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Abstract

Models in cardiac electrophysiology are coupled systems of reaction diffusion PDE and of ODE.
The ODE system displays a very stiff behavior. It is non linear and its upgrade at each time step
is a preponderant load in the computational cost. The issue is to develop high order explicit and
stable methods to cope with this situation.

In this article, is is analyzed the resort to exponential Adams Bashforth (EAB) integrators in
cardiac electrophysiology. The method is presented in the framework of a general and varying
stabilizer, that is well suited in this context. Stability under perturbation (or 0-stability) is proven.
It provides a new approach for the convergence analysis of the method. The Dahlquist stability
properties of the method is performed. It is presented in a new framework that incorporates the
discrepancy between the stabilizer and the system Jacobian matrix. Provided this discrepancy is
small enough, the method is shown to be A(alpha)-stable. This result is interesting for an explicit
time-stepping method. Numerical experiments are presented for two classes of stiff models in
cardiac electrophysiology. They include performances comparisons with several classical meth-
ods. The EAB method is observed to be as stable as implicit solvers and cheaper at equal level
of accuracy.

Keywords: stiff equations, explicit high-order multistep methods, exponential integrators of
Adams type, stability and convergence, Dahlquist stability
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1. Introduction

Computations in cardiac electrophysiology have to face two constraints. Firstly the stiffness
due to heterogeneous time and space scales. This is usually dealt with by considering very fine
grids. This strategy is associated with large computational costs, still challenging in dimension
three. Secondly, the resolution of the reaction terms from the ionic models has an important cost.
This resolution occur at each grid node. The total amount of evaluation of the reaction terms
has to be maintained as low as possible. For this reason, implicit solvers are usually avoided.
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Exponential integrators are well adapted to cope with these two constraints. Actually they allow
an explicit resolution of the reaction term, and display strong stability properties. In this article,
we study and analyze exponential time-stepping methods dedicated to the resolution of reaction
equations.

Models for the propagation of the cardiac action potential are evolution reaction diffusion
equations coupled with ODE systems. The widely used monodomain model [1, 2, 3] formulates
as ∂v

∂t = Av + f1(v,w, x, t) and ∂w
∂t = f2(v,w, x, t), with space and time variables x ∈ Ω ⊂ Rd and

t ∈ R. The unknowns are the functions v(t, x) ∈ R (the transmembrane voltage) and w(t, x) ∈ RN

(a vector that gathers variables describing pointwise the electrophysiological state of the heart
cells). In the monodomain model, the diffusion operator is A(:= div(g(x)∇·)), and the reaction
terms are the nonlinear functions f1, f2. These functions model the cellular electrophysiology.
They are called ionic models. Ionic models are of complex nature, see e.g. [4, 5, 6, 7]. A special
attention has to be paid to the number of evaluations of the functions f1 and f2, and implicit
solvers are usually avoided. Though we ultimately use an implicit/explicit method to solve the
PDE, we need an efficient, fast and robust method to integrate the reaction terms. Therefore, this
article focuses on the time integration of the stiff ODE system

dy
dt

= f (t, y), y(0) = y0, (1)

in the special cases where f (t, y) is an ionic model from cellular electrophysiology. In this case,
stiffness is due to the co-existence of fast and slow variables. Fast variables are given in (1) by
equations of the form,

dyi

dt
= fi(t, y) = ai(t, y)yi + bi(t, y). (2)

Here ai(t, y) ∈ R is provided by the model. This scalar rate of variation will be inserted in the
numerical method to stabilize its resolution.

Exponential integrators are a class of explicit methods meanwhile exhibiting strong stability
properties. They have motivated many studies along the past 15 years, among which we quote
e.g. [8, 9, 10, 11, 12, 13] and refer to [14, 15, 16] for general reviews. They have already been
used in cardiac electrophysiology, as e.g. in [17, 18]. Exponential integrators are based on a
reformulation of (1) as,

dy
dt

= a(t, y)y + b(t, y), y(0) = y0, (3)

(with f = ay + b) where the linear part a(t, y) is used to stabilize the resolution. Basically a(t, y)
is assumed to capture the stiffest modes of the Jacobian matrix of system (1). Stabilization is
brought by performing an exact integration of these modes. This exact integration involves the
computation of the exponential exp(a(tn, yn)h) at the considered point. This computation is the
supplementary cost for exponential integrators as compared to other time stepping methods.

Exponential integrators of Adams type are explicit multistep exponential integrators. They
were first introduced by Certaine [19] in 1960 and Nørsett [20] in 1969 for a constant linear part
A = a(t, y) in (3). The schemes are derived using a polynomial interpolation of the non linear
term b(t, y). It recently received an increasing interest [21, 22, 23] and various convergence
analysis have been completed in this particular case [24, 25, 26]. Non constant linear parts have
been less studied. Lee and Preiser [27] in 1978 and by Chu [28] in 1983 first suggested to rewrite
the equation (1) at each time instant tn as, rewritten as,

dy
dt

= any + gn(t, y), y(tn) = yn, (4)
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with an = a(tn, yn) and gn(t, y) = b(t, y) + (a(t, y) − an)y. In the sequel, an is referred to as the
stabilizer. It is updated after each time step. Recently, Ostermann et al [24, 26] analyzed the
linearized exponential Adams method, where the stabilizer an is set to the Jacobian matrix of
f (t, y) in (1). This choice requires the computation of a matrix exponential at every time step.
Anyway, when the fast variables of the system are known, stabilization can be performed only on
these variables. Considering the full Jacobian as the stabilizer implies unnecessary computational
efforts. To avoid these problems, an alternative is to set the stabilizer as a part or as an approxi-
mation of the Jacobian. This has been analyzed in [29] and in [30] for exponential Rosenbrock
and exponential Runge Kutta type methods respectively. This strategy is well adapted to car-
diac electrophysiology, where a diagonal stabilizer associated with the fast variables is directly
provided by the model with equation (2). The present contribution is to analyze general varying
a(t, y) in (3) for exponential integrators of Adams type, referred to as exponential Adams Bash-
forth, and shortly denoted EAB. Together with the EAB scheme, we introduce a new variant, that
we called integral exponential Adams Bashforth, denoted I-EAB.

The convergence analysis held in [24] extends to the case of general varying stabilizers.
However there is a lack of results concerning the stability in this case: for instance, consider
the simpler exponential Euler method, defined by yn+1 = s(tn, yn, h) := eanh yn + hϕ1(anh)bn

with ϕ1(z) = (ez −1)/z. Stability under perturbation (also called 0-stability) can be easily proven
provided that the scheme generator s(t, y, h) is globally Lipschitz in y with a constant bounded
by 1 + Ch. Therefore stability under perturbation is classically studied by analyzing the partial
derivative ∂ys. This can be done in the case where a(t, y) is either a constant operator or a
diagonal varying matrix. In the general case however things turn out to be more complicated.
Indeed the general expansion eM+εN , eM +εeMN + O(ε2) does not hold, unless the two matrices
M and N are commuting. As a consequence differentiating ea(t,y)h in y cannot be done without
very restrictive assumptions on a(t, y). We present here a stability analysis for general varying
stabilizers. This will be done by introducing relaxed stability conditions on the scheme generator
s(t, y, h). Together with a consistency analysis, it provides a new proof for the convergence of the
EAB schemes, in the spirit of [24].

