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Model Reduction from Partial Observations

C. Herzet(1), P. Héas(1), A. Drémeau(2)

(1) INRIA, Campus de Beaulieu, 35000 Rennes, France
(2) ENSTA Bretagne, 42 rue François Verny, 29200 Brest, France

This paper deals with model-order reduction of parametric partial dif-
ferential equations (PPDE). More specifically, we consider the problem of
finding a good approximation subspace of the solution manifold of the PPDE
when only partial information on the latter is available. We assume that two
sources of information are available: i) a “rough” prior knowledge, taking the
form of a manifold containing the target solution manifold; ii) partial linear
measurements of the solutions of the PPDE (the term partial refers to the
fact that observation operator cannot be inverted). We provide and study
several tools to derive good approximation subspaces from these two sources
of information. We first identify the best worst-case performance achievable
in this setup and propose simple procedures to approximate the correspond-
ing optimal approximation subspace. We then provide, in a simplified setup,
a theoretical analysis relating the achievable reduction performance to the
choice of the observation operator and the prior knowledge available on the
solution manifold.

1 Introduction

Our contribution takes place within the context of model reduction for para-
metric partial differential equations:

PDE(h, θ) = 0, (1)

where h belongs to a Hilbert space H and θ ∈ Θ is a parameter. When
the solution h(θ) of (1) has to be evaluated for many different values θ ∈
Θ, the computational effort may become prohibitive. To circumvent this
issue, model reduction intends to simplify the resolution of (1) by (typically)
constraining h to belong to some low-dimensional subspace S ⊂ H. As
a matter of fact, the choice of S should be made so that each element of
the solution manifold M = {h(θ) ∈ H : θ ∈ Θ} is well-approximated by
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some element of S. Many techniques have been proposed in the literature
to identify such subspaces: Taylor [1] or Hermite [2] expansions, proper
orthogonal decomposition (POD) [3], balanced truncation [4], reduced basis
techniques [5], etc.

All the methods mentioned above presuppose some refined knowledge
of the solution manifold M. For example, it is typically assumed that the
solution manifoldM can be finely sampled [1–4] or, at least, that the set of
parameters Θ definingM is perfectly known [5]. Unfortunately, in practice
a refined knowledge of M may not always be available. Nevertheless, in
many situations one may have access to some partiala measurements of the
elements of M. The main question addressed in this paper is therefore as
follows: can we benefit from these partial measurements to (complement our
prior knowledge and) compute a good approximation subspace forM?

In order to provide a precise answer to this question, we assume in the
rest of this paper that we have the following two ingredients at our disposal:

i) a prior manifold Mprior, which collects all the knowledge we have “a
priori” about M. The only constraint we impose on Mprior is to be
such that

M⊆Mprior, (2)

i.e., the prior manifold must contain all the elements of the target
manifoldM.

ii) a set of partial observations of the elements ofM: we assume that we
collect, ∀h ∈M, a set of noiseless linear measurements:

{〈wj ,h〉}mj=1, (3)

where {wj}mj=1 is an orthonormal basis (ONB) of some subspace W
and 〈·, ·〉 denotes the inner product in H.

The prior information typically derives from some physical considerations
and/or constraints we may have about the system under study. We give an
example of construction ofMprior in Section 4. The nature of the observa-
tions available in practice depends on the experimental setup. In this work,
we make the assumption that the measurements can be seen as the outputs
of a noiseless linear operator. The noisy setting is not considered hereafter

aHere, the term “partial” refers to the fact that the measurement operator cannot be
inverted.
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and left for future work. We note that if m = dim(H), the observation oper-
ator can be inverted to exactly recover the elements ofM, leading us back
to the standard setup. In the sequel, we will thus assume that m < dim(H),
so that some ambiguity on h subsists upon the observation of {〈wj ,h〉}mj=1.

Although of clear practical interest, only a few contributions have tack-
led the problem of model reduction from partial measurements. To the best
of our knowledge, the first paper dealing with this question is due to Ever-
son and Sirovich [6]. The authors proposed a methodology, dubbed “Gappy
POD”, constructing an approximation subspace when only some elements of
each solution h(θ) are observed. This approach has been applied with suc-
cess to e.g., oceanography in [7] or fluid mechanics in [8–10]. Unfortunately,
Gappy POD requires some diversity in the observation operator to work
properly: as noted in [9], this method is doomed to produce poor approxi-
mation subspaces as soon as some directions of H are never observed.b This
is for example the case when all the elements of the solution manifold are
observed through the same partial observation operator as in (3). In order
to circumvent this issue, prior information aboutM can be included in the
reduction process. This approach was recently used in [11–15]. In [11], the
authors suggested to iteratively enrich the approximation subspace by us-
ing “a posteriori” estimates of some elements ofM (the term “a posteriori”
refers here to the fact that the estimates stem from the combination of par-
tial observations and some prior knowledge on M). In [12], the authors of
the present work refined this approach in a Bayesian framework: they pro-
posed to include the uncertainty inherent to the a posteriori estimates in the
reduction process. An efficient implementation of this Bayesian reduction
strategy relying on adaptive a posteriori sampling is proposed in [13]. The
works [14, 15] are also closely related to this Bayesian perspective of model
reduction: the authors determine an optimal low-dimensional approxima-
tion of the a posteriori distribution for solving efficiently inverse problems
governed by PPDEs. In this paper, we present a rigorous formulation and
justification to these approaches in a deterministic framework. In particular,
we provide elements of answer to the following questions:

i) What is the best performance which can be achieved by combining the
information provided by the prior manifold Mprior and the collected
observations {{〈wj ,h〉}mj=1}h∈M?

ii) Can we characterize this ideal performance as a function of the choice
bIn fact, each direction of “large variation” of M should be observed in at least one

observation.
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of the prior manifoldMprior and the measurement subspace W?

iii) How to compute a good approximation subspace from Mprior and
{{〈wj ,h〉}mj=1}h∈M in practice?

As suggested by our above discussion, distinct from, but related to model
reduction from partial measurements, is the question of deriving a good es-
timate of some unknown h(θ) by exploiting both a reduced-order model and
some collected data. This paradigm has recently been explored in several pa-
pers [11,16–18]. In [16], the authors proposed a reduced version of a Kalman
filter and showed that the error on the estimate delivered by the latter can
be bounded by a function of the data residual. In [17] (resp. [11]), Maday et
al. considered a data assimilation problem from noiseless (resp. noisy) linear
observations, where the prior model is defined as a low-dimensional approx-
imation subspace of M. The same setup was discussed in [18] by Binev et
al. and extended to priors defined as an intersection of degenerate ellipsoids.
Some of the theoretical considerations exposed in the present work are built
upon the arguments derived in that paper.

The rest of the paper is organized as follows. In Section 3 we show
that the worst-case optimal performance achievable in our partially-informed
setup is characterized by the “Kolmogorov width” of some well-defined set. In
Section 4, we propose a simple practical scheme to approximate this worst-
case optimal performance and illustrate its performance on the well-known
“thermal-block problem” in Section 5. Finally, in Section 6 we provide a
theoretical result relating the achievable reduction performance to the choice
of the prior and observation operators. The main steps of the proof of this
result are exposed in Section 7 whereas the technical details are postponed to
Appendix A. In Appendix B, we discuss the weak and algebraic formulations
of the PPDE used in our simulations. In order to ease the reading of our
work, we also provide a summary of the main notations and expressions
useful to understand the paper in Appendix C.

2 Notational Conventions

Except if otherwise stated, the notational conventions used in this paper are
as follows. Italic lowercase boldface letters (as e.g., h, v, w, etc.) denote
elements of the Hilbert space H. Uppercase italic letters (e.g., S, U , V , W ,
etc.) are used for subspaces of H. Lowercase (e.g., n, x, etc.) and uppercase
boldface (e.g., X, S, etc.) letters respectively stand for vector and matrix
notations. Lowercase italic (e.g., a, b, α, β, etc.) and uppercase normal (e.g.,
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N, T, etc.) letters denote scalars. For matrices and vectors, the superscript
.T means transposition. The element located at row i and column j of a
matrix X is denoted xij .

The inner product and the induced norm associated to H are denoted
by 〈·, ·〉 and ‖·‖ respectively. The space orthogonal to a subspace X with
respect to the inner product 〈·, ·〉 is written as X⊥. The subspace induced
by a set {vi}ni=1 is denoted span ({vi}ni=1). The distance between an element
h ∈ H and a closed subspace S is defined as

dist(h, S) , min
h′∈S

∥∥h− h′∥∥,
and the projection of h onto S as

PS(h) , arg min
h′∈S

∥∥h− h′∥∥.
The notation PS(V ) stands for the set {PS(h) : h ∈ V }. The operator ⊕
is used to denote the direct sum between two subsets of H, e.g., S ⊕ V =
{s+ v : s ∈ S,v ∈ V }. Finally, Bε = {h ∈ H : ‖h‖ ≤ ε} is the ‖·‖-ball of
radius ε.

3 Worst-case Optimal Model Reduction

In this section, we tackle the problem of finding a good approximation sub-
space from a worst-case perspective. In Section 3.1, we first discuss the nature
of the information provided by the prior manifold (2) and the collected obser-
vations (3), and identify the set of manifolds compatible with the latter. In
Section 3.2, we then characterize the best worst-case performance achievable
in our partially-informed setup.

3.1 Feasible and Posterior Manifolds

The prior manifold and the partial measurements provide some valuable in-
formation about the unknown manifold M since they both define a set of
constraints (discussed below) which are known to be satisfied by the lat-
ter. However,M is usually not the only manifold verifying these constraints.
In the sequel, we will denote the set of manifolds satisfying the constraints
imposed by Mprior and the partial measurements {{〈wj ,h〉}mj=1}h∈M as
Ξfeas; the elements of Ξfeas will be referred to as “feasible” manifolds.
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In the rest of this subsection, we give a precise characterization of Ξfeas

and emphasize that the largestc element of this set is defined by

Mpost =Mprior ∩ (∪h∈MHh), (4)

where

Hh ,
{
h′ = h+w⊥ : w⊥ ∈W⊥

}
.

This observation will turn out to be crucial in the next subsection to char-
acterize the worst-case optimal approximation subspace.

Let us first discuss the constraints defining Ξfeas. First, it is clear that
any manifold M̃ compatible with our prior assumption (2) should be such
that

M̃ ⊆Mprior. (5)

Secondly, a manifold M̃ compatible with the received observations should
reproduce exactly the same set of measurements as those obtained fromM
when measured with the same observation operator. More specifically, any
manifold M̃ compatible with the received observations should be such that{

{〈wj ,h〉}mj=1

}
h∈M̃

=
{
{〈wj ,h〉}mj=1

}
h∈M

. (6)

We thus define the set of feasible manifolds as

Ξfeas =
{
M̃ : (5) and (6) hold

}
. (7)

In other words, Ξfeas represents the set of manifolds which are compatible
with both our prior assumption (2) and the set of collected observations. It
is obvious from (5)-(7) thatM∈ Ξfeas.

We now prove the following lemma:

Lemma 1. Mpost is the largest element of Ξfeas.

Proof: We first show that{
M̃ ⊆Mprior,

M̃ ⊆ ∪h∈MHh,
(8)

cThe term “largest” must be understood as follows: if M̃ ∈ Ξfeas then M̃ ⊆Mpost.
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are necessary conditions for M̃ ∈ Ξfeas and, (8) together with

M⊆ M̃, (9)

is a sufficient condition for M̃ ∈ Ξfeas. The proof of the main result will
derive straightforwardly from these conditions.

The necessity of M̃ ⊆Mprior is obvious from the definition of Ξfeas. The
necessity of M̃ ⊆ ∪h∈MHh can be shown as follows. First, note that the
set of elements of H leading to a given set of observations {〈wj ,h〉}mj=1 is an
affine subspace defined as

Hh =
{
h′ : 〈wj ,h

′〉 = 〈wj ,h〉 for j = 1, . . . ,m
}
,

=
{
h′ = h+w⊥ : w⊥ ∈W⊥

}
.

Hence, if M̃ * ∪h∈MHh, then ∃h′ ∈ M̃ such that{〈
wj ,h

′〉}m
j=1

/∈
{
{〈wj ,h〉}mj=1

}
h∈M

,

and therefore (6) cannot be satisfied. The necessity of M̃ ⊆ ∪h∈MHh is
thus obtained by contraposition.

