
HAL Id: hal-01393973
https://hal.science/hal-01393973v1

Submitted on 8 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Autoreloc: Automated Design Flow for Bitstream
Relocation on Xilinx FPGAs

André Lalevee, Pierre-Henri Horrein, Matthieu Arzel, Michael Hübner,
Sandrine Vaton

To cite this version:
André Lalevee, Pierre-Henri Horrein, Matthieu Arzel, Michael Hübner, Sandrine Vaton. Autoreloc:
Automated Design Flow for Bitstream Relocation on Xilinx FPGAs. DSD 2016 : Euromicro Con-
ference on Digital System Design, Aug 2016, Limassol, Cyprus. pp.14 - 21, �10.1109/DSD.2016.92�.
�hal-01393973�

https://hal.science/hal-01393973v1
https://hal.archives-ouvertes.fr


AutoReloc: Automated design flow for bitstream
relocation on Xilinx FPGAs

André Lalevée∗, Pierre-Henri Horrein∗, Matthieu Arzel∗, Michael Hübner†, Sandrine Vaton∗
∗ Telecom Bretagne, Brest, France

{andre.lalevee, ph.horrein, matthieu.arzel, sandrine.vaton}@telecom-bretagne.eu
† Ruhr-Universität Bochum - RUB , Bochum, Germany

michael.huebner@ruhr-uni-bochum.de

Abstract—Dynamic and partial reconfiguration of Field Pro-
grammable Gate Arrays (FPGA) enable to reuse logic resources
for several applications which are scheduled in a sequential order
or which are loaded on demand. A fraction of the design on the
FPGA is then substituted by another logic function while the rest
of the system on the chip stays unaffected. If a design provides
several partial reconfigurable areas, the configuration bitstream
representing the logic function to be configured in this region
has to be adapted to the physical requirements of this chip area.
This can be achieved by deploying a repository with all possible
configuration bitstreams for all possible regions. It is obvious
that storage space can quickly become a limiting parameter in
reconfigurable designs. For this purpose, bitstream relocation
provides a less storage greedy approach. Only one representation
as bitstream of an application needs to be stored. During the
configuration process, a relocation algorithm manipulates the
bitstream in order to suit it to the respective reconfigurable area.
However, reconfigurable regions have to fulfill strong constraints
for a relocation to be possible, which makes the selection and
placement of reconfigurable regions a complex process. Unfor-
tunately this is not automated by tools so far. In this paper,
an approach to automate the development of such relocatable
bitstreams is presented along with new algorithms related to
relocation specific steps. This approach results in functional
designs with minimal intervention from the designer.

I. INTRODUCTION

Dynamic Partial Reconfiguration (DPR) has now grown
into a reliable way to enhance flexibility on FPGA designs.
Indeed, it offers the ability to modify the functionality of
predefined regions of the FPGA during run-time. This provides
time sharing capabilities, since a same region of the FPGA can
be used for different computing modules at different times.
It also increases adaptability of FPGA-based implementations,
since required modules can be selected at run-time. Predefined
regions can be reconfigured using partial bitstreams, which
contain information relative to the reconfigurable resources
inside the considered region only.

However, this comes along with several major drawbacks.
First, reconfigurable designs usually require more skills and
knowledge of the specific target, as the designer has to manu-
ally constraint the EDA tools in order to create some regions
on the FPGA that would be able to be reconfigured. Second,
depending on the design, many modules might be required in
many regions. Partial bitstreams contain the implementation of
a specific module on a selected region, which means that for
each module/region pair, a partial bitstream must be provided.
The number of partial bitstreams to store in an application can
increase very quickly, as well as the time needed to implement
and generate all bitstreams.

Bitstream relocation is a technique that allows a designer
to use only one partial bitstream to configure a specific module
in multiple distinct regions. This technique aims at selecting
similar predefined reconfigurable regions in the FPGA, in
order to have the same reconfiguration information for each
region. Thus, both the amount of memory needed to store all
partial bitstreams and the time required to generate the whole
design are greatly decreased. However, this technique requires
even more skills and target knowledge than usual dynamic
partial reconfiguration in order to be performed, because the
user has to identify compatible regions for relocation, as
well as manipulate low-level bitstream information. Also, the
additional steps required to make a design that allows bitstream
relocation are usually time-consuming and error-prone. As a
result, relocation is usually too complex to use, despite its
promising advantages.

In order to automate some steps of reconfigurable de-
sign when using bitstream relocation, some techniques have
already been proposed. However, two main issues remained
unresolved: floorplanning and timing constraints management.
In this article, we introduce a new automated design flow that
allows a designer to easily make use of bitstream relocation in
Xilinx FPGA. Xilinx is the main FPGA vendor when dealing
with DPR. This design flow only requires a small number
of parameters from the user, such as the number of required
reconfigurable regions. It is partly based on automated scripts
for state-of-the-art techniques available in the literature. It also
integrates efficient solutions to solve floorplanning and timing
constraints issues. The complete design flow is freely available
under an open source license [1].