Stability under perturbation provides results of qualitative nature. In addition, the Dahlquist
stability analysis strengthens these results. It is a practical tool that allows to dimension the time
step h with respect to the variations of f (t, y) in equation (1). The analysis is made by setting
f (t, y) = λy in (1). For exponential integrators with general varying stabilizer, the analysis must
incorporate the decomposition of f (t, y) = λy used in (3). The stability domain of the considered
method will depend on the relationship between λ and a(t, y), following a concept first introduced
in [17]. We numerically establish that EAB methods are A(α) stable provided that the stabilizer
is sufficiently close to the system Jacobian matrix (precise definitions are in section 5). Moreover
the angle α approaches π/2 when the stabilizer goes to the system Jacobian matrix. In contrast,
there exists no A(0) stable explicit linear multistep method (see [31, chapter V.2]. This property
is remarkable for explicit methods.

Numerical experiments for the EAB and I-EAB scheme are provided in section 6, in the
context of cardiac electrophysiology. Robustness to stiffness is studied with this choice. It is nu-
merically shown to be comparable to implicit methods both in terms of accuracy and of stability
condition on the time step. We conclude that EAB methods are well suited for solving stiff dif-
ferential problems. In particular they allow computations at large time step with good accuracy
properties and cheap cost.

The article is organized as follows. The EAB and I-EAB methods are introduced in section 2.
The general stability and convergence results are stated and proved in section 3. The EAB and
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I-EAB stability under perturbation and convergence are proved in section 4. The Dahlquist
stability is investigated in section 5, and the numerical experiments end the article, in section 6.

In all this paper, h > 0 is a constant time-step and tn = nh are the time instants associated
with the numerical approximate yn of the solution of the ODE (1).

2. Scheme definitions

2.1. The EABk method

The exact solution at time tn+1 to the equation (4) (with an = a(tn, yn)) is given by the variation
of the constants formula

y(tn+1) = eanh
(
y(tn) +

∫ h

0
e−anτgn (tn + τ, y(tn + τ)) dτ

)
. (5)

Using the k approximations yn− j ' y(tn− j) for j = 0 . . . k − 1, we build the Lagrange polynomial
g̃n of degree at most k − 1 that satisfies,

g̃n(tn− j) = gn j := g(tn− j, yn− j), 0 ≤ j ≤ k − 1. (6)

It provides the numerical approximation yn+1 ' y(tn+1) as

yn+1 = eanh
(
yn +

∫ h

0
e−anτ g̃n(tn + τ)dτ

)
. (7)

The Taylor expansion of the polynomial g̃n is g̃n(tn + τ) =
∑k

j=1
γn j

( j−1)! (τ/h) j−1, where the coef-
ficients γn j are uniquely determined by (6), and actually given in table 1 for k = 1, 2, 3, 4. An
exact integration of the integral in equation (7) may be performed:

yn+1 = eanh yn + h
k∑

j=1

ϕ j(anh)γn j, (8)

where the functions ϕ j, originally introduced in [20], are recursively defined (for j ≥ 0) by,

ϕ0(z) = ez, ϕ j+1(z) =
ϕ j(z) − ϕ j(0)

z
and ϕ j(0) =

1
j!
. (9)

The equation (8) defines the Exponential Adams Bashforth method of order k, denoted by EABk.

Table 1: Coefficients γn j for the EABk schemes

k 1 2 3 4

γn1 gn gn gn gn

γn2 gn − gn−1
3
2 gn − 2gn−1 + 1

2 gn−2
11
6 gn − 3gn−1 + 3

2 gn−2 −
1
3 gn−3

γn3 gn − 2gn−1 + gn−2 2gn − 5gn−1 + 4gn−2 − gn−3
γn4 gn − 3gn−1 + 3gn−2 − gn−3
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Remark 1. When a(t, y) = diag(di) is a diagonal matrix, ϕk(anh) = diag(ϕk(di)) can be computed
component-wise. Its computation is straightforward.

Remark 2. With the definition (9), the functions ϕk are analytic on the whole complex plane.
Therefore the EABk scheme definition (8) makes sense for a matrix term a(t, y) in equation (3)
without particular assumption.

Remark 3. The computation of yn+1 in the formula (8) requires the computation of ϕ j(anh) for
j = 0, . . . , k. This computational effort can be reduced with the recursive definition (9). In
practice only ϕ0(anh) needs to be computed. This is detailed in section 6.1.

2.2. A variant: the I-EABk method
If the matrix a(t, y) is diagonal, we can take advantage of the following version for the varia-

tion of the constants formula

y(tn+1) = eAn(h)
(
y(tn) +

∫ h

0
e−An(τ) b(y(tn + τ), tn + τ)dτ

)
,

where An(τ) =
∫ τ

0 a(tn+σ, y(tn+σ))dσ. An attempt to improve the EABk formula (8) is to replace
a(t, y) and b(t, y) in the integral above by their Lagrange interpolation polynomials. At time tn,
we define the two polynomials ãn and b̃n of degree at most k − 1 so that ãn(tn− j) = a(tn− j, yn− j),
and b̃n(tn− j) = b(tn− j, yn− j), for j = 0 . . . k−1, and the primitive Ãn(τ) =

∫ τ

0 ã(tn +σ, y(tn +σ))dσ.
The resulting approximate solution at time tn+1 is finally given by the formula

yn+1 = eÃn(h)
(
yn +

∫ h

0
e−Ãn(τ) b̃n(tn + τ)dτ

)
. (10)

The method is denoted I-EABk, for integral EABk. Dislike for the formula (7), no exact inte-
gration formula is available, because of the term e−Ãn(τ). A quadrature rule is required for the
actual numerical computation of the integral in formula (10). Implementation details are given
in section 6.1.