We now show that (8)-(9) is sufficient for M̃ ∈ Ξfeas. Since the first
condition in (8) is identical to (5), we only need to show that (8)-(9) implies
(6). First, from our previous discussion, we have that M̃ ⊆ ∪h∈MHh implies
that {

{〈wj ,h〉}mj=1

}
h∈M̃

⊆
{
{〈wj ,h〉}mj=1

}
h∈M

.

Moreover, ifM⊆ M̃ holds then we also have{
{〈wj ,h〉}mj=1

}
h∈M

⊆
{
{〈wj ,h〉}mj=1

}
h∈M̃

.

Combining the last two inclusions, we obtain (6).
We finally prove the statement of Lemma 1 by exploiting the necessary

and sufficient conditions defined above. Since any M̃ ∈ Ξfeas must satisfy
(8), we have

M̃ ⊆Mprior ∩ (∪h∈MHh) =Mpost.

It thus remains to show that Mpost ∈ Ξfeas. Now, Mpost verifies (8) by
definition. Moreover, (9) also holds because M is included in both Mprior
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and ∪h∈MHh. Hence,Mpost ∈ Ξfeas by virtue of the sufficiency of (8)-(9). �

Mpost summarizes the uncertainty about the unknown manifold M by
gathering the information provided by the prior model and the partial mea-
surements. In particular, it is the smallest subset of H containing all the
manifolds compatible with the prior constraint (2) and the received observa-
tions. In the sequel, we will thus refer toMpost as the “posterior” manifold
because of its analogy with the posterior probabilities defined in a Bayesian
framework: both characterize the uncertainty remaining on some quantity
of interest upon the combination of some prior and observation models [19].

3.2 Worst-case Optimal Model Reduction

In the model-reduction literature, an ideal figure of merit to assess the re-
ducibility of a manifoldM is its “Kolmogorov i-width”:

κi(M) = inf
S:dim(S)=i

(
sup
h∈M

dist(h, S)

)
. (10)

It is clear from its definition that κi(M) provides the best worst-case error
achievable by any approximation subspace of dimension i. If the infimum of
(10) can be attainedd, a worst-case optimal approximation subspace is thus
given by

Sperf
i ∈ arg min

S:dim(S)=i

(
sup
h∈M

dist(h, S)

)
. (11)

The resolution of this problem obviously entails the knowledge of the mani-
fold to reduce, i.e.,M. In the setup considered in this paper, which presup-
poses thatM is unknown, computing an approximation subspace according
to (11) is therefore not possible.

Nevertheless, as discussed in the previous subsection, the presence of
prior information and partial measurements on the unknown manifold M
reduces the uncertainty about its localization in H. More specifically, any
manifold compatible with the prior information and the received observations
must belong to the feasible set Ξfeas. A sensible approach, followed hereafter,
then consists of including this information within the worst-case criterion

dIn order to ease the discussion, we will always assume hereafter that all the suprema
and infima exist and can be attained. We refer the reader to [20] for a detailed discussion
on the conditions ensuring the existence of the extremizers of the Kolmogorov i-width.
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used to evaluate the approximation subspace. More precisely, we suggest to
compute the approximation subspace as the solution of

Spost
i ∈ arg min

S:dim(S)=i

(
sup

M̃∈Ξfeas

sup
h∈M̃

dist(h, S)

)
. (12)

Problem (12) is tantamount to finding the approximation subspace minimiz-
ing the maximum approximation error over all the feasible manifolds. We
note that since the posterior manifold Mpost defined in (4) is the largest
element of Ξfeas (see Lemma 1), (12) can also be rewritten as

Spost
i ∈ arg min

S:dim(S)=i

(
sup

h∈Mpost

dist(h, S)

)
. (13)

By definition of Spost
i and sinceM⊆Mpost ⊆Mprior, we have

κi(M) ≤ sup
h∈M

dist(h, Spost
i ) ≤ κi(Mpost) ≤ κi(Mprior). (14)

The first inequality follows from the definition the Kolmogorov i-width ofM,
the second fromM ⊆Mpost and the last one is a consequence ofMpost ⊆
Mprior.

In the light of (14), we see that in the partially-informed setup con-
sidered in this paper, the optimal reduction performance is lower bounded
by κi(M) and upper bounded by κi(Mpost). The gap between κi(M) and
κi(Mpost) “materializes” the loss of reducibility which can occur by work-
ing in a partially-informed setting rather than a perfectly-informed one. We
also note that κi(Mprior) characterizes the best achievable worst-case per-
formance when the prior constraint (2) is the only information available to
the practitioner (i.e., there are no observations). More precisely we have

inf
S:dim(S)=i

(
sup

M̃⊆Mprior

sup
h∈M̃

dist(h, S)

)
= inf

S:dim(S)=i

(
sup

h∈Mprior

dist(h, S)

)
= κi(Mprior).

As expected, from a worst-case perspective, there is thus always a gain in
exploiting the received observations on top of the prior information; the gain
brought by the former is characterized by the gap between κi(Mpost) and
κi(Mprior). In Section 6, we will discuss more specifically the connections
between κi(M), κi(Mpost) and κi(Mprior) in a simplified setup.
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Algorithm 1 Greedy algorithm

inputs: {hj}
Nsnap

j=1

init: Ŝ = {0}
while Stopping criterion is not satisfied do

Compute h = arg max
h′∈{hj}

Nsnap
j=1

∥∥∥h′ − P
Ŝ

(
h′
)∥∥∥

Set Ŝ = Ŝ ⊕ span (h)
end while
ouput: Ŝ

4 Practical Implementation: Greedy Procedure and
Sampling Schemes

Solving (13) is typically an intractable problem. Suboptimal approaches have
therefore to be considered to find good approximated solutions. Interestingly,
since (13) shares exactly the same structure as (11) (with the difference
that the supremum is taken over Mpost rather than M), one can benefit
from the numerous suboptimal techniques which have been proposed in the
standard setup to tackle our partially-informed problem. In the sequel, we
will focus more specifically on the standard “greedy” procedure described in
Algorithm 1, see e.g., [21, Section 7.1.1]. The stopping criterion mentioned
in the procedure may be for example the dimension of the approximation
subspace or some accuracy requirements.

The algorithm presupposes that a set of elements of the manifold to
reduce (commonly referred to as “snapshots” in the literature), say {hj}

Nsnap

j=1 ,
is available. At each iteration, the procedure increases the dimension of
the approximation subspace, by including one of the snapshots leading to
the largest projection error. The performance of the greedy algorithm thus
depends on the choice of {hj}

Nsnap

j=1 . A sensible choice, that we will follow
hereafter, consists of drawing the snapshots randomly from some distribution
supported onMpost. We note that

Mpost =Mprior ∩ (∪h∈MHh),

= ∪h∈M(Mprior ∩Hh),

and therefore a sampling of Mpost can be achieved by drawing snapshots
from some distribution supported onMprior ∩Hh, ∀h ∈M.

The structure ofMprior ∩Hh depends obviously on the choice ofMprior.
From a practical point of view, some choices ofMprior may thus enable more
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favorable implementations than others. In Section 4.1, we introduce some
specific choices for Mprior which lead to a simple mathematical characteri-
zation ofMprior ∩Hh. We emphasize that, in many situations, this type of
priors can be obtained quite easily by applying standard reduced-order model
techniques. In Section 4.2, we present some material and notations needed to
properly characterizeMprior ∩Hh. In Section 4.3, we emphasize that there
exist simple schemes to sampleMpost for the specific choices ofMprior intro-
duced in Section 4.1. Our approach relies on the derivations of Binev et al.
showing thatMprior ∩Hh corresponds to a high-dimensional ellipsoid with
orthogonal principal axes for some choice ofMprior, see [18, section 2.4]. In
Section 4.4, we establish some connections between the proposed procedure
and some other approaches based on point estimates of the elements ofM.
Finally, in Section 4.5, we analyze the complexity of the proposed methods
and discuss some implementation issues.

4.1 Some Specific Choices for Mprior

In this section, we advocate that the following choice of prior manifold can
be obtained from standard model-order reduction techniques:

Mprior = ∩L
j=1{h : dist(h, Vj) ≤ ε̂j}, (15)

where Vj is some nj-dimensional subspace, ε̂j is some positive scalar and L
is an integer. In Section 4.3, we will emphasize that such a choice forMprior

allows for an easy implementation of the sampling ofMprior ∩Hh.
In order to show that (15) can (for example) be obtained from standard

model-order reduction techniques, let us first consider the case where the
uncertainty one has on the set of possible solutions of the PPDE (i.e., M)
is due to an imperfect knowledge of the set of feasible parameters Θ (The
general case will be discussed at the end of this section). Although Θ may
not be precisely known, an information the practitioner usually has at its
disposal is that Θ is contained in some larger set Θrelax, i.e., Θ ⊆ Θrelax.
This relaxed set defines another manifold

Mrelax , {h(θ) ∈ H : θ ∈ Θrelax}, (16)

which obeys M ⊆ Mrelax (because Θ ⊆ Θrelax). Now, constructing a
reduced-order model for Mrelax defined as in (16) via e.g., reduced-basis
techniques [5] leads to a sequence of subspaces

V1 ⊂ . . . ⊂ VL, (17)
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and scalars

ε̂1 ≥ . . . ≥ ε̂L, (18)

such thate

Mrelax ⊆{h : dist(h, Vj) ≤ ε̂j} for all j ≤ L. (19)

SinceM⊆Mrelax, one can thus construct a prior of the form (15) satisfying
(2), from any combination of the subspaces (17) and scalars (18).

We note that this procedure applies even if Mrelax is not defined via a
relaxed set of parameters Θrelax as in (16). In a general setting, the only con-
straints to satisfy in order to fulfil the conditionM⊆ ∩L

j=1{h : dist(h, Vj) ≤ ε̂j}
are as follows: i) identify a manifoldMrelax such thatM ⊆Mrelax; ii) ap-
ply a model-order reduction technique on Mrelax which certifies that the
sequence of subspaces Vj and scalars ε̂j obey (19).

4.2 Definition of Suitable Representation Bases

In this section, we introduce some representation bases which will be useful
for the characterization of Mprior ∩Hh in the next section. We let W and
V denote respectively m- and n-dimensional subspaces of H. In the next
section, W and V will play the role of the observation subspace defined in
(3) and one of the “prior” subspaces Vj appearing in the definition ofMprior

in (15).
Let G ∈ Rm×n be the matrix representation of the projector PW from V

to W in some (arbitrary) ONBs {wj}mj=1 and {vj}nj=1, i.e.,

gij , 〈wi,vj〉.

We define new ONBs,
{
w∗j

}m
j=1

for W and
{
v∗j

}n
j=1

for V , as

w∗j ,
m∑
i=1

wi xij ,

v∗j ,
n∑
i=1

vi zij ,

eFor the sake of precision, let us mention that, as far as reduced-basis techniques
are concerned, the inclusion in (19) is guaranteed only if the reduced-basis procedures
exploit the whole set Θrelax in the computation of Vj and ε̂j . In practice, however, these
algorithms only use a fine discretization of Θrelax to speed up the computations. In such
a case, ensuring that (19) holds requires some additional care. In the sequel, we do not
elaborate on this technical issue and assume that Vj and ε̂j are such that the inclusion
(19) holds.
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where xij and zij are the coefficients of the matrices appearing in the sin-
gular value decomposition of G = XSZT; X ∈ Rm×m and Z ∈ Rn×n are
orthogonal matrices; S ∈ Rm×n is a rectangular, diagonal matrix.

Clearly, from the definition of {w∗i }
m
i=1 and {v∗i }

n
i=1, we have〈

w∗i ,v
∗
j

〉
= sij . (20)

In the sequel, we will use the shorthand notation λj to refer to the jth
diagonal element of S, that is {λj}min(m,n)

j=1 represents the set of singular
values of G.f The singular values are assumed to be sorted in a decreasing
order of magnitude, i.e.,

1 ≥ λ1 ≥ · · · ≥ λmin(m,n) ≥ 0.

The first inequality follows from the fact that G is the matrix representation
of a projection operator: we thus necessarily have that λj ≤ 1. Moreover, if
λj = 1, we must have w∗j = v∗j .

We define the following short-hand notations that will be useful in the
rest of the paper:

p , card ({j : λj = 1}) ,
q , card ({j : λj > 0}) .

From an operational point of view, p represents the number of dimensions
of V which are included in W , that is p = dim(W ∩ V ). Moreover, n − q
corresponds to the number of dimensions of V which are orthogonal to W ,
that is n − q = dim

(
W⊥ ∩ V

)
. In a nutshell, q thus represents the number

of measurements (out of m) providing information about the position of the
points in V .