This paper is divided as follows. Section II presents related
work on bitstream relocation as well as missing steps required
to integrate this technique in an automated design flow. Our
proposed design flow, along with the techniques we introduce
to perform the previously identified missing steps, are detailed
in section III. In section IV, the first tests performed on our
design flow are presented, along with its current implemen-
tation status. Finally, we present our conclusions and future
work in section V.

II. CONTEXT AND OBJECTIVES

Among all the existing FPGA technologies, SRAM con-
figuration is one of the most common. It uses SRAM as the
configuration layer, which allows fast and volatile configura-
tion storage. One of the characteristics of an SRAM is that
each element can be addressed independently. This has led
to an interesting possibility: dynamic partial reconfiguration



(DPR). DPR allows to reconfigure only a selected part of an
FPGA during run-time, meaning that the remaining portions
of the FPGA are still in operation.

A classical partially reconfigurable design is divided into
two distinct parts: the reconfigurable part and the static part.
The usual design approach is to identify physical regions in the
FPGA fabric which are adapted to the desired reconfigurable
modules. All the regions which are not selected are used for
the static part, and will host the parts of the design which
will not be allowed to be reconfigured during execution. Each
dynamic module can be hosted in a reconfigurable region
for which it has been implemented using a partial bitstream.
In the Xilinx PlanAhead design flow [2], the interfaces are
placed on fixed locations (Partition Pins) in order to be sure
that all the reconfigurable regions will have the same IOs
(Inputs/Outputs).

However, it can happen that some modules have to be
configured in more than one region. For each of these modules,
one partial bitstream per reconfigurable region is needed.
For example, if M modules have to be configured in N
regions, M × N partial bitstreams would be needed. This
has several drawbacks. It means long implementation times,
since synthesis, placing, routing and bitstream generation are
usually long processes. It also increases the bitstream storage
place required, and the complexity of run-time reconfiguration
management. Storage space requirements can be decreased
using data compression algorithms [3]. Very high compression
ratio can be obtained (up to 80% according to the experiments
in [3]). However, it does not decrease the number of bitstreams
to manage, and when dealing with high values of M and N ,
the resulting space can still be big.

A. Bitstream relocation on Xilinx FPGAs

Bitstream relocation is a technique that allows a partial
bitstream to be used to reconfigure a part of the FPGA for
which it was not generated. Through this technique, only a
single partial bitstream is needed in order to implement a
dynamic module in multiple reconfigurable regions. This can
result in shorter design times, as each dynamic module only
needs one physical implementation regardless of the number
of relocatable regions. It can also reduce the memory space
required to store partial bitstreams, as only one bitstream is
enough to implement it in any relocatable region. Since the
use of fast but expensive memories is likely to improve per-
formance, this last point can be a key aspect in reconfigurable
designs.

However, bitstream relocation is not as straightforward
as a simple reconfigurable design. Indeed, several additional
requirements have to be satisfied in order for relocation to be
possible. Most of those requirements for Xilinx FPGAs have
been detailed in [4] and [5], as well as various ways to fulfill
them. The main requirements presented in these papers are:

• identical (size and resources arrangement) origin and
destination region

• identical relative partition pins placement

• identical routing between the static part and relocat-
able regions

The last condition is fulfilled by 1) preventing the static
part from using resources located in a reconfigurable region
and 2) adding LUTs next to every partition pin.

Once the partial bitstreams are generated, a relocation can
be performed by changing the FAR (Frame Address Register,
i.e. the starting configuration address) values(s) in the bit-
stream. Hardware versions, called REPLICA and REPLICA2,
of this address manipulation are provided for Virtex, Virtex-E,
Virtex-II and Virtex-II Pro in [6] and [7] though it seems that
no hardware relocator is available for newer targets.

However, though recent work [4] [5] includes techniques
that ensure the possibility of bitstream relocation, no effort
that we are aware of has been presented toward automation of
this process, which can be long, error prone, and which may
have to be done again manually when a new module has to be
implemented (as the predefined regions may not be able to host
that new module). Relocation also usually requires extensive
knowledge of FPGAs. Moreover, several key steps are missing,
such as an efficient automated floorplanning algorithm adapted
to bitstream relocation, and a timing constraining technique
that can ensure that the relocated module will still respect
timing constraints without any functional disorder.

While GoAhead [8] supports bitstream relocation, its ap-
proach does not ensure that relocation will be possible. Indeed,
instead of making sure that a specific region will be able
to host a module generated for another region, this design
flow checks if a relocation is possible and regenerates another
partial bitstream for the new region if not. This results in a
fairly limited control over the relocation for the designer.