3. Stability conditions and convergence

The equation (1) is considered on a finite dimensional vector space E with norm | · |E . We fix
a final time T > 0 and assume that equation (1) has a solution y on [0,T ]. We adopt the general
settings for the analysis of k-multistep methods following [32]. The space Ek is equipped with
the maximum norm |Y |∞ = max1≤i≤k |yi|E with Y = (y1, . . . , yk) ∈ Ek. A k-multistep scheme is
defined by a mapping s : (t,Y, h) ∈ R× Ek ×R+ 7→ s(t,Y, h) ∈ E. For instance, the EABk scheme
rewrites with Y = (yn−k+1, . . . , yn) in the formula (8), and s(tn,Y, h) = yn+1. The scheme generator
is the mapping S given by S : (t,Y, h) ∈ R × Ek × R+ 7→ (y2, . . . yk s(t,Y, h)) ∈ Ek. A numerical
solution is a sequence (Yn) in Ek for n ≥ k − 1 so that

Yn+1 = S (tn,Yn, h) for n ≥ k − 1, (11)

and Yk−1 = (y0, . . . , yk−1) is a given initial data. A perturbed numerical solution is a sequence
(Zn) in Ek for n ≥ k − 1 such that,

Zk−1 = Yk−1 + ξk−1, Zn+1 = S (tn,Zn, h) + ξn+1 for n ≥ k − 1, (12)
5



with (ξn) ∈ Ek for n ≥ k − 1. The scheme is said to be stable under perturbation (or 0-stable) if,
for any numerical solution (Yn) as in (11), there exists a (stability) constant Ls > 0 such that, for
any perturbation (Zn) as defined in (12), we have,

max
k−1≤n≤T/h

|Yn − Zn|∞ ≤ Ls

∑
k−1≤n≤T/h

|ξn|∞. (13)

Proposition 1. Assume that there exists constants C1 > 0 and C2 > 0 such that,

1 + |S (t,Y, h)|∞ ≤ (1 + |Y |∞) (1 + C1h), (14)
|S (t,Y, h) − S (t,Z, h)|∞ ≤ |Y − Z|∞ (1 + C2h(1 + |Y |∞)) , (15)

for 0 ≤ t ≤ T, and for Y,Z ∈ Ek. Then, the numerical scheme is stable under perturbation with
the constant Ls in (13) given by,

Ls = eC?T , C? := C2 eC1T (1 + |Yk−1|∞) . (16)

Proof. Consider a numerical solution (Yn) in (11). A recursion on condition (14) gives,

1 + |Yn|∞ ≤ (1 + |Yk−1|∞) (1 + C1h)n−k+1 ≤ eC1T (1 + |Yk−1|∞) ,

since (1 + x)p ≤ epx (for x ≥ 0), and (n − k + 1)h ≤ nh ≤ T . Now, consider a perturbation (Zn) of
(Yn) given by (12). Using the condition (15) together with the previous inequality,

|Yn+1−Zn+1|∞ ≤ |S (tn,Yn, h)−S (tn,Zn, h)|∞+ |ξn+1|∞ ≤ |Yn−Zn|∞ (1 + C2h(1 + |Yn|∞))+ |ξn+1|∞

≤ |Yn − Zn|∞

(
1 + C2 eC1T (1 + |Yk−1|∞)h

)
+ |ξn+1|∞ ≤ |Yn − Zn|∞

(
1 + C?h

)
+ |ξn+1|∞,

where C? := C2 eC1T (1 + |Yk−1|∞). By recursion we get,

|Yn − Zn|∞ ≤
(
1 + C?h

)n−k+1
|Yk−1 − Zk−1|∞ +

n−k∑
i=0

(
1 + C?h

)i
|ξn−i|∞

≤
(
1 + C?h

)n
n∑

i=k−1

|ξi|∞ ≤ ec?T
n∑

i=k−1

|ξi|∞,

which ends the proof.

Like in the classical cases, stability under perturbation together with consistency ensures
convergence. Let us specify this point. For the considered solution y(t) of problem (1) on [0,T ],
we define,

Y(t) = (y (t − (k − 1)h) , . . . y(t)) ∈ Ek for 0 ≤ (k − 1)h ≤ t ≤ T. (17)

The local error at time tn is,

ε(tn, h) = Y(tn+1) − S (tn,Y(tn), h). (18)

The scheme is said to be consistent of order p if there exists a (consistency) constant Lc > 0 only
depending on y(t) such that, maxk−1≤n≤T/h |ε(tn, h)|∞ ≤ Lchp+1.
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Corollary 1. If the scheme satisfies the stability conditions (14) and (15), and is consistent of
order p, then a numerical solution (Yn) given by (11) satisfies,

max
k−1≤n≤T/h

|Y(tn) − Yn|∞ ≤ LsLcThp + Ls|ξ0|∞, (19)

where ξ0 = Y(tk−1) − Yk−1 denotes the error on the initial data, and the constant Ls is as in
equation (16).

Remark 4. Note that the stability constant Ls in (16) depends on |Yk−1|∞, and then on h. This is
not a problem since Ls can be bounded uniformly as h→ 0 for Yk−1 in a neighborhood of y0.

Proof. We have Y(tk−1) = Yk−1 +ξ0 and Y(tn+1) = S (tn,Y(tn), h)+ε(tn, h). Therefore the sequence
(Y(tn)) is a perturbation of the numerical solution (Yn) in the sense of (12). As a consequence,
proposition 1 shows that

max
k−1≤n≤T/h

|Yn − Y(tn)|E ≤ Ls

|ξ0| +
∑

k≤n≤T/h

|ε(tn, h)|

 ≤ Ls|ξ0| + LsLc

 ∑
k≤n≤T/h

h

 hp,

and the convergence result follows.

4. EABk and I-EABk scheme analysis

The space E is assumed to be E = RN with its canonical basis and with | · |E the maximum
norm. The space of operators on E is equipped with the associated operator norm, and associated
to N×N matrices. Thus a(t, y) is a N×N matrix and its norm |a(t, y)| is the matrix norm associated
to the maximum norm on RN .

It is commonly assumed for the numerical analysis of ODE solvers that f in the equation (1)
is uniformly Lipschitz in its second component y. With the formulation (3), the following as-
sumptions will be needed: on R × E,

|a(t, y)| ≤ Ma, a(t, y), b(t, y) and f (t, y) uniformly Lipschitz in y. (20)

We denote by K f , Ka and Kb the Lipschitz constant for f , a and b respectively.

Theorem 1. With the assumptions (20), the EABk and I-EABk schemes are stable under pertur-
bations. Moreover, if a and b are Ck regular on R × E, then the EABk and I-EABk schemes are
consistent of order k. Therefore they converge with order k in the sense of inequality (19), by
applying corollary 1.

The stability and consistency are proved in sections 4.3 and 4.4, respectively. Preliminary
tools and definitions are provided in the sections 4.1 and 4.2.

4.1. Interpolation results
Consider a function x : R×E → R and a triplet (t,Y, h) ∈ R×Ek ×R+ with Y = (y1, . . . , yk).

We set to x̃[t,Y,h] the polynomial with degree at most k − 1 so that

x̃[t,Y,h] (t − ih) = x(t − ih, yk−i), 0 ≤ i ≤ k − 1.