Finally let us mention thatW⊥ can be decomposed as the following direct
sum of two orthogonal subspaces (see Appendix A.1):

W⊥ = PW⊥(V ) ⊕W⊥ ∩ V ⊥. (21)

Moreover an ONB for P
W⊥

(V ) can be expressed in terms of the elements of{
w∗j

}m
j=1

and
{
v∗j

}n
j=1

. More specifically, letting

φj ,
(
1− λ2

j

)− 1
2
(
v∗j − λjw∗j

)
,

we have that
{
φj
}q
j=p+1

∪
{
v∗j

}n
j=q+1

forms an ONB of P
W⊥

(V ), see Ap-

pendix A.1.
fIn order to provide some geometrical interpretation to the reader, let us mention that

the singular value λj can also be understood as the cosine of the “angle” between the
singular vectors w∗j and v∗j .
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Algorithm 2 Random Sampling ofMprior ∩Hh for L = 1

inputs: {〈wj ,h〉}mj=1, ε̂, V

init: Compute
{
v∗j

}n
j=1

,
{
w∗j

}m
j=1

, {λj}min(m,n)
j=1 as in Section 4.2

Evaluate
〈
w∗j ,h

〉
=
∑m

i=1〈wi,h〉xij for j = 1, . . . ,m

while i < Nsamples do
1) Draw π according to some distribution supported on [0, 1]

2) Draw γ uniformly on
[
0, ε̂2 −

∑m
j=q+1

〈
w∗j ,h

〉2
]

3) Draw {bj}qp+1 uniformly on the (q − p)-dimensional unit ball;
scale the result so that

∑q
j=p+1 b

2
j = γπ

4) Draw {dj}nq+1 uniformly on Rn−q

5) Draw z uniformly on V ⊥ ∩ W⊥; scale the result so that ‖z‖2 =
γ
(
1− π2

)
6) Set hi = hcenter −

∑q
j=p+1 bjλ

−1
j φj +

∑n
j=q+1 djv

∗
j + z

i = i+ 1
end while
ouput: {hi ∈Mprior ∩Hh}

Nsamples

i=1

4.3 Sampling Strategies

We now expose our strategies to sample Mprior ∩ Hh with Mprior defined
as in (15). First note that each set {h : dist(h, Vj) ≤ ε̂j} can be seen as a
degenerate ellipsoid (the degenerate directions are defined by the subspace
Vj); the definition in (15) thus corresponds to the intersection of L degener-
ate ellipsoids. In what follows, we will see that this particular geometrical
structure allows for an easy sampling ofMprior ∩Hh.

We first consider (15) in the case where L = 1, that isMprior is defined
as

Mprior = {h : dist(h, V ) ≤ ε̂}, (22)

for some n-dimensional subspace V and scalar ε̂ > 0. In this setup,Mprior ∩
Hh takes the form of a high-dimensional ellipsoid with orthogonal principal
axes. More specifically, Binev et al. [18, Section 2.4] (see also Appendix A.2)
showed thatMprior ∩Hh can be characterized as follows:

Mprior ∩Hh = hcenter ⊕ Eh, (23)

14



where

hcenter =

q∑
j=1

〈
w∗j ,h

〉
λ−1
j v

∗
j +

m∑
j=q+1

〈
w∗j ,h

〉
w∗j , (24)

and Eh is an ellipsoid defined as

Eh =


h′ = −

∑q
j=p+1 bjλ

−1
j φj +

∑n
j=q+1 djv

∗
j + z

with

{
z ∈ V ⊥ ∩W⊥∑q

j=p+1 b
2
j + ‖z‖2 ≤ ε̂2 −

∑m
j=q+1

〈
w∗j ,h

〉2

 . (25)

In (24)-(25), we have used the definitions of v∗j , w
∗
j and φj introduced in

Section 4.2 with the following conventions: V is the subspace characterizing
Mprior in (22), W is the observation subspace introduced in (3).

From (23)-(25) it is clear that Mprior ∩ Hh is an ellipsoid centered in
hcenter. The set Eh characterizes the deviation of the elements of Mprior ∩
Hh from its center. From our final remark in Section 4.2 (namely, W⊥ can
be decomposed as in (21) and

{
φj
}q
j=p+1

∪
{
v∗j

}n
j=q+1

forms an ONB of

P
W⊥

(V )), we can deduce that: i) Eh ⊆ W⊥; ii) the elements
{
φj
}q
j=p+1

∪{
v∗j

}n
j=q+1

correspond to principal axes of the ellipsoid. Hence, it is clear

that the maximum deviation of the ellipsoid Mprior ∩ Hh from its center
hcenter occurs in the direction φq (resp.

{
v∗j

}n
j=q+1

) and is equal to λ−1
q (ε̂2−∑m

j=q+1

〈
w∗j ,h

〉2
) (resp. +∞) when q = n (resp. q < n).

Exploiting (23)-(25), one can randomly sampleMprior∩Hh by using the
procedure described in Algorithm 2. The actual distribution according to
which the samples are drawn depends on the choice of the distribution on
π in the first step of the procedure. For example, in the finite dimensional
setting, if

π =

∑q−p
j=1 ξ

2
j∑q−p+dim(W⊥∩V ⊥)

j=1 ξ2
j

, (26)

where the ξj ’s are independent realizations of a zero-mean Gaussian distribu-
tion, the procedure described in Algorithm 2 draws snapshots from a uniform
distribution supported onMprior∩Hh. Other choices for the distribution on
π enable to put more emphasis on some parts ofMprior ∩Hh, i.e., to draw
samples in some regions of the ellipsoid with higher probability (we discuss
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Algorithm 3 Random Sampling ofMprior ∩Hh for L > 1

inputs: {〈wj ,h〉}mj=1, {ε̂j}
L
j=1, {Vj}

L
j=1, j

∗ ∈ {1, . . . ,L}
while i < Nsamples do

1) Draw hi uniformly at random in the ellipsoid{
h′ : dist(h′, Vj∗) ≤ ε̂j∗

}
∩Hh,

by using the procedure described in the inner loop of Algorithm 2.
2) Acceptance-Rejection:
if ‖P

V ⊥j
(hi)‖ ≤ ε̂j for all j then

Include hi to the set of snapshots
else

Reject hi
end if

end while
ouput: {hi ∈Mprior ∩Hh}

Nsamples

i=1

this option in Section 4.5). We note however that, as long as the support
of the distribution on π is [0, 1], the samples are drawn from a distribution
whose support is equal toMprior ∩Hh.

We now focus on the general case where Mprior is defined by (15) with
L > 1. In this case Mprior ∩ Hh does not usually have any “desirable”
structure. We note however that the intersection between Hh and each
of the L degenerate ellipsoids defining Mprior (taken separately) forms an
ellipsoid. We thus propose the “acceptance-rejection” strategy described in
Algorithm 3. We consider as a reference ellipsoid, the ellipsoid defined by
the intersection of Hh and the j∗-th degenerate ellipsoid defining Mprior,
j∗ ∈ {1, . . . ,L}. We then draw randomly an element from this ellipsoid by
using the procedure described in Algorithm 2. This element, say hi, is added
to the set of snapshots if it verifies all the constraints definingMprior, i.e.,∥∥∥PV ⊥j (hi)

∥∥∥ ≤ ε̂j for all j ∈ {1, . . . ,L},

and rejected otherwise.

4.4 Reduction Based on Point Estimates

An alternative approach to build a reduced-order model from partial observa-
tions may rely on point estimates of the elements ofM. More specifically, for
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Algorithm 4 Approximation Subspace from Point Estimates

inputs:
{
{〈wj ,h〉}mj=1

}
h∈M

,Mprior

for h ∈M do
Evaluate ĥ from {〈wj ,h〉}mj=1 andMprior

end for
Apply Algorithm 1 with {ĥ}h∈M as input to derive Ŝpoint

ouput: Ŝpoint

each h ∈M, one can compute a point estimate ĥ, obeying some optimality
criterion, by combining the partial observations {〈wi,h〉}mi=1 and some prior
information. Then, an approximation subspace for M can be constructed
by considering the manifold of all point estimates, i.e., M̂ , {ĥ}h∈M, as a
good surrogate forM. This procedure is summarized in Algorithm 4.

We note that the procedure described in Algorithm 4 shares strong con-
nections with the methodology exposed in [11]. In the latter paper, the
authors assume that some samples of the solution manifoldM are available
but some others are only partially observed. They thus propose to comple-
ment the set of known samples with point estimates of those only partially
observed to compute an approximation subspace for M. We see that this
setup boils down to the one considered here when all the elements ofM are
partially observed.

We now make a connection between the procedure described in Algo-
rithm 4 and the material presented in the previous sections. In particular, we
emphasize why such point-estimate procedures may fail in providing reliable
results in some situations.

There are many choices to compute an estimate ĥ from partial mea-
surements {〈wj ,h〉}mj=1 and prior information Mprior. Let us consider the
following particular option:

ĥ ∈ arg min
h′

(
sup

h′′∈Mprior∩Hh

∥∥h′′ − h′∥∥). (27)

From the worst-case perspective pursued in this paper, (27) seems indeed
to be a sensible choice since ĥ minimizes the worst-case error over all the
elements of H compatible with the received observations and the prior con-
straints (namelyMprior ∩Hh).g

The solution of (27) has recently received some attention for some specific
gNote that no particular structure forMprior is assumed in (27).
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choices ofMprior [18]. WhenMprior is defined as the intersection of degen-
erate ellipsoids as in (15), the authors of [18] showed that ĥ corresponds to
some specific point ofMprior ∩Hh (namely the center of the Chebyshev ball
of Mprior ∩ Hh).h In particular, when L = 1, ĥ takes the following simple
form

ĥ =

q∑
j=1

〈
w∗j ,h

〉
λ−1
j v

∗
j +

m∑
j=q+1

〈
w∗j ,h

〉
w∗j , (28)

i.e., exactly corresponds to the center of the ellipsoid Mprior ∩ Hh defined
in (23)-(25).i

From the perspective of our sampling strategies described in Section 4.3,
building an approximation subspace from the point estimates {ĥ}h∈M is
then tantamount to sampling one (specific) point of each ellipsoidMprior ∩
Hh. This is in constrast with the sampling strategies described in Algorithms
2 and 3 where Nsamples points ofMprior ∩Hh are drawn at random. We may
thus expect the point-estimate procedure to lead to performance close to
the optimal worst-case solution (13) when all the points ofMprior ∩Hh are
concentrated around ĥ. When L = 1, this will for example be the case when
ε̂ is small and λi ' 1 for all i = 1, . . . , n ≤ m. On the other hand, when
λi ' 0 for some i, it is easy to see from (25) that the ellipsoidMprior ∩Hh

will be very elongated along some directions. In such a case, the center of
the ellipsoid ĥ may be a poor representative of the elements ofMprior ∩Hh

and, as a consequence, the approximation subspace computed from {ĥ}h∈M
may significantly differ from the optimal solution (13). We will illustrate
this behavior in our numerical simulations in the next section. We provide
below an illustrative toy example in which the proposed methodology may
succeeds in finding a good approximation subspace whereas the methodology
based on point estimate (28) is doomed to fail.

Example 1. We consider the simple case whereM is a k-dimensional linear
subspace of H and the prior manifoldMprior is defined as in (22) for some n-
dimensional subspace V and width ε̂. We assume that by some misfortune the
observation subspace W is orthogonal toM. In this case, we have ∀h ∈M,〈

w∗j ,h
〉

= 0 ∀j = 1, . . . ,m, (29)

hIn fact, as emphasized in [18, Remark 2.4], ĥ ∈ Mprior ∩Hh as soon asMprior ∩Hh

is a bounded, closed, convex set.
iWhen q < n, the ellipsoidMprior ∩Hh is degenerate along the directions {vj}nj=q+1.

In such a case, there is some ambiguity in the definition of the center of the ellipsoid along
these directions. The expression given in (28) then corresponds to the “center” with the
minimum norm.
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and the “worst-case optimal” point estimate defined in (28) is equal to zero.
The manifold {ĥ}h∈M then reduces to the singleton {0} and a good approx-
imation subspace forM may obviously not be inferred from the latter.

On the other hand, the posterior manifoldMpost also takes a simple form
when W is orthogonal toM. More specifically, we havej

Mpost = E0, (30)

where E0 corresponds to the ellipsoid defined in (25) with h = 0. By defini-
tion, Spost will thus be a good approximation subspace forM as soon asM is
included in the span of the directions corresponding to the largest variations
of E0 (i.e., {vj}nj=q+1 and the φj’s associated to the smallest singular values
λj). We give an illustration of such a scenario (in a slightly more complex
setup) in Section 5. �

4.5 Complexity and Implementation Issues

In this section, we discuss the computational complexity of Algorithms 2
and 3, and elaborate on some related issues.

