Liquid index matching for 2D and 3D terahertz imaging
Résumé
Two-dimensional (2D) terahertz imaging and 3D visualization suffer from severe artifacts since an important part of the terahertz beam is reflected, diffracted, and refracted at each interface. These phenomena are due to refractive index mismatch and reflection in the case of non-orthogonal incidence. This paper proposes an experimental procedure that reduces these deleterious optical refraction effects for a cylinder and a prism made with polyethyl-ene material. We inserted these samples in a low absorption liquid medium to match the sample index. We then replaced the surrounding air with a liquid with an optimized refractive index, with respect to the samples being studied. Using this approach we could more accurately recover the original sample shape by time-of-flight tomography.