We then extend component-wise this definition to vector valued or matrix valued functions x
(e.g. the functions a or b).
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Lemma 1. There exists an (interpolation) constant Li > 0 such that, for any function x : R×E 7→
R, and for any vectors Y,Z ∈ Ek,

sup
t≤τ≤t+h

∣∣∣x̃[t,Y,h] (τ)
∣∣∣ ≤ Li max

0≤i≤k−1
|x(t − ih, yk−i)| , (21)

sup
t≤τ≤t+h

∣∣∣x̃[t,Y,h] (τ) − x̃[t,Z,h] (τ)
∣∣∣ ≤ Li max

0≤i≤k−1
|x(t − ih, yk−i) − x(t − ih, zk−i)| . (22)

Consider a function y : [0,T ] → E and assume that x and y have a Ck regularity. Then, when
[t − (k − 1)h, t + h] ⊂ [0,T ],

sup
t≤τ≤t+h

∣∣∣x(τ, y(τ)) − x̃[t,Y(t),h] (τ)
∣∣∣
E ≤ sup

[0,T ]

∣∣∣∣∣∣ dk

dtk
( f (t, y(t)))

∣∣∣∣∣∣ hk, (23)

with Y(t) defined in (17).
For a vector valued function in Rd the previous inequalities hold when considering the max

norm on Rd. For a matrix valued function in Rd × Rd this is also true for the operator norm on
Rd × Rd when multiplying the constants in the inequalities (21), (22) and (23) by d.

Proof. The space Pk−1 of the polynomials p with degree at most k − 1 is equipped with the norm
sup[0,1] |p(τ)|. We associate to the R = (r1, . . . , rk) ∈ Rk its Lagrange interpolation polynomial
LR ∈ Pk−1, uniquely determined by LR(−i) = rk−1 for i = 0 . . . k − 1. The mapping L is linear.
Let CL be its continuity constant (it only depends on k).

We fix the function x : R×E → R and (t, h) ∈ R×R+. Consider the vector Y = (y1, . . . , yk) ∈
Ek and define the vector R = (x(t − (k − 1)h, y1), . . . , x(t, yk)) ∈ Rk. We have x̃[t,Y,h] (t + τ) =

LR(τ/h). The relation (21) is exactly the continuity of L and Li = CL.
Consider Y1, Y2 ∈ Ek and the associated vectors R1, R2 as above. We have (x[t,Y1 ,h] − x[t,Y2 ,h] )(t +

τ) = L (R1 − R2) (τ/h). Again, relation (22) is derived from the continuity of L.
Let ϕ : R→ R be a Ck function, its interpolation polynomial ϕ̃ at the points t− (k−1)h, . . . , t

is considered. A classical result on Lagrange interpolation applied to ϕ states that, for all τ ∈
(t, t + h), there exists ξ ∈ (t − (k − 1)h, t + h), such that (ϕ − ϕ̃) (τ) = 1

k!ϕ
(k)(ξ)π(τ), where

π(τ) =
∏k

i=1(τ − ti). For τ ∈ (t, t + h), we have |π(τ)| ≤ k! hk. This proves (23) by setting
ϕ(t) = x(t, y(t)).

For a vector valued function x : R × E → Rd, these three inequalities holds by processing
component-wise and when considering the max norm on Rd.

For a matrix valued function x : R× E → Rd ×Rd, the extension is direct when considering
the max norm | · |∞ on Rd × Rd (i.e. the max norm on the matrix entries). The operator norm | · |
is retrieved with the inequality | · |∞ ≤ d| · |

4.2. Scheme generators
Let us consider (t,Y, h) ∈ R × Ek × R+ with Y = (y1, . . . , yk). With the notations used in the

previous subsection, we introduce the interpolations ã[t,Y,h] and b̃[t,Y,h] for the functions a and b (in
(3)). Thanks to its definition (10), the I-EABk scheme generator is defined by,

s(t,Y, h) = z(t + h) with
dz
dτ

= ã[t,Y,h] (τ)z(τ) + b̃[t,Y,h] (τ), z(t) = yk. (24)

We introduce the polynomial ḡ[t,Y,h] with degree at most k − 1 that satisfies,

ḡ[t,Y,h] (t − ih) = f (t − ih, yk−i) − a(t, yk)yk−i, i = 0 . . . k − 1.
8



The function g̃n in (6) is given by g̃n = ḡ[tn ,Yn ,h] with Yn = (yn−k+1 . . . , yn). With the definition (7),
the EABk scheme generator is defined by,

s(t,Y, h) = z(t + h) with
dz
dτ

= a(t, yk)z(τ) + ḡ[t,Y,h] (τ), z(t) = yk. (25)

We will use the fact that ḡ[t,Y,h] is the Lagrange interpolation polynomial of the function gt,yk
:

(τ, ξ) 7→ f (τ, ξ) − a(t, yk)ξ.
These scheme generator definitions will allow us to use the following Gronwall’s inequality

(see [33, Lemma 196, p.150]).

Lemma 2. Suppose that z(t) is a C1 function on E. If there exist α > 0 and β > 0 such that
|z′(t)|E ≤ αt + β for all t ∈ [t0, t0 + h], then:

|z(t)|E ≤ |z(t0)|E eαh +βh eαh for t ∈ [t0, t0 + h]. (26)

4.3. Stability

According to proposition 1, we have to prove the stability conditions (14) and (15). It is
sufficient to prove these relations for h ≤ h0 for some constant h0 > 0 since the limit h→ 0 is of
interest here.

4.3.1. Case of the I-EABk scheme
Consider (t, h) ∈ R × R+ and Y = (y1, . . . , yk) ∈ Ek. We simply denote ã = ã[t,Y,h] and

b̃ = b̃[t,Y,h] . The scheme generator is given by (24). We first have to bound z(t + h) where z is
given by, z′ = ãz + b̃, and z(t) = yk. Firstly, with the interpolation bound (21), supt≤τ≤t+h |ã(τ)| ≤
Li max0≤i≤k−1 |a(t − ih, yk−1)| ≤ LiMa := α. Secondly, the function b(t, y) is globally Lipschitz in
y and thus can be bounded by |b(t, y)|E ≤ |b(t, 0)|E + Kb|y|E ≤ Rb(|y|E + 1), for 0 ≤ t ≤ T and for
some constant Rb only depending on Kb and on T . Then with the bound (21), supt≤τ≤t+h |b̃(τ)|E ≤
Li max0≤i≤k−1 Rb (|yk−i|E + 1) ≤ LiRb(|Y |∞ + 1) := β. By applying the Gronwall inequality (26)
with these α and β, for 0 ≤ τ ≤ h, |z(t + τ)|E ≤ eLi Mah (|yk |E + hLiRb(|Y |∞ + 1)). Thus, there exists
a constant C1 only depending on Li, Ma, Rb and h0 such that, for 0 ≤ τ ≤ h and 0 ≤ h ≤ h0,

|z(t + τ)|E ≤ C1h + |Y |∞(1 + C1h). (27)