Let us first note that the overall complexity of Algorithms 2 and 3 is
intimately related to the costs of evaluating the sum and the inner product
between two elements of the Hilbert space H. In this section, we will as-
sume that these operations can be carried out with a complexity scaling as
O(dim(H)). This is for example the case in the finite dimensional setting,
which is the one of most interest from an operational point of view. With
this convention, we have that the complexity of Algorithms 2 and 3 scales as
O(mndim(H) + Nsamples(m+ n) dim(H)) and thus evolves favorably with
the problem’s dimensions.

Regarding Algorithm 2, this order of magnitude can be obtained by di-
viding the analysis of the complexity into the costs of the initial step and
the main loop. The most demanding operation in the initial step is the
computation of

{
v∗j

}n
j=1

,
{
w∗j

}m
j=1

and {λj}min(m,n)
j=1 . This task requires

to build the Gram matrix associated to the projection operator between
the subspaces V and W and to evaluate its singular value decomposition
(see Section 4.2). The first operation involves the computation of mn in-
ner products in H and has therefore a complexity scaling as O(mndim(H)).
Moreover, the evaluation of the singular value decomposition of an m × n
matrix requires at most O

(
min(m2n,mn2)

)
operations, see e.g., [22, Lecture

jThis can easily be seen by setting hcenter = 0 in (23)-(25) and noticing that Eh is
equal to E0 ∀h ∈M.
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31]. Since min(m2n,mn2) ≤ mn dim(H), the complexity of the initial step
is thus of order O(mn dim(H)).

The most demanding operations in the main loop of Algorithm 2 are the
evaluations of steps 5 and 6. These tasks can be performed with a com-
plexity scaling at most as O((m+ n) dim(H)). Indeed, on the one hand,
the uniform sampling of z in V ⊥ ∩ W⊥ can be done efficiently as fol-
lows: i) sample uniformly an element of H (complexity O(dim(H))); ii)
set z = h − P

(V ⊥∩W⊥)
⊥(h) and evaluate P

(V ⊥∩W⊥)
⊥(h) with at most

O((m+ n) dim(H)) operations by noticing that
{
v∗j

}n
j=1
∪
{
φj
}q
j=p+1

∪{
w∗j

}m
j=q+1

is an ONB of
(
V ⊥ ∩W⊥

)⊥, see Appendix A.1. On the other

hand, the construction of the snapshots hi in step 6 requires the summation
of at most m+ n+ 1 elements of H. Gathering these different elements to-
gether, we finally obtain that sampling Nsamples elements ofMprior∩Hh with
Algorithm 2 requires a complexity of orderO(mndim(H) + Nsamples(m+ n) dim(H))
as stated above.

The complexity of Algorithm 3 is essentially of the same order as the one
of Algorithm 2 since the latter constitutes the main building block of the
former. Nevertheless, we note that the running time of Algorithm 3 can be
significantly larger than the one of Algorithm 2 if the rejection ratio (step 2
in the main loop of Algorithm 3) is important. The choice of the reference
ellipsoid j∗ appearing in Algorithm 3 should therefore be made with care in
order to decrease as much as possible the rejection ratio.

Finally, let us note that our study of the complexity is based on the sam-
pling of Nsamples elements of Mprior ∩Hh for one h ∈ M. In practice, the
operations stated in Algorithms 2 and 3 must be repeated for all h ∈ M.
As a matter of fact, if h ∈ M contains an infinite number of elements,
the framework exposed previously cannot, strictly speaking, be applied (it
would in particular require to collect a set of observations {〈wj ,h〉}mj=1 for
each element in M). In such a case, one can nevertheless apply the pro-
posed procedure on a finely-sampled version of the target manifoldM. All
the results discussed previously then carry over by considering the sampled
version of M as the new target manifold. One may expect the approxi-
mation subspace computed from this sampled manifold to lead to a good
approximation subspace for the true manifold M as long as the latter is
sampled “finely enough”. The question of the proper sampling ofM is how-
ever out of the scope of the present paper and is not further discussed here.
We nevertheless mention that, for a given precision, the required number of
samples is expected to (typically) scale exponentially with the dimension of
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the parameter space Θ.
To conclude this section, we discuss the choice of the distribution of π

appearing in step 1 of Algorithm 2. Since any distribution on π with support
[0, 1] defines a distribution on the snapshots supported onMprior ∩Hh, we
see that any choice of the distribution on π should asymptotically (in the
number of samples) leads to the same performance. A proper choice of
this distribution may however have a significant impact on the achievable
performance when the number of samples is finite. We advocate below that
sampling Mprior ∩ Hh with higher probability in the directions of greatest
uncertainty may be a good rule of thumbs.

In order to provide some elements supporting this fact, let us consider
the case whereMprior is defined as in (22) and n = m. In such a case, the
posterior manifoldMpost can be simply written as

Mpost = M̂ ⊕ E0, (31)

where M̂ = {hcenter}h∈M with hcenter defined in (24) and E0 is the ellipsoid
defined in (25) with h = 0.k

Considering this simple expression and assuming that some directions of
large variations of the target manifold M are not captured by the point-
estimate manifold M̂, we see that there is still a hope to identify the latter if
they correspond to large variations in E0. In such a case, one may expect the
proposed worst-case optimal subspace Spost to be a better approximation
of the target manifoldM than Ŝpoint, the subspace evaluated from the sole
point-estimate manifold M̂. According to this intuition, when only a limited
number of snapshots can be drawn fromMprior∩H for each h ∈M, sampling
Mprior∩H with higher probability in the directions of large uncertainty seems
to be a sensible choice.

5 Simulation Results

In this section, we illustrate the performance of the proposed reduction pro-
cedures on the standard “thermal-block” problem [23]: the goal is to evaluate
the distribution of the temperature on a plate subject to some boundary con-
ditions, for some specific configurations of the plate’s heat conductivity and
some external heating source. More specifically, the problem is defined by
the following set of differential/boundary equations (x ∈ R2 plays the role

kM̂ is in fact the manifold of the point estimates computed from (27) with prior (22)
as discussed in Section 4.4.
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Figure 1: Schematic representation of the physical system.

of a “spatial” variable, n is a unitary vector normal to the boundary and ∇
is the gradient operator):

PDE(h, θ) =


∇T(k(x, θ)∇h) = s(x), x ∈ Ω,
k(x, θ)∇Thn = c, x ∈ Γ1,
k(x, θ)∇Thn = 0, x ∈ Γ2 ∪ Γ4,
h = 0, x ∈ Γ3,

(32)

where Ω = [0, 1]× [0, 1] and the boundaries Γi are defined in Fig. 1. We as-
sume that the heat conductivity coefficient k(x, θ) depends on the parameter
θ = [θ1 θ2 θ3 θ4] ∈ Θ as follows:

k(x, θ) =
4∑
i=1

θi IΩi(x), (33)

where IΩi(x) is the indicator function of Ωi and the subdomains Ωi ⊂ Ω are
defined in Fig. 1. The definitions of the external heating source s(x) and the
boundary parameter c depend on the experiment and are specified below.

We consider the weak formulation of (32) and approximate its solution
via a finite-element method [24] (see Appendix B). The resolution mesh
is chosen fine enough so that the error between the solution of the weak
formulation of (32) and the solution of the finite-element method can be
neglected. The discretized system has a dimension equal to dim(H) = 2113.
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The solution of the discretized system is computed via the Matlab R© toolbox
“redbKIT” available at http://redbkit.github.io/redbKIT.

In our simulations, we apply the subspace identification procedures de-
scribed in Algorithms 2, 3 and 4 to the following two setups:

Setup 1: We first assume that the target manifold M is defined by the
solutions of (the discretized weak formulation of) (32) for

Θ =

{
θ ∈ R4 :

θi = θmin + θstept, t ∈ {0, . . . ,T}
θ1 = θ2, θ3 = θ4

}
,

where θmin = 0.1, θstep = 0.1, T = 20. In this setup, we assume that
c = 1 and s(x) = 0 ∀x. Moreover, we suppose that, for some reasons, the
practitioner does not have a perfect knowledge of Θ but only knows that
Θ ⊆ Θrelax where

Θrelax =
{
θ ∈ R4 : θi = θmin + θstept, t ∈ {0, . . . ,T},∀i ∈ {1, . . . , 4}

}
.

We denote byMrelax the set of solutions of the discretized weak formulation
of (32) for θ ∈ Θrelax. Clearly, we haveM⊆Mrelax since Θ ⊆ Θrelax. Based
on this knowledge we derive a prior manifold Mprior of the form (15) by
following the procedure described in Section 4.1. More specifically, we apply
Algorithm 1 on the elements ofMrelax. Letting

Ŝ1 ⊂ . . . ⊂ Ŝn
be the approximation subspaces produced during the first n ≥ L iterations
of Algorithm 1, the subspaces {Vi}Li=1 and scalars {ε̂i}Li=1 appearing in (15)
are then specified as follows:l

V1 = Ŝ1,
...

VL−1 = ŜL−1,

VL = Ŝn,

and, ∀j ∈ {1, . . . , L},

ε̂j = sup
h∈Mrelax

dist(h, Vj).

We note that (19) is verified by definition of ε̂j , so that our working hypoth-
esis (2) is satisfied. In our simulation, we consider the case where L = 1 and
L = 21. The ONB defining the observation subspace W is chosen uniformly
at random.

lIf L = 1 as in (22), we simply set V = Ŝn.
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Setup 2: In this setup, we consider a scenario where the main directions
ofM are poorly aligned with the observation subspace W , resulting in (po-
tentially) adverse operating conditions for the point-estimate procedure de-
scribed in Section 4.4.

In order to precisely describe the experimental setup considered here, we
introduce two ONBs, {ṽj}Nmax

j=1 and {w̃j}Nmax

j=1 , such that

〈w̃i, ṽj〉 = 0 for i 6= j, (34)

and

〈w̃j , ṽj〉 =

{
δ j = 1 . . . k,
1 otherwise, (35)

for some scalar δ ∈ (0, 1) and some integers k ≤ Nmax. We also choose these
ONBs so that any ṽj and w̃j verify the homogeneous boundary conditions
of (32). We then let uj = (1− δ2)−

1
2 (ṽj − δw̃j) for j = 1 . . . k.

We constructM as follows: we set c = 0, the parameters θ defining the
heat conductivity coefficient k(x, θ) are fixed to some constant values and
we choose the source term s(x) so that:m

M = Emain ⊕ Eperturb, (36)

where

Emain =
{
h =

∑k
j=1 αjuj :

∑k
j=1 α

2
j ≤ ε2main

}
,

Eperturb =
{
h = δ

∑k
j=1 βjw̃j +

∑Nmax
j=k+1 βjw̃j :

∑Nmax
j=1 γ2

j β
2
j ≤ ε2perturb

}
,

for some εmain ≥ 0, εperturb ≥ 0 and γj ≥ 1. The solution manifold M is
thus the direct sum of two ellipsoids, Emain and Eperturb. We will see below
that this particular choice for M together with some specific choice of the
observation and prior subspaces lead to a difficult problem for the point-
estimate approach.

In particular, we consider a prior manifold Mprior of the form (15) by
making the following choices:n

V1 = span ({ṽ1}) ,
...

VL−1 = span
(
{ṽj}L−1

j=1

)
,

VL = span
(
{ṽj}nj=1

)
,

mWe refer the reader to Appendix B for more explanations about the reasons why the
manifold (36) can be generated by properly defining the source term s(x).

nIf L = 1 as in (22), we simply set V = span
(
{ṽj}nj=1

)
.
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for some n ≤ Nmax and, ∀j ∈ {1, . . . , L},

ε̂j = sup
h∈M

dist(h, Vj).

The observation subspace is defined as W = span
(
{w̃j}mj=1

)
for some m ≤

Nmax. We note that with this particular choice for V and W , we have from
(34)-(35) that the singular vectors {v∗j}nj=1, {w∗j}mj=1 simply correspond to
{ṽj}nj=1, {w̃∗j}mj=1 whereas the associated singular values are defined by (35).

