37324800000000*b^9*t^161+186624000000000*b^9*t^144+

3110400000*b^7*t^97+186624000000*b^6*t^109+

12441600000*b^5*t^104+135*b^5*t^2+

37324800000000*b^4*t^142+12441600000000*b^4*t^141+

373248000000*b^4*t^124+1866240000000*b^4*t^123+

3110400000*b^4*t^106+12441600000*b^4*t^100+25920000*b^4*t^79+

3240000*b^4*t^55+2700*b^4*t^26+216000*b^3*t^39+

622080000*b*t^95+233280000*b*t^91+77760000*b*t^87+

25920000*b*t^85+17280000*b*t^63+32400*b*t^42+

216000*b*t^37+86400*b*t^35+675*b*t^31+1125*b*t^22+

27*t^5+t^2+12*t+9)*...

In order to compare the two factorizations, we must solve these 3 problems: con-

tent, number of monomials, and monomials ordering.

2.3 Detailled method

We assume that the factors of the bivariate factorization are x-distincts, that is the

distribution of non-zero coefficients in powers of x are not the same. This way, we can

isolate the same factor in two bivariate factorizations, and we will now reconstruct the

true factor.

To solve the content normalization problem, we will as usual reconstruct the mul-

tiple of the factor of P that has the same leading coefficient (lc) as P in x (in the

example the multiple of A having same leading coefficient as P = AB in b). It means

that we can ignore the content in the factorization of Pt.,...,t and that we multiply the

factor f of Pt.,...,t by lc(P )t.,...,t/lc(f). In our example the leading coefficient of P is

193491763200000000000000000*a^22*c^31*d^54*E^41*(a^5+5*d^3)

We can ignore the integer factor, therefore we multiplyPt,...,t the factor by t22+31+54+41(t5+

4



5t3)/(t90 + 5t88) = t63. For Pt4,...,t, we multiply the factor by t4×22+31+54+41(t20 +
5t3)/(t161 + 5t144) = t73.

Solving the number of monomials is done like for any modular reconstruction: if an

evaluation with xk replaced by tj contains less term than the previous one, we ignore

it (unlucky evaluation), if an evaluation contains more terms than a previous one, we

throw what we had before and restart from this one. If the number of monomials is the

same, we also check that the non-zero partials degrees in x are the same.

Keeping the right order of monomials is more original: it can be done by comparing

first the x power, then comparing the coefficient of the monomial (it is impossible to

insure the same ordering by sorting with powers of t). In order to do that we must

insure that in the factor to be reconstructed the coefficients of the monomials of the

same power of x are all distincts. If this is not the case, we can dilate some variables

by a constant factor and retry (in our implementation we dilate all variables except x
randomly by ±1 or ±2).

If we have two matching factors for evaluations at t..t, tj , t..t and t..t, tj
′

, t..t then

the power of xk in a monomial is the difference of powers in t of the same monomial

in the two factorizations divided by j − j′. For example the first monomial in Pt,..,t

multiplied by t63 is 37324800000000 ∗ b9 ∗ t90+63, the corresponding monomial in

Pt4,...t multiplied by t73 is 37324800000000 ∗ b9∗ t161+73, that’s a power contribution

for x1 = a of (234−153)/3 = 27. Indeed the leading coefficient ofA is a25, multiplied

by a2 inside the leading coefficient of Q in b is a27.

2.4 Implementation

This algorithm is implemented in C++ in the file ezgcd.cc of the source code of

Giac/Xcas, in the function try_sparse_factor_bi It factors the polynomial in

the example in less than 2s (without this function, the factorization was impracticable).

We hope it will help other open-source softwares implement more efficient sparse

multivariate factorization algorithms!

References

[1] L. Bernardin and M. B. Monagan. Efficient multivariate factorization over finite

fields. In International Symposium on Applied Algebra, Algebraic Algorithms, and

Error-Correcting Codes, pages 15–28. Springer, 1997.

[2] S. Gao. Factoring multivariate polynomials via partial differential equations. Math-

ematics of computation, 72(242):801–822, 2003.

[3] J. von zur Gathen and E. Kaltofen. Factoring sparse multivariate polynomials.

Journal of Computer and System Sciences, 31(2):265–287, 1985.

5


	Introduction
	The algorithm
	Main idea
	Example
	Detailled method
	Implementation