Other design techniques focus on the relocation between
non-identical regions, as [9], however, we decided to only
consider relocations between identical regions in the first
version of our design flow, as it keeps the floorplanning and
regions constraining simpler, even if these techniques could be
added in future developments.

B. Automated floorplanning

The main aim of a floorplanning algorithm is to efficiently
partition the FPGA layout between a static part, which will
always have the same functionality, and dynamic regions,
which will be able to host different algorithms during run-
time.

Several algorithms have already been proposed for tradi-
tional reconfigurable designs, such as in [8], [10], [11], [12],
[13], [14], [15]. However, these algorithms usually outputs
very compact static part, i.e. designs in which reconfigurable
regions are located close to each other in the reconfigurable
fabric. Since relocation techniques often prevent the static part
from using resources inside reconfigurable regions, some space
is required between those regions to allow placing and routing
in the case when the static part needs to be directly interfaced
with dynamic regions. If reconfigurable regions are too close,
it may prevent the static part from accessing the reconfigurable
regions, which would render them useless. Another approach
presented in [16] makes sure that the static part will have
enough space to be successfully placed and routed. However,
as all regions have to be identical, this recursive bipartionning
approach seems inadequate, since some potential candidates
are likely to be discarded if placed on the cuts.



As a result, existing algorithms are not suited to floor-
planning for reconfiguration with relocation. Moreover, those
algorithms do not take advantage of the fact that all the relocat-
able regions have to be identical, which drastically reduces the
search space, thus resulting in far shorter computation times.

A simple floorplanning algorithm intended for bitstream
relocation is presented in [17], but it stops as soon as a
valid floorplan is found, without considering other possible
floorplans. The resulting floorplan is not likely to be optimal
regarding timing issues and regions shapes.

C. Timing constraining

In this paper, we consider relocations between identical
regions only. As a result, we can assume that delays inside a
reconfigurable module are dependant on the module only, and
not on the region. This means that whatever the destination
region, delays will remain unchanged when compared with
the ones in the region it was implemented for. However, this
assumption does not apply to the interface with the static
part. It is likely that the nets that belong to the interface
between the static part and the partition pins will not have
the same delay depending on the relocatable region. Hence,
it is possible that the new delay (new static to dynamic+
inside relocatable region) will not satisfy the specified tim-
ing constraints.

To the best of our knowledge, this problem has not been
addressed before. In this study, we present a solution that
ensures that delays inside reconfigurable modules will be
compliant with timing constraints whatever the relocatable
region. As a result, the proposed framework ensures that
the resulting design respects timing constraints whatever the
dynamic configuration will be.

III. PROPOSED APPROACH: AUTOMATED DESIGN FLOW

In this section, we describe our framework to automate
the generation of reconfigurable designs using bitstream relo-
cation. After a general presentation, we detail two steps that,
as far as we know, have not been fully addressed before in
the case of bitstream relocation. This design flow aims at
being user-friendly, as it greatly limits user intervention in the
process. As a result, it requires less skills than for a traditional
partially reconfigurable design. Once all inputs are provided,
a simple configuration script has to be run, before a single
building command (based on the standard make command)
generates the whole design.

A. General View

1) Inputs: In order to use our design flow, a designer has
to provide the following files:

• an RTL (VHDL or Verilog) description of the static
part, in which all reconfigurable regions must be
instantiated as black boxes,

• an RTL (VHDL or Verilog) description of each dy-
namic module,

• a user constraint file (unlike for usual dynamically
reconfigurable designs, reconfigurable regions data
must not be specified),

• a user configuration file, in which the following pa-
rameters must be specified:
◦ the part, package and speed grade of the tar-

geted FPGA,
◦ the top module of the project,
◦ the number of reconfigurable regions,
◦ the list of all dynamic modules these regions

must be able to host,

It is interesting to note that there is very little difference
when compared with a traditional non-DPR design. Apart
from a specific hardware design structure in which static
and reconfigurable parts are explicitly provided, and from the
number of regions and interfaces, all other inputs are expected
when designing for an FPGA.

2) Outputs: Our design flow automatically generates a
bitstream for the static part, as well as a single partial bit-
stream for each module. The partial bitstreams only need a
modification on the FAR value to be used for another region,
which can be easily and automatically computed from the
location information available in the UCF (User Constraint
File). This modification is done through a simple bitstream
manipulation program. A software version of this program
is currently available, and a hardware version which can be
transparently integrated in the design is under development.
This hardware version should improve execution time, since
it will be pipelined with data transfer to the reconfiguration
controller, and a copy of the relocated bitstream is avoided.

3) Automated design flow: Our automated design flow is
illustrated in figure 1. This design flow merges the steps of
a usual design flow for partially reconfigurable designs, and
the required steps for bitstream relocation. On this figure,
the usual steps of the Xilinx PlanAhead [2] design flow are
highlighted in blue. The steps highlighted in green with dashed
lines have already been investigated, but never included in a
single automated design flow. Finally, the steps in red with
thick lines correspond to the original contributions presented
in this paper.