This gives the condition (14), by taking τ = h.
For j=1, 2 We consider Y j = (y j,1, . . . y j,k) ∈ Ek and denote ã j = ã[t,Y j ,h] and b̃ j = b̃[t,Y j ,h] the

interpolations of the functions a and b. With the definition (24) of the I-EABkscheme, we have
|s(t,Y1, h) − s(t,Y2, h)|E = |δ(t + h)| with δ = z1 − z2 and with z j given by z′j = ã jz j + b̃ j, and
z j(t) = y j,k. We have then δ′ = ã1δ + r, and r := (ã1 − ã2)z2 + (b̃1 − b̃2). Using that a and b are
Lipschitz in y and with the interpolation bound (22), supt≤τ≤t+h |b̃1(τ)− b̃2(τ)|E ≤ LiKb|Y1 − Y2|∞,
and supt≤τ≤t+h |ã1(τ) − ã2(τ)| ≤ LiKa|Y1 − Y2|∞. With the upper bound (27), for t ≤ τ ≤ t + h ≤ T
and for h ≤ h0,

|r(τ)|E ≤ Li|Y1 − Y2|∞ (Kb + Ka (C1h + |Y2|∞(1 + C1h))) ≤ C|Y1 − Y2|∞ (1 + |Y2|∞) . (28)

For a constant C only depending on h0, Ka, Kb, Li and C1. We finally apply the Gronwall
inequality (26). It yields |δ(t + h)| ≤ eLi Mah (

|y1,k − y2,k |E + Ch|Y1 − Y2|∞ (1 + |Y2|∞)
)
≤ |Y1 −

Y2|∞ eLi Mah (1 + Ch (1 + |Y2|∞)), This implies the second stability condition (15) for h ≤ h0.
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4.3.2. Case of the EABk scheme
Consider (t, h) ∈ R × R+ and a vector Y = (y1, . . . , yk) ∈ Ek. Following the definition

of the EABk scheme given in section 2.1, we denote ā = a(t, yk), g the function g(τ, ξ) =

b(τ, ξ) + (a(τ, ξ) − ā) ξ = f (τ, ξ) − āξ and ḡ = ḡ[t,Y,h] . We have that ḡ is the Lagrange interpolation
polynomial of g, specifically ḡ = g̃[t,Y,h] . The scheme generator is then given by the equation (25):
s(t,Y, h) = z(t+h) with z′ = āz+ḡ, and z(t) = yk. We first have the bound |ā| ≤ Ma. As in the previ-
ous subsection, f being globally Lipschitz in y, one can find a constant R f so that for 0 ≤ t ≤ T ,
| f (t, y)|E ≤ R f (1 + |y|E). It follows that |g(τ, ξ)|E ≤ R f (|y|E + 1) + Ma|y|E ≤ C0/Li(|y|E + 1),
with C0/Li = R f + Ma. Therefore, with the interpolation bound (21), supt≤τ≤t+h |ḡ(τ)|E ≤
Li max0≤i≤k−1 |g(t − ih, yk−i)|E ≤ C0(|y|E + 1). By applying the Gronwall inequality (26), for
0 ≤ τ ≤ h, |z(t + τ)|E ≤ eMah (|yk |E + hC(|Y |∞ + 1)). Thus, there exists a constant C1 only depend-
ing on Ma and C0 such that, for 0 ≤ τ ≤ h and 0 ≤ h ≤ h0, the bound (27) holds. This gives the
condition (14).

We now consider Y1, Y2 ∈ Ek for j = 1, 2, and denote as previously, ā j = a(t, y j,k), g j the
function g j(τ, ξ) = f (τ, ξ) − ā jξ and ḡ j = ḡ[t,Y j ,h] . With (25), |s(t,Y1, h) − s(t,Y2, h)|E = |δ(t + h)|
with δ = z1 − z2 and with z j given by, z′j = ā jz j + ḡ j, and z j(t) = y j,k. The function δ satisfies the
ODE, δ′ = ā1δ + r(t), with r(t) := (ā1 − ā2)z2 + (ḡ1 − ḡ2).

Now, we have, |g1(τ, y1,i)−g2(τ, y2,i)|E ≤ | f (τ, y1,i)− f (τ, y2,i)|E+|ā1||y1,i−y2,i|E+|ā1−ā2||y2,i|E ≤

|Y1 − Y2|∞

(
K f + Ma + Ka|Y2|∞

)
. Thus, with the bound (22), for some C > 0, supt≤τ≤t+h |ḡ1(τ) −

ḡ2(τ)|E ≤ Li max0≤i≤k−1 |g1(t − ih, y1,k−i) − g2(t − ih, y2,k−i)|E ≤ C|Y1 − Y2|∞ (1 + |Y2|∞).
Meanwhile we have the upper bound (27) that gives, for t ≤ τ ≤ t + h ≤ T and h ≤ h0,

|(ā1 − ā2)z2|E Ma |Y1 − Y2|∞ |z2(τ)|E ≤ Ma |Y1 − Y2|∞ (C1h + |Y2|∞(1 + C1h)).
Altogether, we retrieve the upper bound (28) on r(t). We can end the proof as for the I-EABk

case and conclude that the stability condition (15) holds for the EABk scheme.

4.4. Consistency
Consider a solution y ∈ C1([0,T ]) to the problem (1). The functions a and b in (3) are

assumed to be Ck regular so that y is Ck+1 regular.

4.4.1. Case of the EABk scheme
The local error (18) for the EABk scheme has been analyzed in [24]. The analysis remains

valid for the case presented here and we only briefly recall it. The local error is obtained by
subtracting (7) to (5).

|ε(tn, h)|E ≤
∫ h

0
eMa(h−τ) |gn(t + τ, y(t + τ)) − g̃n(t + τ)|E dτ ≤ hϕ1(Mah)hk sup

[0,T ]

∣∣∣∣∣∣ dk

dtk
(gn(t, y(t)))

∣∣∣∣∣∣ ,
thanks to the interpolation error estimate (23). Finally, with the upper bound Ma on an, the last
term can be bounded independently of n, for h ≤ h0.

4.4.2. Case of the I-EABk scheme
We denote ã = ã[tn,Y(tn),h] and b̃ = b̃[tn,Y(tn),h]. The local error (18) for the I-EABk scheme

satisfies ε(tn, h) = |δ(tn+1)|E with δ = y− z and where z is defined by, z′ = ãz+ b̃, and z(tn) = y(tn),
so that with (24) we have s(tn,Y(tn), h) = z(tn+1). The function δ is defined with δ(tn) = 0 and
δ′ = ãδ+ r, with r(τ) := (a(τ, y(τ))− ã(τ))y(τ) + (b(τ, y(τ))− b̃(τ)). The following constants only
depend on the considered exact solution y, on the functions a and b in problem (3) and on T ,
Cy = sup[0,T ] |y|E , Ca,y = sup[0,T ]

∣∣∣∣ dk

dtk a(t, y(t))
∣∣∣∣,and Cb,y = sup[0,T ]

∣∣∣∣ dk

dtk b(t, y(t))
∣∣∣∣.
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With the interpolation bound (23), |r(τ)|E ≤ Chk on [tn, tn+1] with C = Ca,yCy + Cb,y. It has
already been showed in section 4.3 that sup[tn,tn+1] |ã(τ)| ≤ LiMa. Therefore, with the Gronwall
inequality (26), ε(tn, h) = |δ(tn+1)|E ≤ eLi Mah hChK . Thus the EABk scheme is consistent of order
k.