In this particular setup, the main variations ofM occur in the direction
of span

(
{uj}kj=1

)
as soon as εperturb � εmain. Moreover, if we choose δ ' 0,

we have from (34)-(35) that 〈ui, w̃j〉 ' 0, so that only a small portion of the
variations ofM in the directions of span

(
{uj}kj=1

)
can be captured by the

observation operator. In particular, if we consider the case where δ = 0 and
εperturb = 0, we obtain the same setup as in Example 1: W is orthogonal to
M = Emain ⊆ span

(
{uj}kj=1

)
and the point-estimate manifold M̂ reduces

to the singleton {0}; on the other hand, we have uj = v∗j and
〈
w∗j ,v

∗
j

〉
= 0

so that the directions {uj}kj=1 correspond to directions of large uncertainties
inMpost.o

Hereafter, we consider the following scenario: we set k = 5, Nmax = 50,
δ = 10−4, εmain = 1 and εperturb = 10−3; the weights γj in the definition of
Eperturb are defined as follows:

γj =

{
0.85−Nmax j = 1 . . . k,

0.85−(j−k) j > k.
(37)

As we will see below, this choice of γj (together with the definition ofW and
V ) is such that the point-estimate manifold M̂ has small variations in the
directions of span

(
{uj}kj=1

)
.

In our simulation, we chose the ONB {ṽj}Nmax

j=1 arbitrarily and con-
structed {w̃j}Nmax

j=1 so that (34)-(35) is satisfied. Regarding the definition
ofMprior, we considered both the cases where L = 1 and L = 11.

We now consider the application of the procedures presented in Sections
4.3 and 4.4 to the two setups described above. For the construction ofMpost,

oIn particular, as long as prior (22) is considered, {uj}kj=1 corresponds to some degen-
erate directions of the ellipsoid Eh in (25).
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we draw Nsamples = 5 elements randomly fromMprior ∩Hh for each h ∈M
by using the methdologies described in Algorithms 2 and 3. In step 1 of
Algorithm 2, we define the distribution on π as follows:

π =


∑q−p

j=1 ξ
2
j∑q−p+dim(W⊥∩V⊥)

j=1 ξ2j

with probability 0.1,

104
∑q−p

j=1 ξ
2
j

104
∑q−p

j=1 ξ
2
j +

∑q−p+dim(W⊥∩V⊥)
j=q−p+1 ξ2j

with probability 0.9,
(38)

where the ξj ’s are independent realizations of a zero-mean Gaussian distri-
bution. The first row in (38) leads to a uniform sampling of Mprior ∩ Hh

whereas the second one favors the directions of greatest uncertainty. In step
4 of Algorithm 2, we approximate the uniform sampling of {dj}nq+1 over Rn−q

by a uniform drawing over [−10, 10]n−q.
Fig. 2 and 4 represent the maximum projection error obtained by pro-

jecting the element of M onto different approximation subspaces obtained
in Setups 1 and 2, respectively. These figures thus illustrate the actual re-
duction performance obtained by different approximation methods. On the
other hand, Fig. 3 and 5 represent the maximum error obtained by project-
ing the elements ofMpost onto the same approximation subspaces for Setups
1 and 2, respectively. Since Mpost is the largest manifold compatible with
the prior constraint (2) and the received observations (see Lemma 1), the
curves in Fig. 3 and 5 thus provide the worst performance attainable over the
set of feasible manifolds. The parameters m and n defining the observation
operator and the prior manifold used in each simulation are mentioned on
the top of each figure.

The approximation subspaces considered in all these figures are obtained
by applying Algorithm 1 on:

• the true manifoldM (“perf”).

• the posterior manifoldMpost defined from a prior made up of either a
single (22) or an intersection (15) of degenerate ellipsoids (respectively
“post single” and “post multi”). These curves thus represent the perfor-
mance achievable by (approximatively) solving the worst-case optimal
problem (13). We note that different experiments may lead to different
performance since the snapshots are drawn randomly fromMpost (see
Algorithms 2 and 3). This variability of the results is reported in the
figures: for each simulation point, we ran 20 experiments and averaged
the results to obtain the main curve; the shaded area surrounding this
curve represents the interval containing the performance obtained for
all the 20 experiments.
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• the point-estimate manifold M̂ , {ĥ}h∈M, where ĥ is the solution of
(27) withMprior defined as in (22) (“point”). We do not consider the
case whereMprior is defined as in (15) since, in this case, problem (27)
does not have any simple analytical solution (the problem is actually
NP-hard [18]).

We have also reported the Kolmogorov i-width, κi(Mprior), of the priors
used by the different procedures (“prior single” and “prior multi”) as a point
of comparison. Regarding Fig. 3 and 5, we note that the definition ofMpost

depends on the choice ofMprior. The curve “post multi” has been computed
by using the definition of Mprior in (15). The other curves (“perf”, “point”
and “post single”) have been evaluated by considering the posterior manifold
in the case where (22) holds.

We now discuss the performance achieved by the different methodologies
mentioned in the paper. The dark blue curve (“perf”) in Fig. 2 and 4 cor-
responds to the performance which can be attained if one has access to the
true solution manifoldM. The other solid curves illustrate the performance
obtained by exploiting partial observations in the reduction process. As far
as the procedures introduced in this paper are concerned (“post single” and
“post multi”), we observe that the presence of partial observations (almost)
always leads to some improvement as compared to the Kolmogorov i-width of
the prior used in the reduction procedure. This behavior could theoretically
be expected from (14) since one must have suph∈M dist(h, Si) ≤ κi(Mprior)
as long as the approximation subspace Si is computed as the solution of
(13). Because we only consider an approximate implementation of (13) (we
draw a finite number of snapshots fromMpost and use a greedy strategy to
search for a solution of (13)), we can nevertheless observe some (limited)
degradations of the performance with respect to κi(Mprior) in some regions.

On the other hand, the behavior of the procedure based on point esti-
mates heavily depends on the considered scenario. We see in Fig. 2 that,
as long as Setup 1 is concerned, the approximation subspace leads to good
reduction performance for all choices of m and n except for m = 25, n = 45.
The latter case corresponds to the scenario whereMprior has more degrees of
freedom (i.e., n = 45) than the number of observations (i.e., m = 25); hence
the point estimates (28) computed from the received measurements {〈w,h〉}
are poor representatives of the true elements h ∈ M. On the other hand,
when Setup 2 is considered, we see in Fig. 4 that the point-estimate ap-
proach may, in some cases, not bring any improvement over the performance
achievable by the prior manifold (m = 25, n = 25 and m = 45, n = 45) or
even degrade the performance (m = 45, n = 25).
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Figure 2: Setup 1: Maximum error obtained by projecting the element
of M onto different approximation subspaces. The abscissa represents the
dimension i of the approximation subspace. Each figure corresponds to a
particular dimension of the prior and observation subspaces, V and W . Re-
garding the curves “post single” and “post multi”, we ran 20 experiments for
each simulation point and averaged the results to obtain the mains curves;
the shaded area surrounding these curves represents the interval containing
the performance obtained for all the 20 experiments.
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Figure 3: Setup 1: Maximum error obtained by projecting the element
of Mpost onto different approximation subspaces. The abscissa represents
the dimension i of the approximation subspace. Each figure corresponds to
a particular dimension of the prior and observation subspaces, V and W .
Regarding the curves “post single” and “post multi”, we ran 20 experiments
for each simulation point and averaged the results to obtain the mains curves;
the shaded area surrounding these curves represents the interval containing
the performance obtained for all the 20 experiments.
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Figure 4: Setup 2: Maximum error obtained by projecting the element
of M onto different approximation subspaces. The abscissa represents the
dimension i of the approximation subspace. Each figure corresponds to a
particular dimension of the prior and observation subspaces, V and W . Re-
garding the curves “post single” and “post multi”, we ran 20 experiments for
each simulation point and averaged the results to obtain the mains curves;
the shaded area surrounding these curves represents the interval containing
the performance obtained for all the 20 experiments.
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Figure 5: Setup 2: Maximum error obtained by projecting the element
of Mpost onto different approximation subspaces. The abscissa represents
the dimension i of the approximation subspace. Each figure corresponds to
a particular dimension of the prior and observation subspaces, V and W .
Regarding the curves “post single” and “post multi”, we ran 20 experiments
for each simulation point and averaged the results to obtain the mains curves;
the shaded area surrounding these curves represents the interval containing
the performance obtained for all the 20 experiments.
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The performance achieved by the point-estimate procedure in Setup 2 can
be understood by noticing that the point-estimate manifold M̂ = {ĥ}h∈M
takes the following form:

M̂ =

ĥ =

min(n,m)∑
j=1

βj ṽj +
m∑

j=min(n,m)+1

βjw̃j :
m∑
j=1

γ2
j β

2
j ≤ ε2perturb

. (39)

We first note that M̂ is contained in a subspace of dimension m and the
greedy procedure defined in Algorithm 1 thus necessarily stops after m iter-
ations. Moreover, since δ ' 0, the main directions of M, namely {uj}kj=1,
are such that {uj}kj=1 ' {ṽj}

k
j=1. On the other hand, the subspace {ṽj}kj=1

corresponds to the directions of smallest amplitudes in M̂ because of (37).
Hence the greedy procedure applied on M̂ will select the directions {ṽj}kj=1
after only m−k iterations, explaining the observed results. In particular, in-
creasing the number of observations may degrade the performance (compare
the cases m = 25, n = 25 and m = 45, n = 25). We also note that, unlike in
Setup 1, the point-estimate procedure may decrease the approximation error
in the case m = 25, n = 45 for i > 25. This is due to the fact that, in the
particular scenario considered in Setup 2, the n−m = 20 unobserved direc-
tions of V are (by construction) orthogonal to the main directions {uj}kj=1
ofM.

Regarding the worst-case performance, we see from Fig. 3 and 5 that,
quite logically, the best results are obtained by the subspaces optimizing the
worst projection error over the elements of Mpost. In particular, although
the point-estimate approach may outperform the proposed procedure regard-
ing the approximation of M, it always leads to inferior performance in the
worst-case scenario. Interestingly, we also observe that the subspace com-
puted from the true solution manifold M may, in some cases, lead to poor
performance, showing that the information contained in the true and the pos-
terior manifolds is quite different. We finally note that since M ⊆ Mpost,
we have

sup
h∈M

dist(h, Ŝi) ≤ sup
h∈Mpost

dist(h, Ŝi),

for any approximation subspace Ŝi. Hence, the curves in Fig. 3 (resp. Fig. 5)
constitute (approximatep) upper bounds on those represented in Fig. 2 (resp.

pThese bounds are only approximate since, in practice, we only draw a finite number
of snapshots fromMpost.
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Fig. 4). Since these bounds only depend on Mpost, they can always be
computed in practice, even if the true solution manifoldM is not available.

Regarding the performance achieved by the subspaces computed from
the posterior manifoldMpost, the choice of the prior manifold seems to play
a crucial role in the minimal projection error which can be attained. In par-
ticular, the smaller the width ε̂L, the lower the minimal projection error. The
number of observations seems to only have an impact on the minimum sub-
space dimension required to reach a given approximation error. For example,
in Fig. 3 the minimal projection error achievable for n = 25 is roughly 10−2

irrespective of the number of observations, whereas an error as low as ∼ 10−4

can be obtained by setting n = 45. In the latter case we note, as far as the
case L = 21 is concerned, that an approximation error of roughly ∼ 10−2

can be obtained from i ' 10 when m = 45 whereas one needs to increase
the dimension of the approximation subspace up to i ' 25 to obtain the
same performance when m = 25. In the next section, we will provide some
theoretical insights into these observations.

6 Theoretical analysis

In this section, we provide a theoretical analysis of the reduction perfor-
mance achievable within our partially-informed framework. We consider the
following simplified scenario:

M⊆ Σ ∩Mprior, (40)

where

Σ , {h : dist(h, U) ≤ ε},
Mprior , {h : dist(h, V ) ≤ ε̂}, (41)

for some subspaces U ⊆ V , with dim(U) = k, dim(V ) = n and some scalars
ε, ε̂ ≥ 0. In words, we assume that the unknown manifoldM is contained in
the intersection of two degenerate ellipsoids but only one of them (namely
Mprior) is known a priori. This scenario thus corresponds to the particular
case whereMprior is defined as in (22).

Our goal is to relate the reduction performance obtained by the worst-
case optimal approximation subspace Spost

i , defined in (13), to the values of
k, n, ε, ε̂ and the choices of V , W . We show below that the latter is closely
related to the singular values {λj}min(m,n)

j=1 of the Gram matrix G defined in
Section 4.2.
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In order to state our result, we first need to introduce some notations.
First, let us remind the following notations, introduced in Section 4.2:

p , card ({j : λj = 1}) ,
q , card ({j : λj > 0}) .