All the steps described in the next paragraphs are auto-
mated, and launched by the script. The final user does not
have to do it himself.

First, the static part and the dynamic modules are synthe-
sized separately using Xilinx XST.

The dynamic netlists are then passed to a floorplanning
algorithm (see section III-B), which will automatically find
the shape and positions of all relocatable regions, based on
the resources that are needed by the dynamic modules, and
on the number of relocatable regions required by the user.
Once the floorplanning is done, a simple shell script writes
the constraints related to bitstream relocation in the UCF,
accordingly to the regions previously identified, and based on
the flow detailed in [4] and [5]. In order to prevent the static
part from using resources inside the relocatable region, this
design flow uses the PlanAhead PRIVATE constraint, which
has no equivalent in the Vivado design suite yet, which is why
our design is still not compliant with Vivado.

Then, the static part is implemented using the PlanAhead
flow. The added LUTs, described in [4], are also placed during
this step. The static placed and routed part of the design is
analyzed by FPGA Editor in order to find the maximum usable



Fig. 1. General view of the proposed design flow

delay for each LUT of the dynamic regions interfaces (more
details are provided in section III-C). The dynamic modules
are then implemented in only one region, using the timing
constraints found by the timing constraining step.

Once the static part as well as all the dynamic modules
have been implemented, the tool generates one bitstream per
module, which can then be implemented in another relocatable
region using a relocation software that simply changes the FAR
value(s) in the original bitstream.

B. A new floorplanning algorithm

In order to automatically find a valid placement for all the
relocatable regions, a new floorplanning algorithm has been
developed. As all the regions must be identical in terms of
shape, and resources arrangement, this algorithm is divided
into two distinct steps: pattern (i.e. shape and arrangement in
resources) choice, and regions selection.

1) Pattern choice: The first step of the proposed floorplan-
ning algorithm consists in finding a pattern which will contain
enough resources to host each dynamic module and whose
number of occurrences on the target is at least equal to the
number of reconfigurable regions required by the user.

On a Xilinx FPGA, the reconfigurable fabric is divided
into clock regions, which are groups of resources connected
to the same dedicated clock network, and that have all the same
height. The smaller reconfigurable element is a frame, which
is always a clock region high. Usually, if a reconfigurable
region’s height is not equal to an integer number of clock
regions, there is no problem (assuming the reconfiguration
is glitch free, and that LUTs inside the region are not used
to carry state), as the part of each frame that belongs to
the static part will be reconfigured the same way it already
was. However, in the case of a bitstream relocation, if a
reconfigurable region is not an integer number of clock regions
high, chances are that the part of frames around the original
region that belongs to the static part are different from the one
around the destination region. By forcing all the relocatable
regions to span the whole height of clock regions, i.e. ensuring
that each frame will belong entirely either to the static part or
to a relocatable region, we can then prevent the relocation from
causing any functional disorder. Thus, we will only consider
regions that are an integer number of clock regions high in the
exploration.

First, we have to evaluate the number of resources (slices,
DSPs and BRAMs) that will be needed to implement each
dynamic module in a relocatable region. This is easily done,
by analyzing synthesis reports provided by XST, and storing
the maximum found for each resource type. However, while
synthesis results can give good indications of the needed re-
sources, they are not fully reliable. Moreover, it is often needed
to reserve more resources than necessary to successfully place
and route a module inside a region. Thus, we add 10% on the
resources estimated in the synthesis reports in order to avoid
possible congestions. In the future, we also plan to introduce
an optional iterative implementation flow which will decrease
the pattern size as long as all modules can be implemented, or
increase it if the first pattern found does not provide enough
space to implement all modules.

Possible algorithms to find fitting patterns have already
been proposed. One solution described in [18] is to search



for all the patterns that are one clock region high (only).
This algorithm searches for patterns and removes all patterns
that are included in other patterns. While it provides a lot of
possibilities, it involves many unnecessary steps and it is rather
complex. Another solution provided in [17] is to search for one
fitting pattern with the given resources constraints and to stop.
This solution is not sufficient since pattern selection is not
possible, but the proposed algorithm is efficient, simple, and
simple to improve. We decided to extend this second approach
to find all fitting patterns.

Also, on recent Xilinx FPGAs, such as 7 series, intercon-
nect tiles are horizontally added between slices, in order for
the clock network to be easily routed. This means that if one
end of the interconnect tile is included in a reconfigurable
region, the other end must also be included in that region. As
a result, each slice column of the fabric can only be placed
either on a left border or a right border of a reconfigurable
region (of course this problem only occurs for slice columns
placed on a region border). This also means that if a slice that
contains the left part of an interconnect tile is included in a
reconfigurable region, the slice that contains the right part of
the same interconnect tile must also be included. Thus, the
layout description used for our pattern selection must provide
information about the possibility for each slice column to be
placed either on a right or left border.