5. Dahlquist stability

5.1. Background
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Figure 1: Stability function ρθ(z) for z ∈ R−, for various values of θ and for the three schemes EAB2, EAB3 and EAB4.
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The classical framework for the Dahlquist stability analysis is to set f (t, y) in problem (1) to
f = λy. For linear multistep methods, see e.g. [31], the numerical solutions satisfy |yn+1/yn| ≤

ρ(λh), where ρ : C→ R+. The function ρ is the stability function. It is defined point wise by the
maximum root modulus of a family of polynomial depending on z = λh. The stability domain is
defined by D = {z ∈ C, ρ(z) < 1}. The scheme is said to be:

• A stable if C− ⊂ D,

• A(α) stable if D contains the cone with axis R− and with half angle α,

• A(0) stable if R− ⊂ D,

• stiff stable if D contains a half plane Re z < x ∈ R−.

For exponential integrators, when setting a(t, y) = λ in the reformulation (3) of problem (1), the
scheme is exact, and therefore also A stable. Such an equality does not hold in general. Then
for exponential integrators the Dahlquist stability analysis has to incorporate the relationship
between the stabilization term a(t, y) in (3) and the test function f = λy. This is done here by
considering the splitting,

f = λy = ay + b, a = θλ and b = λ(1 − θ)y,

The parameter θ > 0 controls with what accuracy the exact linear part of f in equation 1 is
captured by a in equation 3. In practice θ , 1, though we may hope that θ − 1 is small. In this
framework, the stability function and the stability domain depend on θ, following the idea of
Perego and Venezziani in [17]. For a fixed θ, the stability function is ρθ so that∣∣∣∣∣yn+1

yn

∣∣∣∣∣ ≤ ρθ(λh),

and the stability domain is Dθ = {z ∈ C, ρθ(z) < 1}.

5.2. A(0) stability

The stability functions ρθ(z) are numerically studied for z ∈ R−. These functions have been
plotted for different values of the parameter θ. The results are depicted on figure 1. A limit
lim−∞ |ρθ| is always observed. The scheme is A(0) stable when this limit is lower than 1. From
Figure 1,

• EAB2 scheme is A(0) stable if θ ≥ 0.75,

• EAB3 scheme is A(0) stable if 0.88 ≤ θ ≤ 1.9,

• EAB4 scheme is A(0) stable if 0.94 ≤ θ ≤ 1.2.

Roughly speaking, A(0) stability holds for the EABk scheme if the exact linear part of f (t, y)
in problem (1) is approximated with an accuracy of 75 %, 85 % or 95% for k = 2, 3 or 4
respectively.
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Figure 2: EAB2: isolines ρθ(z) = 1 for two different ranges. The stability domain Dθ is on the left of the isoline.
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Figure 3: Same thing as figure 2 for the EAB3 scheme.
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Figure 4: Same thing as figure 2 for the EAB4 scheme.

5.3. A(α) stability

The stability domains Dθ have been plotted for various values of θ taken from figure 1. The
results are depicted on the figures 2 to 4 for k = 2 to 4 respectively. Each figure shows the isolines
ρθ(z) = 1. The stability domain Dθ is on the left of these curves.

• Figure 2 shows that the EAB2 scheme is A(α) stable when θ = 0.75, 0.8 and 0.9 with
α ' 50, 60 and 80 angle degrees respectively.

• Figure 3 displays A(α) stability with α ' 60, 70 and 60 angle degrees for θ = 0.88, 0.9 and
1.9 respectively for the EAB3 scheme.

• For the EAB4 scheme eventually, A(α) stability holds with an angle α approximately of
65, 70 and 60 degrees for θ = 0.94, 0.95 and 1.2 respectively, as shown on figure 4.

In all cases, when A(α) stability is observed, the unstable region inside C− is made of a discrete
collection of uniformly bounded sets located along the imaginary axes. Hence, the stability
domain Dθ also contains half planes of the form Re(z) ≤ a < 0. We conjecture that, when θ is so
that the EABk scheme is A(α)-stable, then it is also stiff stable.

5.4. Conclusion

For explicit linear multistep methods, A(0) stability cannot occur, see [31, chapter V.2]. In
contrast, EABk and I-EABk methods exhibit much better stability properties. When θ is close
enough to 1, they are A(α) stable and stiff stable. Such stability properties are comparable with
those of implicit linear multistep methods. In practice, these properties will hold if the stabiliza-
tion term a(t, y) in (3) approximates the Jacobian of f (t, y) in (1) with an absolute discrepancy
lower than 25 %, 10 % and 5 % for k =2, 3 and 4 respectively.
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6. Numerical results

We present in this section numerical experiments that investigate the convergence, accuracy
and stability properties of the I-EABk and EABk schemes. The membrane equation in cardiac
electrophysiology is considered for two ionic models, the Beeler-Reuter (BR) and to the Ten-
Tusscher et al. (TNNP) models. We refer to [4] and [6] for the definition of the models. The
stiffness of these two models is due to the presence of different time scales ranging from 1 ms to
1 s, as depicted on figure 5. The stabilizer an always is a diagonal matrix in this section.
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Figure 5: Two consecutive action potentials for the TNNP model: transmembrane potential v (left) and the fast sodium
current INa (right), that is the main component of Iion during the fast upstroke of the action potential.

The membrane equation has the general form, see [34, 4, 5, 6]:

dwi

dt
=

w∞,i(v) − wi

τi(v)
,

dc
dt

= g(w, c, v),
dv
dt

= −Iion(w, c, v) + Ist(t), (29)

where w = (w1, . . . ,wp) ∈ Rp is the vector of the gating variables, c ∈ Rq is a vector of ionic
concentrations or other state variables, and v ∈ R is the cell membrane potential. These equa-
tions model the evolution of the transmembrane potential of a single cardiac cell. The four
functions w∞,i(v), τi(v), g(w, c, v) and Iion(w, c, v) are given reaction terms. They characterize the
cell model. The function Ist(t) is a source term. It represents a stimulation current.

The formulation (3) is recovered with,

a(t, y) =

−1/τ(v) 0 0
0 0 0
0 0 0

 , b(t, y) =

 w∞(v)/τ(v)
g(y)

−Iion(y) + Ist(t)

 ,
for y = (w, c, v) ∈ RN (with N = p + q + 1) and where −1/τ(v) = diag (−1/τi(v))i=1...p.