As mentioned previously, the operational meaning of these variables is as
follows: p represents the number of dimensions of V which are included in
W , that is p = dim(W ∩ V ); n− q corresponds to the number of dimensions
of V which are orthogonal to W , that is n − q = dim

(
W⊥ ∩ V

)
. In a

nutshell, q thus represents the number of measurements (out of m) providing
information about the position of points in V .

We also introduce the following new variable

k∗ , min(n, k + n− q),

and the sequences κ̄i and ¯̄κi:q

κ̄i ,


∞ i = 1, . . . , k∗ − 1,

(ε+ ε̂)λ−1
q−(i−k∗) i = k∗, . . . , n− 1,

ε̂ i = n, . . . ,dim(H)− 1,

(42)

¯̄κi ,

{
∞ i = 1, . . . , k + dim

(
W⊥

)
− 1,

ε i = k + dim
(
W⊥

)
, . . . ,dim(H)− 1.

(43)

We are now ready to state the following result, whose proof is postponed
to Section 7:

Theorem 1. IfM andMprior verify (40)-(41), then the following inequality
holds:

κi(Mpost) ≤ min(κ̄i, ¯̄κi) for all i.

Interestingly, the upper bounds κ̄i and ¯̄κi appearing in Theorem 1 only
depends on a set of simple parameters defining the partially-informed reduc-
tion problem, namely k, n, ε, ε̂ and the singular values of the Gram matrix
G, characterizing the interplay between the prior and observation subspaces,
V and W . This few number of parameters enables an easier understanding
of the performance achievable by the worst-case reduction methodology pre-
sented in Sections 3 and 4. Let us recall that the largest projection error

qWe remind the reader that the singular values {λj}min(m,n)
j=1 are assumed to be sorted

in a decreasing order of magnitude.
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induced by the optimal approximation subspace Spost
i is bounded by the

Kolmogorov i-width κi(Mpost), see (14). The upper bound in Theorem 1
thus also defines an upper limit on the projection error made by reducing
the true, unknown, manifoldM in the worst-case optimal subspace Spost

i .
In order to ease the discussion of the result stated in Theorem 1, we will

suppose in the rest of this section thatr

M = Σ, (44)

where Σ is defined in (41). If ε is small, (44) is tantamount to assuming that
M has an “intrinsic dimensionality” equal to k, i.e., the elements ofM can
vary with no constraint in a k-dimensional subspace U but can only deviate
from the latter by a small amount ε in all the other directions.

The result stated in Theorem 1 can then be discussed in light of the
following comments. First, the Kolmogorov i-width ofM takes a very simple
form under hypothesis (44), i.e.,

κi(M) =

{
∞ if i < k,
ε otherwise. (45)

The latter provides the best performance which can be achieved by any
reduction procedure. In particular, we recall that

κi(M) ≤ sup
h∈M

dist(h, Spost
i ). (46)

On the other hand, we have from (14) that

sup
h∈M

dist(h, Spost
i ) ≤ κi(Mpost) ≤ κi(Mprior). (47)

As discussed in Section 3.2, κi(Mprior) is the best-achievable worst-case per-
formance when only Mprior (but no partial observations) is taken into ac-
count in the construction of the approximation subspace. Under assumption
(41), the Kolmogorov i-width ofMprior takes again a very simple form, i.e.,

κi(Mprior) =

{
∞ if i < n,
ε̂ otherwise. (48)

The gap between κi(M) and κi(Mprior) represents the potential improve-
ment which can be obtained by the presence of observations. Theorem 1
provides an upper bound on the minimal improvement which can be at-
tained by considering Spost

i as an approximation subspace. In the simple
setup considered here, this improvement can be discussed at two different
levels:

rWe note that satisfying (40) then requires ε ≤ ε̂.
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• The transition from an infinite to a finite approximation error: we
ideally wish to obtain a finite projection error for an approximation
subspace whose dimension is as close as possible to k (we remind the
reader that we assumeM = Σ in the present discussion);

• The approximation error for large dimensions of the approximation
subspace: when the size of the approximation subspace increases, we
ideally wish to attain a projection error as small as possible.

Obviously, achieving a finite projection error when reducing the solution
manifold M (resp. prior manifold Mprior) requires to consider approxima-
tion subspaces of dimensionalities greater than or equal to k (resp. n). On
the other hand, we see from the definitions of κ̄i and ¯̄κi that the approxima-
tion subspace Spost

i enables to attain a finite projection error as soon as its
dimension is greater than or equal to min(k∗, k+ dim

(
W⊥

)
). By definition,

k∗ is always greater than or equal to k but smaller than or equal to n.
The number k + dim

(
W⊥

)
corresponds to the “intrinsic dimensionality”

of M (that is dim(U) = k) plus the number of dimensions of H which
are not measured through our observation operator (that is dim

(
W⊥

)
). The

number k∗ , min(n, k+n−q) has also an easy interpretation. The first term
in the minimum corresponds to the number of directions in which we have
a priori an infinite uncertainty about the position of M, that is dim(V ) =
n. The second term is equal to the intrinsic dimensionality of M (that is
dim(U) = k) plus the number of components of the prior subspace V which
cannot be measured via our observation operator (that is n− q). The “non-
observability” of some directions of V means that if some elements ofM have
nonzero components in these particular directions, the collected observations
provide no information about their magnitudes. When k∗ = k + n − q, the
terms “k” and “n − q” thus have different meanings: k is the number of
directions along which the elements ofM do have a large variation whereas
n − q represents the number of directions along which, given the received
observations,M could have a large variation.

We note that k + dim
(
W⊥

)
≤ k∗ only if the number of collected ob-

servations is large as compared to the dimension of H. In particular, if
dim(H) = ∞, we have dim

(
W⊥

)
= ∞ so that the transition from infinite

to finite approximation error always occurs at k∗, i.e., κ̄i ≤ ¯̄κi = ∞ ∀i.
Moreover, we have k∗ < n as soon as k < q, that is when the number of
observable components of V is larger than the intrinsic dimensionality ofM.
In particular, in the case dim(H) = ∞, a finite approximation error occurs
at k∗ = k when q = n, that is all the components of V are observed.
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Let us now discuss the projection error which can be attained for approx-
imation subspaces of “sufficient” dimensionalities. From (45)-(46), we note
that the best achievable performance is lower bounded by ε. This projection
error can be attained for i ≥ k + dim

(
W⊥

)
as suggested by Theorem 1 and

the behavior of ¯̄κi in (43). Nevertheless, as mentioned previously, dim
(
W⊥

)
can be very large when the number of collected observations is small as
compared to the dimension of the ambient space H. In particular, when
dim(H) =∞, the transition of ¯̄κi to ε never occurs.

In such a case, as suggested by Theorem 1, the behavior of κi(Mpost)
is upper bounded by κ̄i. For large values of i, we can see that κ̄i converges
to ε̂. Hence, as far as the number of observations is small with respect to
the dimension of H, the best projection error which can be achieved for
approximation subspaces of “moderate” dimensions seems to be related to
the width of the prior manifold Mprior. On the other hand, the rate at
which the projection error tends to ε̂ is connected to the conditioning of
G. Indeed, we see from (42) that κ̄i behaves like (ε+ ε̂)λ−1

q−(i−k∗) in the
range i = k∗, . . . , n − 1. If ε � ε̂, we thus have κ̄i ' ε̂ λ−1

q−(i−k∗) ' ε̂
provided that λq−(i−k∗) ' 1. In such cases, we may thus hope to attain
an approximation error close to ε̂ for i < n, hence improving over the best
performance achievable from the prior model, i.e., (48).

We remind the reader that the Gram matrix G (and thus its singular
values {λj}min(m,n)

j=1 ) characterizes the interplay between the prior and obser-
vation subspaces, V and W . In particular, some of the singular values λj
will be close to one (resp. zero) if some directions of V are almost included
in (resp. orthogonal to) W . For example, if V ⊆ W , we obtain p = q = n
and

λj = 1 j = 1, . . . , n,

so that κ̄i = ε̂+ ε ' ε̂ for i ≥ k when ε� ε̂. On the other extreme, assuming
that W is orthogonal to V leads to

λj = 0 j = 1, . . . ,min(m,n),

so that p = q = 0 and k∗ = n. In such a case, the performance cannot be
improved over that obtained by exploiting the prior manifoldMprior only.

To conclude this section, we revisit the empirical results presented in
Section 5 in the light of Theorem 1. We focus our discussion on Fig. 3
which is the more amenable to a connection with our theoretical results.
First, let us draw a link between the simulation setup in Fig. 3 and the
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parameters defining κ̄i and ¯̄κi. From the dark blue plain curve in Fig. 2, it
can be seen that M is included in a degenerate ellipsoid with k = 4 and
width ε ∼ 10−5.s As far as the case L = 1 was concerned, we considered two
different dimensions for the subspace V , that is n = 25 or n = 45. These two
choices led to ε̂ ∼ 10−2 and ε̂ ∼ 10−4, respectively. Hence, we have ε� ε̂ in
both cases. The observation subspace W was drawn uniformly at random,
so that the situation p = 0 and q = min(m,n) occurs almost surely in our
simulations; in this case, k∗ takes the simple form k∗ = k + n −min(m,n).
We considered a number of observations equal to either m = 25 or m = 45.

For these choices of parameters and for the dimensions of the approxima-
tion subspaces considered in our simulation (that is i = 1, . . . , 50), the bound
κ̄i prevails in Theorem 1. Indeed, dim(W⊥) ≥ dim(H)− 45 = 2113 − 45 =
2068 so that k + dim(W⊥) ≥ 2072 and ¯̄κi =∞ for the range of interest.

Although Theorem 1 only provides an upper bound on κi(Mpost), the
empirical performance presented in Fig. 3 seems to be in good accordance
with the latter. First, we can notice that the performance achieved by the
worst-case approximation subspace Spost

i (plain magenta curve) saturates
at ε̂ for large i. As predicted by Theorem 1, the number of observations
does not have an effect on this error floor but rather impacts the rate at
which the latter is reached. Theorem 1 also gives good insights into the
range of dimensions in which small approximation errors can be attained.
Of particular interest for us is the case where m = 25, n = 45 for which
k∗ = k+n−m = k+ 20 (k∗ = k in all other cases); n−m = 20 corresponds
to the number of dimensions of V which are not observed. In practice, we can
therefore not expect to have a small (worst-case) projection error if i ≤ 20.
This is what we observet in Fig. 3.

7 Proof of Theorem 1

In this section, we provide the main steps of the proof of Theorem 1 (the
technical details are postponed to the appendices). The simple observation
underlying the proof is as follows: for any M̂post such thatMpost ⊆ M̂post

sIn the discussion below, we implicitly assume that the 4-dimensional subspace defining
the ellipsoid is included in the prior subspace V , so that our simulation results can be
discussed in light of Theorem 1.

tThe error is not infinite in this range because of the way we generate the posterior
manifoldMpost, see Section 5.
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and ∀Si with dim(Si) = i, we have

κi(Mpost) ≤ max
h∈M̂post

dist(h, Si). (49)

The result stated in Theorem 1 then follows from (49) and some specific
choices for M̂post and Si. These choices are described in Sections 7.1 and
7.2.

7.1 Definition of M̂post

We give hereafter three possible choices for M̂post that will be exploited in
our proof in Section 7.2. First, we have by definition

Mpost ⊆Mprior, (50)

so that M̂post = Mprior is a valid choice. Moreover, since we assume that
M⊆ Σ, we also have

Mpost ⊆ ∪h∈ΣHh, (51)
Mpost ⊆Mprior ∩ ∪h∈ΣHh. (52)

The right-hand sides of (51)-(52) thus constitute two other possible choices
for M̂post.

A precise mathematical characterization of ∪h∈Σ(Mprior ∩Hh) is given
by (see Appendix A)

Mprior ∩ ∪h∈ΣHh = Û ⊕ E , (53)

where

• Û , U ⊕ span

({
v∗j

}n
j=q+1

)
is a linear subspace

• E is an ellipsoid defined as follows: h ∈ E if and only if h can be
written as

h =

q∑
j=p+1

λ−1
j

((
1− λ2

j

) 1
2aj − bj

)
φj +

dim(W⊥∩V ⊥)∑
j=1

cjψj +
m∑
j=1

ajw
∗
j ,

(54)
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where φj ,
(

1− λ2
j

)− 1
2
(
v∗j − λjw∗j

)
,
{
ψj
}dim(W⊥∩V ⊥)
j=1

is an (arbi-

trary) ONB of W⊥ ∩ V ⊥, and the coefficients aj , bj , cj obey the fol-
lowing constraints:

m∑
j=q+1

a2
j +

q∑
j=p+1

b2j +

dim(W⊥∩V ⊥)∑
j=1

c2
j ≤ ε̂2,

m∑
j=1

a2
j ≤ ε2.