An example of our algorithm is described in figure 2. As
in the original algorithm, we start on the top left column (one
clock region high) of the layout of the FPGA, and shift it
to the right until we find a slice column that can be placed
on a left border (step a), and we extend the region to the
right until it meets all the required resources constraints (step
b). We re-extend it until we meet a slice column that can be
placed on a right border (step c). We then shrink the obtained
region from the left until one resource type is not sufficient
enough anymore (step d), and we re-extend it to the left until
the next slice column that can be placed on a left border (step
e). Hence, we are sure that the pattern will not be included
in another fitting pattern. Then we shift the starting position
of the algorithm from one to the right, starting from the slice
column that can be placed on a left border of the last found
pattern (step f ), and we iterate the process, until we reach
the right border of the FPGA. We iterate this whole process
twice: one time by incrementing the starting row of the FPGA
(as some rows of the fabric can differ from the other ones),
and the second time by incrementing the height of the pattern
by one clock region, until we cover the whole fabric. If at
any time a non-reconfigurable column is found, the research
is restarted (step f ) on the column after the non-reconfigurable
region.

For each pattern found, the tool counts its number of
occurrences on the FPGA, and we eliminate the ones that can
not be found at least the number of times specified by the
designer without overlapping. Finally, the selected pattern is
determined using the following criteria (in that order): least
number of rows, most number of occurences, least resource
waste. These are still arbitrary criteria, since it is difficult to
find a fitting score for patterns. In the future, depending on the
results of experimental works being carried out, this criteria
will probably be refined in order to obtain designs meeting
some user-selected optimization criteria such as area waste, or
time performance.

L

L

L

L

L

L

L

L

L L L L L L

L L L L

R R R R R R R R R R

R R R R R R R R

L

L

L

L

L

L

L

L

L L L L L L

L L L L

R R R R R R R R R R

R R R R R R R R

L

L

L

L

L

L

L

L

L L L L L L

L L L L

R R R R R R R R R R

R R R R R R R R

L

L

L

L

L

L

L

L

L L L L L L

L L L L

R R R R R R R R R R

R R R R R R R R

L

L

L

L

L

L

L

L

L L L L L L

L L L L

R R R R R R R R R R

R R R R R R R R

L

L

L

L

L

L

L

L

L L L L L L

L L L L

R R R R R R R R R R

R R R R R R R R

a) Start b) Extension 1 (enough resources)

c) Extension 2 (right border) d) Shrinking (not enough resources)

e) Extension 3 (left border)
-> Fitting pattern

f) Next iteration

 Slices (left border compatibility) BRAMs DSPs Non reconfigurableL

 Slices (right border compatibility)R

Fig. 2. Example of iterative identification of fitting patterns: needs 8 slice
columns, 1 BRAM column and 1 DSP column

2) Regions selection: Once a valid pattern has been se-
lected for our dynamic modules, the tool has to select, among
all the occurrences of this pattern on the FPGA, the ones
that will be reserved as reconfigurable regions. Of course,
configurations where some regions overlap can not be kept.

The resulting selection must respect two criteria. First, the
regions must not be too far away from each other, in order
to reduce communication delays between them, and thus to
improve final performance. Second, the regions must not be
too close to each other, in order not to cause congestion
problems to the static part that could have to be placed between
regions. Indeed, the bitstream relocation prevents the static part
from using resources inside reconfigurable regions, so placing
those dynamic regions too close to each other could make it
impossible for the static part to be successfully (or at least
efficiently) placed and routed. This means the algorithm has
to identify floorplans with reconfigurable regions close to each
other while the static part still has enough space to be routed.
One floorplan type that corresponds to these criteria would
be a floorplan where all adjacent reconfigurable regions are
separated by a distance equal to the minimal number space
required by he static part to be routed.

Thus, we had to find an objective function that will meet
both criteria when minimized. For each region that belongs
to the configuration being estimated, we compute the minimal
euclidean distance between each border of that region (4, as
reconfigurable regions have to be rectangular) and the closest
region (or target border) inside a quarter plan located between
two rays starting from the border ends and inclined by +/-
45◦from an horizontal line (see an example on figure 3).

For each distance thus obtained, two tests are run:

• if the distance is less than an empirically predefined
threshold, a penalty is added to it, equal to (distance −
threshold)2 (this way we make sure that regions too close
will not minimize the objective function)

• if the distance is the distance with a border of the FPGA,
and if it is greater than the threshold, it is not counted



Fig. 3. Example of distances computation for one region (pattern is slice-
slice-BRAM-slice-slice × one clock region)

The function we choose to minimize is the sum of the mean
of all kept distances and their standard deviation. Though the
comparison threshold is still defined empirically (for now equal
to the number of slices in a slice column), we plan to refine
it based on the static part complexity, which will allow the
algorithm to place the regions closer if the static part can
be easily routed, and further if the static part is likely to
present congestion problems. We also plan to investigate more
penalty functions, because while the square function provides
satisfying results, some others could be more adapted to this
approach.