6.1. Implementation and computational cost

The computation of yn+1 with the I-EABk and EABk schemes requires the data yn−i, an−i :=
a(tn−i, yn−i), and bn−i := b(tn−i, yn−i) for i = 0 . . . k.
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EABk practical implementation
Firstly, the gn−i = bn−i + (an−i − an)yn−i are updated at each time step. Then the coefficients

γn j in table 1 are computed. Secondly, the computation of yn+1 by formula (8) also requires the
computation of the ϕ j(anh)γn j. This is a matrix-vector product in general.

In the present case of a diagonal stabilizer, it becomes a scalar-scalar product per row. The
ϕ j(anh) are computed on all diagonal entries of anh. This computation simply necessitates to
compute ϕ0(anh) = eanh (one exponential per non zero diagonal entry) thanks to the recursion
rule (9).

In general, the relation (9) can be used to replace the computation of the ϕ j(anh)γn j for
j = 0 . . . k by the computation of a single product ϕk(anh)wk. Denoting by w1 = anyn + bn and
w j = γn j + anhw j−1:

EAB2 :yn+1 = yn + h (w1 + ϕ2(anh)w2) ,
EAB3 :yn+1 = yn + h (w1 + w2/2 + ϕ3(anh)w3) ,
EAB4 :yn+1 = yn + h (w1 + w2/2 + w3/6 + ϕ4(anh)w4) .

I-EABk practical implementation
In addition, the I-EABk method (10) requires a quadrature rule of sufficient order to preserve

the scheme accuracy and convergence order. We used the Simpson quadrature rule for the cases
k = 2, 3 and the three point Gaussian quadrature rule for k=4. We point out that an is assumed
diagonal here so that the matrix exponentials below actually are scalar exponential.

The I-EABk method with Simpson quadrature rule reads,

yn+1 = eg̃1 (yn + bnh/6) +
(
b̃1 + 4 eδ b̃1/2

)
h/6,

where (with the notations of section 2.2) g̃1 = g̃n(tn+1), δ = g̃1 − g̃n(tn + h/2), b̃1 = b̃n(tn+1) and
b̃1/2 = b̃n(tn + h/2). These coefficients are given for k = 2 by,

g̃1 = (3an − an−1) h/2, δ = (7an − 3an−1) h/8, b̃1 = 2bn − bn−1, b̃1/2 = (3bn − bn−1)/2,

and for k = 3 by,

g̃1 = (23an − 16an−1 + 5an−2) h/12, δ = (29an − 25an−1 + 8an−2) h/24,

b̃1 = 3bn − 3bn−1 + bn−2, b̃1/2 = (15bn − 10bn−1 + 3bn−2) /8.

The I-EABk method with the three point Gaussian quadrature rule reads,

yn+1 = eg̃1

(
yn +

h
18

(
5b̃l e−g̃l +8b̃0 e−g̃0 +5b̃r e−g̃r

))
,

with b̃s = b̃n(ts), g̃s = g̃n(ts) for s ∈ {l, 0, r} where tl = tn + (1 −
√

3/5))h/2, t0 = tn + h/2,
tr = tn + (1 +

√
3/5))h/2 and with g̃1 = g̃n(tn+1). These parameters are linear combination of the

data an−i, bn−i for i = 0 . . . k−1 with fixed coefficients. Formula for k = 4 follow. The parameters
b̃s are given by

16b̃0 = 35bn − 35bn−1 + 21bn−2 − 5bn−3,
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and

40b̃r = (95 + 179
√

15/15)bn − (107 + 119
√

15/5)bn−1

+ (69 + 79
√

15/5)bn−2 − (17 + 59
√

15/15)bn−3,

and b̃l is the radical conjugate of b̃r (the radical conjugate of x +
√

y is x −
√

y). Finally, the
parameters g̃s definition is

24/hg̃1 = 55an − 59an−1 + 37an−2 − 9an−3,

384/hg̃0 = 297an − 187an−1 + 107an−2 − 25an−3,

and

200/hg̃r =
(
797/4 + 45

√
15

)
an −

(
2233/12 + 47

√
15

)
an−1

+
(
1373/12 + 29

√
15

)
an−2 −

(
331/12 + 7

√
15

)
an−3,

and g̃l is the radical conjugate of g̃r.

Computational cost
Consider an ODE system (1) whose numerical resolution cost is dominated by the computa-

tion of (t, y) 7→ f (t, y). This might be the case in general for “large and complex models”. For
such problems explicit multistep methods are relevant since they will require one such operation
per time step. In contrast, implicit methods, associated to a non linear solver, may necessitate a
lot of these operations, especially for large time steps when convergence is harder to reach.

In addition, the I-EABk and EABk schemes need several specific operations. In the case of a
diagonal function a(t, y) they have been previously described: the EABk require one scalar expo-
nential computation per non zero row of a(t, y), the I-EABk with Simpson rule needs twice more
and the I-EAB3 with 3 point Gaussian quadrature rule four times more. Such a cost is not negli-
gible, but is at worst of same order than computing (t, y) 7→ f (t, y) for complex models. For the
TNNP model considered here, computing (t, y) 7→ f (t, y) costs 50 scalar exponentials whereas
the EABk implementation adds 7 supplementary scalar exponentials per time step. In terms of
cost per time step, the EABk method is rather optimal. The relationship between accuracy and
cost of the EABk method has been investigated in [35]: more details are available in section 6.4.

6.2. Convergence
For the chosen application, no theoretical solution is available. Convergence properties are

studied by computing a reference solution yre f for a reference time step hre f with the Runge
Kutta 4 scheme. Numerical solutions y are computed to yre f for coarsest time steps h = 2phre f

for increasing p. Any numerical solution y consists in successive values yn at the time instants
tn = nh. On every interval (t3n, t3n+3) the polynomial y of degree at most 3 so that y(t3n+i) = y3n+i,
i = 0 . . . 4 is constructed. On (0,T ), y is a piecewise continuous polynomial of degree 3. Its
values at the reference time instants nhre f are computed. This provides a projection P(y) of
the numerical solution y on the reference grid. Then P(y) can be compared with the reference
solution yre f . The numerical error is defined by,

e(h) =
max |vref − P(v)|

max |vref|
, (30)

17



1e − 06

1e − 04

1e − 02

1e + 00

1e − 04 1e − 02 1e + 00

e(
h)

Time step h

I-EAB2
EAB2

slope 2

1e − 08

1e − 06

1e − 04

1e − 02

1e + 00

1e − 04 1e − 02 1e + 00

e(
h)

Time step h

I-EAB3
EAB3

slope 3

1e − 08

1e − 06

1e − 04

1e − 02

1e + 00

1e − 02 1e + 00

e(
h)

Time step h

I-EAB4
EAB4

slope 4

Figure 6: Relative L∞ error e(h) for the I-EABk and EABk schemes, k = 2, 3 and 4, and for the BR model.
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where the potential v is the last and stiffest component of y in equation 29.
The convergence graphs for the BR model are plotted on figure 6. All the schemes display

the expected asymptotic behavior e(h) = O(hk) as h→ 0, as proved in theorem 1.