(55)

The vectors v∗j , w
∗
j and φj which appear in the above characterization are

those introduced in Section 4.2 with the following conventions: V is the
subspace characterizingMprior in (41); W is the observation subspace intro-
duced in (3).

7.2 Computation of upper bounds on κi(Mpost)

In this section, we prove the upper bound stated in Theorem 1 by exploiting
(49) for different choices of M̂post and Si. The upper bound ¯̄κi straightfor-
wardly derives from the definition of M̂post given in (51); κ̄i results from a
combination of the upper bounds obtained from the definition of M̂post in
(50) and (52). The detailed calculations are provided below.

7.2.1 Case M̂post = ∪h∈ΣHh

: We first note that

∪h∈ΣHh = {h : dist(h,∪h∈UHh) ≤ ε}, (56)

where ∪h∈UHh is a subspace of dimension at most equal to k + dim
(
W⊥

)
.

Hence, if we let Si be such that ∪h∈UHh ⊆ Si for i ≥ k + dim
(
W⊥

)
, we

obtain

κi(Mpost) ≤ ε. (57)

7.2.2 Case M̂post =Mprior

: Since κi(Mpost) ≤ κi(Mprior), setting M̂post =Mprior in (49) leads to

κi(Mpost) ≤
{
∞ i = 1, . . . , n− 1,
ε̂ i = n, . . . ,dim(H)− 1.

(58)
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7.2.3 Case M̂post =Mprior ∩ ∪h∈ΣHh

: We note that the dimension of the subspace Û defined in Section 7.1 is
at most equal to min(n, k + n− q) = k∗, where k∗ ≤ n follows from the
inclusion U ⊆ V . For i = k∗, . . . , k∗ + q − p − 1, we set Si = Û ⊕ R, where
R is an (i− k∗)-dimensional subspace given by

R , span
({
φj
}q
j=q−(i−k∗)+1

)
.

We note that

max
h∈M̂post

dist(h, Si) = max
h∈M̂post

∥∥∥PS⊥i (h)
∥∥∥.

Moreover, because of the characterization ofMprior ∩ ∪h∈ΣHh in (53)-(55),
we have that

∥∥∥PS⊥i (h)
∥∥∥ =

∥∥∥∥∥∥∥PS⊥i
q−(i−k∗)∑

j=p+1

λ−1
j

((
1− λ2

j

) 1
2aj − bj

)
φj +

dim(W⊥∩V ⊥)∑
j=1

cjψj +
m∑
j=1

ajw
∗
j


∥∥∥∥∥∥∥,

≤

∥∥∥∥∥∥∥
q−(i−k∗)∑
j=p+1

λ−1
j

((
1− λ2

j

) 1
2aj − bj

)
φj +

dim(W⊥∩V ⊥)∑
j=1

cjψj +
m∑
j=1

ajw
∗
j

∥∥∥∥∥∥∥,

=

q−(i−k∗)∑
j=p+1

λ−2
j

((
1− λ2

j

) 1
2aj − bj

)2

+

dim(W⊥∩V ⊥)∑
j=1

c2
j +

m∑
j=1

a2
j


1
2

,

(59)

holds for any h ∈Mprior∩∪h∈ΣHh, where the last equality follows from the

orthogonality of
{
w∗j

}m
j=1

,
{
φj
}q
j=p+1

and
{
ψj
}dim(W⊥∩V ⊥)
j=1

(see Appendix

A.1).
Finally, since the coefficients ai, bi and ci must satisfy the constraints in

(55), we have

max
h∈M̂post

dist(h, Si) ≤

(
λ−2
q−(i−k∗)

((
1− λ2

q−(i−k∗)

) 1
2
ε+ ε̂

)2

+ ε2

) 1
2

,

≤ λ−1
q−(i−k∗)(ε̂+ ε). (60)
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We follow the same reasoning for i = k∗ + q − p, . . . , k∗ + q − 1. We set

Si = Û ⊕ span
({
φj
}q
j=p+1

)
⊕R,

where R is some arbitrary (i − (k∗ + q − p))-dimensional subspace. From
the particularization ofMprior ∩ ∪h∈ΣHh in (53)-(55), we have for any h ∈
Mprior ∩ ∪h∈ΣHh:

∥∥∥PS⊥i (h)
∥∥∥ =

∥∥∥∥∥∥∥PS⊥i
dim(W⊥∩V ⊥)∑

j=1

cjψj +
m∑
j=1

ajw
∗
j


∥∥∥∥∥∥∥,

≤

∥∥∥∥∥∥∥
dim(W⊥∩V ⊥)∑

j=1

cjψj +

m∑
j=1

ajw
∗
j

∥∥∥∥∥∥∥,

=

dim(W⊥∩V ⊥)∑
j=1

c2
j +

m∑
j=1

a2
j


1
2

,

where the last equality results from the orthogonality of {w∗i }
m
i=1 and {ψi}

dim(W⊥∩V ⊥)
i=1 .

Since the coefficients ai and ci must satisfy the constraints in (55), we
finally obtain

max
h∈M̂post

dist(h, Si) ≤
(
ε̂2 + ε2

) 1
2 ≤ ε̂+ ε. (61)

We note that since λj = 1 for j = 1, . . . , p, the upper bounds stated in
(60) and (61) can be jointly rewritten as

max
h∈M̂post

dist(h, Si) ≤ λ−1
q−(i−k∗)(ε̂+ ε), (62)

for i = k∗, . . . , k∗ + q − 1.

7.2.4 Definition of κ̄i and ¯̄κi

: ¯̄κi is a direct consequence of the bound derived in Section 7.2.1. The defi-
nition of κ̄i results from a combination of the bounds (58) and (62) exposed
in Sections 7.2.2 and 7.2.3.

In order to obtain the tightest bound on κi(Mpost), κ̄i must be equal to
the minimum of (58) and (62) for each index i at which both bounds are
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defined. Since ε+ ε̂ ≥ ε̂, the bound in (58) is always smaller than (62) when
i ≥ n. This leads to the last line in (42). On the other hand, when i < n
the bound in (58) is infinite and (62) thus takes the lead. This results in the
second line in (42).

We note that the bound in (62) is always well-defined in the range i =
k∗, . . . , n− 1 since

k∗ + q − 1 = min(n+ q − 1, n+ k − 1),

≥ n.

8 Conclusions

In this paper, we tackle the problem of finding a good approximation sub-
space for a solution manifold M. Unlike in the standard setup where the
solution manifold is assumed to be known, we assume that only partial in-
formation is available on the latter. More specifically, we suppose that we
have the following information at our disposal: i) we know that the target
manifold is included in a larger set, dubbed “prior manifold”; ii) we have ac-
cess to a set of partial linear observations for each element ofM. This setup
corresponds, for example, to the ubiquitous situation where some parame-
ters of the system to approximate are imperfectly known but some sensing
device can provide us with partial measurements of the state of the system.

In this work, we thus address the following questions: how to combine
the prior knowledge and the collected measurements to build a good approx-
imation subspace forM? In particular, what performance can one expect?

We provide an answer to these questions at both a practical and theoret-
ical level. From a worst-case perspective, we show that the best-achievable
performance is characterized by the Kolmogorov width of a well-defined man-
ifold, the so-called “posterior manifold”. Motivated by this finding, we pro-
pose a tractable algorithm, combining samples from the posterior manifold
and a greedy procedure, to achieve performance close to the optimal solu-
tion. The theoretical behavior of the proposed methodology is finally stud-
ied in a simplified scenario, where the prior manifold is assumed to be a
degenerate ellipsoid. We emphasize that the performance achievable in the
partially-informed setup is highly dependent on the behavior of the singular
values of the projector between the prior and the observation subspaces.
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A Technical Details

A.1 Space Decomposition in the Suitable Bases

In this section we elaborate on some simple facts that will be useful in the
rest of the appendix. The material presented hereafter takes the form of two
remarks (see Remarks A and B below) and mainly derives from the discussion
carried out in [18, section 2.4]. In particular, we exploit the following lemma
from [18]:

Lemma 2. Let X and Y be two linear subspaces of H. Then,

Y = PY (X)⊕
(
Y ∩X⊥

)
, (63)

where PY (X) and
(
Y ∩X⊥

)
are orthogonal.

Remark A: H can be decomposed as the direct sum of four orthogonal
subspaces, namely:

H = PW (V )⊕
(
W ∩ V ⊥

)
︸ ︷︷ ︸

=W

⊕PW⊥(V )⊕
(
W⊥ ∩ V ⊥

)
︸ ︷︷ ︸

=W⊥

. (64)

This follows from the application of Lemma 2 with Y ← W , X ← V and
Y ←W⊥, X ← V respectively.

Moreover, ONBs of the first three spaces in (64) can be derived as a
function of the suitable bases

{
w∗j

}m
j=1

,
{
v∗j

}n
j=1

defined in Section 4.2.

First,
{
w∗j

}q
j=1

is an ONB of PW (V ) by definition.u Second, since
{
w∗j

}m
j=1

is an ONB forW and, from Lemma 2,W = PW (V )⊕
(
W ∩ V ⊥

)
with PW (V )

orthogonal toW∩V ⊥, we have that
{
w∗j

}m
j=q+1

is an ONB ofW∩V ⊥. Third,

{(
1− λ2

j

)− 1
2
(
v∗j − λjw∗j

)}q
j=p+1

∪
{
v∗j
}n
j=q+1

, (65)

is an ONB of P
W⊥

(V ). This can be found by projecting
{
v∗j

}n
j=1

onto W⊥

and observing that the resulting elements are mutually orthogonal. More
specifically, exploiting property (20) and using the fact that w∗j = v∗j when

uWe remind the reader that q is defined as q , card ({j : λj > 0}).
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λj = 1, we obtain:

PW⊥
(
v∗j
)

= v∗j − PW
(
v∗j
)
,

=


0 if j = 1, . . . , p,
v∗j − λjw∗j if j = p+ 1, . . . , q,

v∗j if j = q + 1, . . . , n.
(66)

Let us note that there is usually no ONB ofW⊥∩V ⊥ which can be expressed
as a simple function of

{
w∗j

}m
j=1

and
{
v∗j

}n
j=1

. In the sequel, we will thus

use the notation
{
ψj
}dim(W⊥∩V ⊥)
j=1

to denote an arbitrary ONB ofW⊥∩V ⊥.

Remark B: Using Lemma 2, the subspace V ⊥ can be decomposed as
the following direct sum:

V ⊥ = PV ⊥(W )⊕
(
W⊥ ∩ V ⊥

)
, (67)

where P
V ⊥

(W ) and
(
W⊥ ∩ V ⊥

)
are orthogonal subspaces. We also have

that {(
1− λ2

j

)− 1
2
(
w∗j − λjv∗j

)}q
j=p+1

∪
{
w∗j
}m
j=q+1

, (68)

constitutes an ONB of P
V ⊥

(W ). This can be seen by projecting the ONB{
w∗j

}m
j=1

onto V ⊥ and noticing that the resulting vectors are mutually or-

thogonal. In particular, exploiting property (20) and using the fact that
w∗j = v∗j when λj = 1, we find:

PV ⊥
(
w∗j
)

= w∗j − PV
(
w∗j
)
,

=


0 for j = 1, . . . , p,
w∗j − λiv∗j for j = p+ 1, . . . , q,

w∗j for j = q + 1, . . . ,m.
(69)

A.2 Characterization of Mprior ∩Hh

In this section, we provide a mathematical characterization ofMprior ∩Hh

in the case whereMprior is defined as in (22).
Let h ∈ H. By definition, for any h′ ∈ H, we have

h′ ∈ Hh ⇐⇒
〈
w∗i ,h

′〉 = 〈w∗i ,h〉 for all i ≤ m,
h′ ∈Mprior ⇐⇒

∥∥P
V ⊥

(
h′
)∥∥2 ≤ ε̂2.