As the number of possible configurations can be really
high, an exhaustive search for the minimization of the objective
function is not a viable solution. Hence, we decided to imple-
ment a simulated annealing in order to achieve near-optimal
results in an acceptable computation time. At each iteration of
the algorithm, one region is randomly swapped with another
one which did not belong to the previous configuration, and
the temperature follows a geometric progression.

Once the simulated annealing is done, the tool just have
to write the information relative to the selected regions in the
UCF.

C. Timing constraining

When relocating a bitstream without taking any precaution,
it is possible that the original timing constraints, which are
valid for the origin region, will not be satisfied for the
destination region. Indeed, whereas we are sure that both the
original and relocated modules will have the same delays
inside the reconfigurable regions (as both regions are strictly
identical), we can not guarantee that the delays from the static
part to the reconfigurable region, or vice-versa, will respect
the timing constraints, as we do not have any control over the
placement and routing of the static part.

One simple solution to this problem would be to use
synchronous interfaces between the static part and relocatable

regions, but this would prevent the user from using asyn-
chronous communication protocols (such as a simple req/ack
protocol) between the static and dynamic parts.

Instead we propose a new technique that ensures that
all the interface delays (i.e. from input partition pin to first
register, of from last register to output partition pin) inside the
reconfigurable regions would be small enough to allow each
reconfigurable module to be successfully implemented in any
relocatable region of the design.

Once the static part has been implemented using Xilinx
PAR, the tool uses FPGA Editor in order to get all the delays
in the design. Then, for each pin that belongs to the interface
between a relocatable region and the static part, the tool finds
the maximum delay for that pin among all the reconfigurable
regions. The maximum delay found is then used to constrain
delays for the dynamic modules implementation using the UCF
constraints:

PIN ”rp inst region number.module out<pin number>”
TPSYNC = regions output pin number;

TIMESPEC TS from RM to PP output pin number =
TO ”regions output pin number” (clock period - max delay) ns;

PIN ”rp inst region number.module in<pin number>”
TPSYNC = regions input pin number;

TIMESPEC TS from PP input to RM pin number =
TO ”regions input pin number” (clock period - max delay) ns;

This way, we make sure that the delays inside each
reconfigurable module will be small enough so that this module
executes properly inside any relocatable region.

IV. RESULTS AND IMPLEMENTATION STATUS

The proposed design flow has been completely imple-
mented and experimentations have been made to validate its
usability.

A. Floorplanning results

Using our floorplanning algorithm, we wanted to know the
typical number of regions that we can achieve using bitstream
relocation or, on the other end, the typical quantity of each
reconfigurable resource that we can use for modules inside
relocatable regions. Table I summarizes the maximum number
of placeable regions based on the number of needed resources
on a Virtex7 690t.

An example result for a design on a Virtex7 690t with 8
relocatable regions, that must contain at least 1000 slices, 8
BRAMs and 6 DSPs, is given in figure 4. From the results,
we can see that when using relocation, it is possible to have a
good number of reconfigurable regions, as long as the module
size stays low. More homogeneous FPGA would have more
available regions.

We also ran some tests regarding computing time of our
floorplanning algorithm. We found that our algorithm takes 58
seconds to place 15 relocatable regions for a resources need of
1000 slices, 10 BRAMs and 10 DSPs (30 possible placements
for each region) on a Virtex7 609t using an Intel Core I5-2500
CPU @3.3GHz. This time is highly acceptable compared to
the time it would require to do it manually, and also compared
to a usual full design time (synthesis and place & route).



#Slices #BRAMs #DSPs Max #Regions

1000
10 10 30

40 20

40 10 10
40 10

2000
10 10 14

40 14

40 10 10
40 10

3500
10 10 8

40 8

40 10 6
40 6

8000 [0-100] [0-100] 4
9000 [0-100] [0-100] 1

TABLE I. MAXIMUM NUMBER OF PLACEABLE REGIONS BASED ON
NEEDED RESOURCES ON A VIRTEX7 690T

Fig. 4. Example of the result of our floorplanning algorithm (8 regions, 1000
slices, 8 BRAMs, 6 DSPs) on a Virtex7 690t

IP #Slices #BRAMs #DSPs Max frequency
(Mhz)

DFT 8 1048 4 8 542.505
DFT 16 1470 5 12 542.505

Fixed-point square root 72 1 24 77.237
Cordic r 8 8 8 272 0 0 775.964
Cordic v 8 8 8 305 0 0 475.884

Uniform Generator 129 0 0 1402.328

TABLE II. RESOURCES REQUIREMENTS AND MAXIMUM ACHIEVABLE
FREQUENCY OF THE TESTED RECONFIGURABLE MODULES

B. Layout description and supported targets

In order for our floorplanning algorithm to work, we need
a description of the layout of the considered target to find
patterns and place them on the FPGA. We first considered
to use the databases provided by the Torc framework [19].
However these databases do not make the difference between
slices M and slices L, which can lead to non-functional
relocated modules.