6.3. Stability
The stiffness of the BR and TNNP models along one cellular electrical cycle (as depicted

on figure 5) has been evaluated in [36]. The largest negative real part of the eigenvalues of the
Jacobian matrix during this cycle is of −1170 and −82 for the TNNP and BR models respectively.
This means that the TNNP model is 15 times stiffer than the BR model (15 ' 1170/82).

We want to evaluate the impact of this increase of stiffness in terms of stability for the EABk

and I-EABk schemes and to provide a comparison with some other classical time stepping meth-
ods. To this aim we consider the critical time step ∆t0. It is defined as the largest time step such
that the numerical simulation runs without overflow nor non linear solver failure for h < ∆t0.
The numerical evaluation of ∆t0 is easy for explicit methods. For implicit methods, the choice of
the non linear solver certainly impacts ∆t0. Without considering more deeply this problem, we
just carefully set up the non linear solver, so as to provide the largest ∆t0. In practice, we have
been using a Jacobian free Krylov Newton method.

Table 2: Critical time step ∆t0

(a) Classical methods

BR TNNP

AB2 0.124 × 10−1 0.850 × 10−3

BDF2 0.306 0.158

AB3 0.679 × 10−2 0.464 × 10−3

BDF3 0.362 0.181

AB4 0.372 × 10−2 0.255 × 10−3

RK4 0.338 × 10−1 0.255 × 10−2

BDF4 0.423 0.201

(b) I-EABk and EABk exponential methods

BR TNNP

I-EAB2 0.121 0.103
EAB2 0.424 0.233

I-EAB3 0.103 0.123
EAB3 0.203 0.108

I-EAB4 0.133 0.106
EAB4 0.122 0.756 × 10−1

Results are on table 2. The Adams Bashforth (ABk) and the backward differentiation (BDFk)
methods of order k have been considered, together with the RK4 scheme.

The ABk and the RK4 schemes have bounded stability domain (see [31, p. 243]). Then it
is expected for the critical time step to be divided by a factor close to 15 between the BR and
TNNP models. Results presented in table 2 show this behavior.

The BDF2 scheme is A-stable whereas the BDF3 and BDF4 are A(α)-stable with large angle
α (see [31, p. 246]). Hence the critical time step is expected to remain unchanged between the
two models. Table 2 shows that the ∆t0 actually are divided by approximately 2.

The critical time steps for the I-EABk and EABk models are presented in table 2. The critical
time steps for the I-EABk schemes remain almost unchanged from the BR to the TNNP model.
For the EABk, they are divided by approximately 2, which behavior is similar as for the BDFk

method.
As a conclusion, for the present application, the EABk and I-EABk methods are as robust to

stiffness than the implicit BDFk schemes, though being explicit. As a matter of fact, section 5
shows that the stability domains for the I-EABk and EABk schemes depend on the discrepancy
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between the complete Jacobian matrix and a(t, y). In the present case, a(t, y) only contains a
part of the Jacobian matrix diagonal. It is very interesting to notice that robustness to stiffness is
actually achieved with this choice. It is finally also interesting to see that the critical time steps
of implicit and exponential methods are of the same order.

6.4. Accuracy
In terms of accuracy, the schemes can be compared using the relative error e(h) in equation

(30). The EABk and I-EABk schemes can be compared with the ABk methods only at very small

Table 3: Accuracy e(h) for the ABk ,I-EABk and EABk schemes: using the BR model and fixed time step h = 10−3

k = 2 k = 3 k = 4

ABk 5.32 × 10−6 4.33 × 10−8 8.69 × 10−10

I-EABk 8.55 × 10−6 4.44 × 10−8 7.30 × 10−10

EABk 7.90 × 10−6 7.00 × 10−8 1.16 × 10−9

time steps, because of the lack of stability of ABk schemes (see table 2). In table 6.4 are given the
accuracies of these methods for a given time step h = 10−3 and for the BR model. Ii is observed
that the same level of accuracy is obtained with ABk and EABk at fixed k. These figures illustrate
that inside the asymptotic convergence region, EABk, I-EABk and ABk schemes are equivalent
in terms of accuracy.

Table 4: Accuracy for the TNNP model

(a) EABk

h k = 2 k = 3 k = 4

0.1 0.351 0.530
0.05 9.01 × 10−2 5.59 × 10−2 8.93 × 10−2

0.025 2.14 × 10−2 7.34 × 10−3 8.34 × 10−3

(b) BDFk

h k = 2 k = 3 k = 4

0.1 0.129
0.05 3.57 × 10−2 1.15 × 10−2 1.44 × 10−2

0.025 1.10 × 10−2 2.58 × 10−3 2.38 × 10−3

Comparison at large time steps between the EABk and BDFk for the TNNP model is shown
in table 4. These figures show that for large time steps BDFk is more accurate than EABk. A
gain in accuracy of factor 2.5, 5 and 6 is observed for h = 0.05 and for k=2, 3 and 4 respectively.
However, compare row 3 for EABk (h = 0.025) with row 2 for BDFk (h = 0.05). It shows that
the numerical solutions with an accuracy close to 0.01 are obtained when dividing the time step
by (at most) 2 between BDFk and EABk. Meanwhile, EABk with h = 0.025 costs less than BDFk

with h = 0.05, as developed in section 6.1.
We conclude that EABk schemes provide a cheaper way to compute numerical solutions at

large time step for a given accuracy. The same conclusion also holds for the BR model, see table
20



5. A deeper analysis of the relationship between accuracy and computational cost for the EABk

scheme as compared to other methods is available in [35] with the same conclusion.

Table 5: Accuracy for the BR model

(a) EABk

h k = 2 k = 3 k = 4

0.2 0.284 0.516
0.1 9.26 × 10−2 9.17 × 10−2 0.119

0.05 8.20 × 10−2 1.09 × 10−2 8.96 × 10−3

(b) BDFkk

h k = 2 k = 3 k = 4

0.2 9.74 × 10−2 4.09 × 10−2 4.98 × 10−2

0.1 3.44 × 10−2 1.04 × 10−2 1.27 × 10−2

0.05 9.74 × 10−3 2.29 × 10−3 2.02 × 10−3

In table 5 are given the accuracies at large time step now considering the BR model. Com-
parison with table 4 shows that accuracy is preserved by dividing h by 2 when switching from
the BR to the TNNP model. As already said, the TNNP model is 15 times stiffer than the BR
model.

We conclude that the EABk schemes also exhibit a large robustness to stiffness in terms of
accuracy. This robustness is equivalent as for the implicit BDFk schemes. This is remarkable for
an explicit scheme, as for the robustness to stiffness in terms of critical time step discussed in the
previous subsection.
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