(70)
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Because of our considerations in Remark A in Section A.1, any h′ ∈ H can
be expressed as (in the expression below we simply express h′ ∈ H in the
ONBs of four subspaces appearing in (64))

h′ =

m∑
j=1

αj w
∗
j +

q∑
j=p+1

βj
(
1− λ2

j

)− 1
2
(
v∗j − λjw∗j

)
+

dim(W⊥∩V ⊥)∑
j=1

cjψj +

n∑
j=q+1

djv
∗
j ,

(71)

for some αj , βj , cj , dj ∈ R. Hereafter, we express the conditions in (70) in
terms of these parameters.

On the one hand, the first condition in (70) simply reads

αj =
〈
w∗j ,h

〉
for all j ≤ m. (72)

On the other hand, the second condition in (70) can be rewritten as fol-
lows. Starting from (71) and using the fact that

PV ⊥
(
h′
)

= h′ −
n∑
i=1

〈
v∗j ,h

′〉v∗j ,
we find:

PV ⊥
(
h′
)

=

q∑
j=p+1

αj
(
w∗j − λjv∗j

)
+

m∑
j=q+1

αjw
∗
j −

q∑
j=p+1

βjλj
(
1− λ2

j

)− 1
2
(
w∗j − λjv∗j

)

+

dim(W⊥∩V ⊥)∑
j=1

cjψj , (73)

=

q∑
j=p+1

(
αj − βjλj

(
1− λ2

j

)− 1
2

)(
w∗j − λjv∗j

)
+

m∑
j=q+1

αjw
∗
j +

dim(W⊥∩V ⊥)∑
j=1

cjψj .

(74)

Now, because all the terms in the last expression are orthogonala, the second
constraint in (70) takes the form:

ε̂2 ≥
q∑

j=p+1

(
αj − βjλj

(
1− λ2

j

)− 1
2

)2(
1− λ2

j

)
+

m∑
j=q+1

α2
j +

dim(W⊥∩V ⊥)∑
j=1

c2
j ,

=

q∑
j=p+1

λ2
j

(
αjλ

−1
j

(
1− λ2

j

) 1
2 − βj

)2

+

m∑
j=q+1

α2
j +

dim(W⊥∩V ⊥)∑
j=1

c2
j . (75)

aThis can easily be seen from Remark B in section A.1.

46



As a conclusion, (71) together with (72) and (75) fully specify the ele-
ments ofMprior∩Hh. For future use, we re-express this system of equations

by making the following change of variable: bj = λj

(
αjλ

−1
j

(
1− λ2

j

) 1
2 − βj

)
for j = p+1, . . . , q. We then obtain that any h′ ∈Mprior∩Hh can be written
asv

h′ =

q∑
j=1

αjλ
−1
j v

∗
j +

m∑
j=q+1

αjw
∗
j −

q∑
j=p+1

bjλ
−1
j

(
1− λ2

j

)− 1
2
(
v∗j − λjw∗j

)

+

dim(W⊥∩V ⊥)∑
j=1

cjψj +

n∑
j=q+1

djv
∗
j , (76)

with  αj =
〈
w∗j ,h

〉
for all j ≤ m,∑m

j=q+1 α
2
j +

∑q
j=p+1 b

2
j +

∑dim(W⊥∩V ⊥)
j=1 c2

j ≤ ε̂2.
(77)

A.3 Characterization of ∪h∈Σ(Mprior ∩Hh)

In this section we show that ∪h∈Σ(Mprior ∩Hh) can be expressed as stated
in (53)-(55). We start from (76)-(77) and particularize the expression of the
αi’s when h ∈ Σ to obtain the result.

First, notice that any h ∈ Σ can (by definition) be written as h = u+ z
where u ∈ U , z ∈ Bε and Bε = {h ∈ H : ‖h‖ ≤ ε} is the ‖·‖-ball of radius ε.
Using the fact that U ⊆ V and H = W ⊕W⊥, u and z can be re-expressed
as

u =
n∑
j=1

〈
v∗j ,u

〉
v∗j , (78)

z =

m∑
j=1

ajw
∗
j + PW⊥(z), (79)

vTo obtain the first term in (76), we use the fact that
∑q

j=p+1 αjλ
−1
j v∗j +

∑p
j=1 αjw

∗
j =∑q

j=1 αjλ
−1
j v∗j since v∗j = w∗j and λj = 1 for j ≤ p, see Section 4.2.
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we obtain from (20) that

αj ,
〈
w∗j ,h

〉
,

=
〈
w∗j ,u

〉
+
〈
w∗j , z

〉
,

=

{
λj

〈
v∗j ,u

〉
+ aj if j = 1, . . . , q,

aj if j = q + 1, . . . ,m.
(80)

Hence, the first term in (76) becomes:

q∑
j=1

αjλ
−1
j v

∗
j =

q∑
j=1

〈
v∗j ,u

〉
v∗j +

q∑
j=1

λ−1
j ajv

∗
j . (81)

Moreover, because z ∈ Bε, the aj ’s must verify:

m∑
j=1

a2
j ≤ ε2,

since
m∑
j=1

a2
j = ‖PW (z)‖2 ≤ ‖z‖2 ≤ ε2.

Combining these results and re-arranging the terms in (76), we obtain
that ∪h∈Σ(Mprior ∩Hh) is characterized by the following set of equations:

h′ =

q∑
j=1

〈
v∗j ,u

〉
v∗j +

n∑
j=q+1

djv
∗
j −

q∑
j=p+1

bjλ
−1
j

(
1− λ2

j

)− 1
2
(
v∗j − λjw∗j

)

+

dim(W⊥∩V ⊥)∑
j=1

cjψj +

m∑
j=q+1

ajw
∗
j +

q∑
j=1

ajλ
−1
j v

∗
j , (82)

with { ∑m
j=q+1 a

2
j +

∑q
j=p+1 b

2
j +

∑dim(W⊥∩V ⊥)
j=1 c2

j ≤ ε̂2,∑m
j=1 a

2
j ≤ ε2.

(83)

Because u ∈ U and there is no constraint on the dj ’s, the first two terms in

(82) define the subspace PV (U)⊕span

({
v∗j

}n
j=q+1

)
= U⊕span

({
v∗j

}n
j=q+1

)
.
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It thus remains to show that the last terms in (82) together with the
constraints (83) define E as in (54)-(55). This simply follows by re-expressing
the last term in (82), that is

∑q
j=1 ajλ

−1
j v

∗
j , in terms of its components inW

andW⊥. More specifically, using the suitable bases for PW (V ) and P
W⊥

(V )
defined in Section A.1, we find

PW

 q∑
j=1

λ−1
j ajv

∗
j

 =

q∑
j=1

ajw
∗
j ,

PW⊥

 q∑
j=1

λ−1
j ajv

∗
j

 =

q∑
j=p+1

ajλ
−1
j

(
v∗j − λjw∗j

)
.

The result then follows by plugging these expressions into (82).

B Weak and algebraic formulations of the Thermal-
block Problem

Let H1(Ω) denotes the Sobolev space of order 1 on Ω and let

X =
{
h ∈ H1(Ω) : h satisfies the Dirichlet conditions of problem (32)

}
.

Using the derivations of [21, Section 2.3.1], we have that the weak formulation
of (32) can be written as

find h ∈ X such that a(h,h′) = b(h′) ∀h′ ∈ X (84)

where

a(h,h′) =

∫
Ω
k(x, θ)∇Th∇h′dx,

b(h′) =

∫
Ω
s(x)h′dx +

∫
Γ1

c k(x, θ)−1h′dx.

Let Xfe be a finite-dimensional subspace of X (for example generated by
a basis of finite elements). A discrete approximation of (84) can then be
defined as

find h ∈ Xfe such that a(h,h′) = b(h′) ∀h′ ∈ Xfe. (85)

Considering an ONB of Xfe, say {ϕj}Nfe
j , the algebraic formulation of (85)

reads

find the solution of Ah = b, (86)
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where the elements of matrix A ∈ RNfe×Nfe and vector b ∈ RNfe are defined
as

Ai,j = a(ϕi, ϕj),

bj = b(ϕj).

We note in particular that if c = 0 and the source term decomposes as

s(x) =
∑
j

sjϕj , (87)

we simply have bj = sj because of the orthogonality of the ϕ′js.
Let us now elaborate briefly on the second simulation setup considered in

Section 5. We argue that any vector h ∈ RNfe (or equivalently any h ∈ Xfe)
can be obtained as the solution of (86) (resp. of (85)) by properly choosing
the source term s(x). This can be seen as follows. First note that A is a
fixed matrix if the parameter θ is set to a fixed value. Let s be the vector
gathering the sj ’s in (87). Then, by choosing s = A−1h, it can be seen that
the solution of (86) is h because we assume that c = 0 in our simulation
setup. The solution of (85) is obtained by using (87) with s = A−1h.

C Summary Appendix

This appendix is intended to ease the reading of the paper by gathering
the main elements appearing in the core of the paper. The goal is to allow
the reader to access “at a glance” to the most important definitions and
relationships.

The paper addresses the problem of finding a good approximation sub-
space for a solution manifoldM defined as

M = {h(θ) ∈ H : θ ∈ Θ},

where h(θ) is the solution of some PPDE depending on parameter θ. No
particular constraints are imposed onM. The best possible worst-case ap-
proximation error of the elements M in a subspace of dimension i is given
by the Kolmogorov i-width:

κi(M) = inf
S:dim(S)=i

(
sup
h∈M

dist(h, S)

)
.
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If the above optimization problem admits a minimizer, we denote the latter
by Sperf

i , i.e.,

Sperf
i ∈ arg min

S:dim(S)=i

(
sup
h∈M

dist(h, S)

)
.

The construction of the proposed approximation subspace is based on
two ingredients that we remind here:

i) a prior manifold Mprior: the only constraint we impose on Mprior is
to be such that

M⊆Mprior.

In the main body of the paper, we repeatedly use two particular in-
stances ofMprior:

– An intersection of degenerate ellipsoids, i.e.,

Mprior = ∩L
j=1{h : dist(h, Vj) ≤ ε̂j}.

– A single degenerate ellipsoid, i.e.,

Mprior = {h : dist(h, V ) ≤ ε̂}.

ii) a set of partial observations ofM: we assume that we collect, ∀h ∈M,
a set of noiseless linear measurements:

{〈wj ,h〉}mj=1,

for some orthonormal basis {wj}mj=1. We denote byW them-dimensional
subspace induced by {wj}mj=1, i.e.,

W = span
(
{wj}mj=1

)
.

Moreover, for a given h ∈ M, we denote by Hh the set of element
leading to the same measurement sets, i.e.,

Hh =
{
h′ : 〈wj ,h

′〉 = 〈wj ,h〉 for j = 1, . . . ,m
}
,

=
{
h′ = h+w⊥ : w⊥ ∈W⊥

}
.
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Our procedure to find a good approximation subspace from the above
ingredients is based on the construction of a “posterior” manifold whose
definition is given by

Mpost =Mprior ∩ (∪h∈MHh).

By definition,Mpost obeys the following relationship

M⊆Mpost ⊆Mprior.

We denote by Spost
i the i-dimensional subspace (assuming it exists) minimiz-

ing the worst approximation error over the elements ofMpost, i.e.,

Spost
i ∈ arg min

S:dim(S)=i

(
sup

h∈Mpost

dist(h, S)

)
.

This subspace verifies the following property:

κi(M) ≤ sup
h∈M

dist(h, Spost
i ) ≤ κi(Mpost) ≤ κi(Mprior).

Finally, in many parts of the paper, we exploit the following decomposi-
tion of H in four orthogonal subspaces:

H = PW (V )⊕
(
W ∩ V ⊥

)
︸ ︷︷ ︸

=W

⊕PW⊥(V )⊕
(
W⊥ ∩ V ⊥

)
︸ ︷︷ ︸

=W⊥

.

We also use the following ONBs for each subspace appearing in the above
decomposition:

• ONB for PW (V ):
{
w∗j

}q
j=1

,

• ONB for
(
W ∩ V ⊥

)
:

{
w∗j

}m
j=q+1

,

• ONB for P
W⊥

(V ):
{(

1− λ2
j

)− 1
2
(
v∗j − λjw∗j

)}q
j=p+1

∪
{
v∗j

}n
j=q+1

,

• ONB for
(
W⊥ ∩ V ⊥

)
:
{
ψj
}dim(W⊥∩V ⊥)
j=1

,

where
{
v∗j

}n
j=1

and
{
w∗j

}m
j=1

denotes the “suitable” ONBs for V and W

introduced in Section 4.2 and {λj}min(m,n)
j=1 are the singular values of the

Gram matrix G defined as gij , 〈wi,vj〉. The quantities p and q are defined
as

p , card ({j : λj = 1}) ,
q , card ({j : λj > 0}) .
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