Many Xilinx FPGAs have a vertically homogeneous struc-
ture (if we only consider reconfigurable resources), which
means that for these targets, only the description of one line
(one clock region high) and the number of lines are needed
(along of course with parameters that depend on the targeted
series, such as the number of each resource in one column).
Thus, for those targets, only the horizontal arrangement of
resources has to be fully described, as we can consider all
non-reconfigurable resources to belong to one type, which can
not be included in a reconfigurable region. This presents the
main advantage that a new layout can quickly be described
and added to the supported targets.

However, some other Xilinx FPGAs present exceptions on
their layouts (i.e. one line can be different from the others).
For these targets, the layout must contain the structure of each
row.

This layout description has already been included in the
flow and tested on three targets, which are the Virtex5
xc5vlx110t and xc5vlx330, and the Virtex7 xc7vx690t.

C. Tests

In order to test the validity of our whole design flow, a
more complete test with freely available IPs has been run.
The static part makes sure that all the inputs and outputs of
the reconfigurable modules are connected, so that no net inside
these modules can be trimmed during place and route. This
design contains 4 relocatable regions, in which we want to host
several modules. The tested modules include two Spiral DFTs
(8 and 16 bits) [20], a 32-bit fixed-point square root operator
and two cordic operators (8 bits, rotational and vectorial) from
OpenCores [21], and a 128 bits 3-tap uniform random number
generator presented in [22]. The target used is a Virtex7 690t
(speed grade -3). Table II presents the need in resources in all
tested modules, as well as the maximum achievable working
frequency as estimated by XST.

Beside the RTL description of all the reconfigurable mod-
ules and the static part, the only information we had to give for
our full design flow to properly execute are: the name of the
UCF, the number of reconfigurable regions we want in design,



the FPGA target, package and speed grade, and the name of
the project top module.

Based on the resources each tested module needs, each
relocatable region must contain at least 1617 slices (+10%
overhead), 5 BRAMs and 24 DSPs. We fixed the design’s clock
to 70 MHz, as we wanted a little margin for our slowest tested
module (the fixed point square root operator).

Each module has been successfully implemented in one
relocatable region and then relocated to the other 3 regions
identified by our floorplanning algorithm, with no errors. The
same design has also been successfully implemented with the
design’s clock set to 450 MHz, but this time omitting the
fixed point square root operator (as its maximum operating
frequency is fairly limiting compared to the other modules).

V. CONCLUSION AND FUTURE WORK

In this paper we presented a new automated design flow
for bitstream relocation. This approach can be used to generate
designs supporting bitstream relocation without any addition-
nal intervention from the user compared to usual dynamically
reconfigurable designs. This design flow is based on the Xil-
inx PlanAhead design flow, using state-of-the-art techniques
already detailed in the literature, and two new algorithms that
take care of automated floorplanning and timing constraining
adapted for bitstream relocation.

First tests indicate that our approach is functionnal and
provides interesting results. Using this design flow requires
even less skills than the usual DPR flow, as all floorplanning
steps are automated. Adding a new target is straightforward,
and the whole design flow is available [1] under an open source
license in order to benefit the community.

This project is still under active development. Short term
modifications will target refinement of our algorithms in order
for them to be able to adapt to the complexity of the design. We
also plan to give the user more control over the design flow,
such as the possibility to manually define the floorplanning.
Next steps also include the possibility to use several patterns
simulteanously in the same design, which can lead to less
area waste, as small and large modules could use different
predefined reconfigurable regions. Longer term improvements
include compliancy with the Xilinx Vivado suite, and investi-
gation of the possibilities to adapt it to FPGAs provided by
other manufacturers.

REFERENCES

[1] “Autoreloc redmine home page,” https://redmine.telecom-
bretagne.eu/projects/autoreloc.

[2] [Online]. Available: http://www.xilinx.com/tools/planahead.htm
[3] J. H. Pan, T. Mitra, and W.-F. Wong, “Configuration bitstream com-

pression for dynamically reconfigurable FPGAs,” in Computer Aided
Design, 2004. ICCAD-2004. IEEE/ACM International Conference on,
Nov 2004, pp. 766–773.

[4] T. Drahonovsky, M. Rozkovec, and O. Novak, “Relocation of reconfig-
urable modules on xilinx fpga,” in Design and Diagnostics of Electronic
Circuits Systems (DDECS), 2013 IEEE 16th International Symposium
on, April 2013, pp. 175–180.

[5] ——, “A highly flexible reconfigurable system on a xilinx fpga,” in Re-
ConFigurable Computing and FPGAs (ReConFig), 2014 International
Conference on, Dec 2014, pp. 1–6.

[6] H. Kalte, G. Lee, M. Porrmann, and U. Ruckert, “Replica: A bitstream
manipulation filter for module relocation in partial reconfigurable
systems,” in Parallel and Distributed Processing Symposium, 2005.
Proceedings. 19th IEEE International, April 2005, pp. 151b–151b.

[7] H. Kalte and M. Porrmann, “Replica2pro: Task relocation by
bitstream manipulation in virtex-ii/pro fpgas,” in Proceedings of
the 3rd Conference on Computing Frontiers, ser. CF ’06. New
York, NY, USA: ACM, 2006, pp. 403–412. [Online]. Available:
http://doi.acm.org/10.1145/1128022.1128045

[8] C. Beckhoff, D. Koch, and J. Torresen, “Go ahead: A partial re-
configuration framework,” in Field-Programmable Custom Computing
Machines (FCCM), 2012 IEEE 20th Annual International Symposium
on, April 2012, pp. 37–44.

[9] T. Becker, W. Luk, and P. Cheung, “Enhancing relocatability of par-
tial bitstreams for run-time reconfiguration,” in Field-Programmable
Custom Computing Machines, 2007. FCCM 2007. 15th Annual IEEE
Symposium on, April 2007, pp. 35–44.

[10] L. Singhal and E. Bozorgzadeh, “Multi-layer floorplanning on a se-
quence of reconfigurable designs,” in Field Programmable Logic and
Applications, 2006. FPL ’06. International Conference on, Aug 2006,
pp. 1–8.

[11] ——, “Physically-aware exploitation of component reuse in a partially
reconfigurable architecture,” in Parallel and Distributed Processing
Symposium, 2006. IPDPS 2006. 20th International, April 2006, pp. 8
pp.–.

[12] A. Smith, G. Constantinides, and P. Cheung, “Integrated floorplanning,
module-selection, and architecture generation for reconfigurable de-
vices,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, vol. 16, no. 6, pp. 733–744, June 2008.

[13] A. Montone, M. D. Santambrogio, D. Sciuto, and S. O.
Memik, “Placement and floorplanning in dynamically reconfigurable
fpgas,” ACM Trans. Reconfigurable Technol. Syst., vol. 3,
no. 4, pp. 24:1–24:34, Nov. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1862648.1862654

[14] C. Bolchini, A. Miele, and C. Sandionigi, “Automated resource-aware
floorplanning of reconfigurable areas in partially-reconfigurable fpga
systems,” in Field Programmable Logic and Applications (FPL), 2011
International Conference on, Sept 2011, pp. 532–538.

[15] K. Vipin and S. Fahmy, “Architecture-aware reconfiguration-centric
floorplanning for partial reconfiguration,” in Reconfigurable Computing:
Architectures, Tools and Applications, ser. Lecture Notes in Computer
Science, O. Choy, R. Cheung, P. Athanas, and K. Sano, Eds. Springer
Berlin Heidelberg, 2012, vol. 7199, pp. 13–25.

[16] T. D. Nguyen and A. Kumar, “Prfloor: An automatic floorplanner for
partially reconfigurable fpga systems,” in Proceedings of the 2016
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, ser. FPGA ’16. New York, NY, USA: ACM, 2016, pp. 149–
158. [Online]. Available: http://doi.acm.org/10.1145/2847263.2847270

[17] T. Becker, M. Koester, and W. Luk, “Automated placement of recon-
figurable regions for relocatable modules,” in Circuits and Systems
(ISCAS), Proceedings of 2010 IEEE International Symposium on, May
2010, pp. 3341–3344.

[18] R. Backasch, G. Hempel, S. Werner, S. Groppe, and T. Pionteck,
“Identifying homogenous reconfigurable regions in heterogeneous fpgas
for module relocation,” in ReConFigurable Computing and FPGAs
(ReConFig), 2014 International Conference on, Dec 2014, pp. 1–6.

[19] N. Steiner, A. Wood, H. Shojaei, J. Couch, P. Athanas, and M. French,
“Torc: Towards an open-source tool flow,” in Proceedings of the 19th
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, ser. FPGA ’11. New York, NY, USA: ACM, 2011, pp. 41–44.
[Online]. Available: http://doi.acm.org/10.1145/1950413.1950425

[20] [Online]. Available: http://www.spiral.net/hardware/dftgen.html
[21] [Online]. Available: http://opencores.org/project,fixed-point-sqrt
[22] D. B. Thomas and W. Luk, “High quality uniform random number

generation using lut optimised state-transition matrices,” The Journal
of VLSI Signal Processing Systems for Signal, Image, and Video
Technology, vol. 47, no. 1, pp. 77–92, 2007.


