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CONVEX PROJECTIVE GENERALIZED DEHN FILLING

SUHYOUNG CHOI, GYE-SEON LEE, AND LUDOVIC MARQUIS

ABSTRACT. In dimension d = 4,5,6,7, we find the first examples of complete finite volume hy-
perbolic d-dimensional manifolds M with cusps such that an infinite number of orbifolds Mm
obtained by generalized Dehn fillings on M admit a properly convex real projective structure.
The manifolds M are covering of hyperbolic Coxeter orbifolds and the orbifold fundamental
groups Γm of Mm are Gromov hyperbolic relative to a collection of subgroups virtually isomor-
phic to Zd−2.
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1. INTRODUCTION

1.1. Motivation. Hyperbolic Dehn filling theorem proven by Thurston [Thu02] is a funda-
mental theorem of hyperbolic 3-manifold theory. It states that if the interior of a compact
3-manifold M with toral boundaries admits a complete hyperbolic structure of finite volume,
then except for finitely many Dehn fillings on each boundary component, all Dehn fillings of
M admit a hyperbolic structure.

Within the realm of hyperbolic geometry, this phenomenon happens only for 3-manifolds
even though there are topological Dehn fillings for every compact d-manifold M with a
boundary which is homeomorphic to a (d−1)-dimensional torus Td−1. Let Dn be the closed
n-ball. Since the compact d-manifold D2 ×Td−2 has also a toral boundary, if we glue M
and D2×Td−2 together along their boundaries, then we obtain a closed d-manifold, called a

Key words and phrases. Dehn filling, Real projective structure, Orbifold, Coxeter group, Hilbert geometry.
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Dehn filling of M. In a similar way we can deal with compact d-manifolds with several toral
boundaries. Now even if we assume that the interior of M admits a finite volume hyperbolic
structure, no Dehn fillings of M admit a hyperbolic structure when d ⩾ 4.

Although Dehn fillings in dimension bigger than 3 admit no hyperbolic structure, they can
admit a geometric structure which is “larger” than a hyperbolic structure. A main aim of this
article is to show that a real projective structure can be a good candidate for this purpose. In
a similar spirit, Anderson [And06] and Bamler [Bam12] proved that many aspects of Dehn
filling theory for hyperbolic 3-manifolds can be generalized to Einstein metrics in every di-
mension. More precisely, if the interior of a compact d-manifold M with toral boundaries
admits a finite volume hyperbolic structure, then except for finitely many Dehn fillings on
each boundary component, all Dehn fillings of M admit Einstein metrics.

Let Sd be the d-dimensional projective sphere1 and note that the group SL±d+1(R) of linear
automorphism of determinant ±1 is the group of projective automorphisms of Sd. We say
that a d-dimensional manifold N admits a properly convex real projective structure if N is
homeomorphic to Ω/Γ with Ω a properly convex subset of Sd and Γ a discrete subgroup of
SL±d+1(R) acting properly discontinuously on Ω. Now we can ask the following question:

Question 1.1. Is there a compact manifold M of dimension d ⩾ 4 with toral boundaries such
that the interior of M admits a finite volume hyperbolic structure, and except for finitely many
Dehn fillings on each boundary component, all Dehn fillings of M admit a properly convex
real projective structure?

We can generalize Question 1.1 only requiring the interior of M to admit a properly convex
real projective structure of finite volume.

1.2. Evidence. In this paper, we give an evidence towards a positive answer to Question
1.1. It is difficult for us to find such a manifold directly, and hence we begin with Coxeter
orbifold, also called reflection orbifold or reflectofold (see Chapter 13 of Thurston [Thu02] for
more precise definition of orbifold). The definition of Coxeter orbifold is somewhat more com-
plicated than the definition of manifold, however it turns out that convex projective Coxeter
orbifolds are easier to build than convex projective manifolds. The first examples towards
Question 1.1 are hyperbolic Coxeter d-orbifolds for d = 4,5,6.

Consider a convex polytope P in the hyperbolic space Hd with dihedral angles submul-
tiples of π, i.e. each dihedral angle is π

m with an integer m ⩾ 2 or m =∞. We call such a
polytope a hyperbolic Coxeter polytope. The group Γ generated by the reflections about the
codimension one faces of P is a discrete subgroup of the group Isom(Hd) of isometries of Hd,
which is isomorphic to POd,1(R), and the quotient Hd/Γ is a hyperbolic Coxeter d-orbifold.
Hyperbolic Coxeter orbifolds are useful objects that we can concretely construct. For exam-
ple, the first example of a closed orientable hyperbolic 3-manifold is an eight-fold cover of a
right-angled hyperbolic Coxeter 3-orbifold with 14 faces, which was constructed by Löbell in
1931 [Lob31].

1i.e. the space of half-lines of Rd+1.
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FIGURE 1. Hyperbolic Dehn fillings in dimension 3.

By Andreev’s theorems [And70a, And70b], there is a version of the Dehn filling theorem
for hyperbolic Coxeter 3-orbifolds (see Chapter 7 of Vinberg–Shvartsman [VS93] and Propo-
sition 2 of Kolpakov [Kol12]): Let O∞ be a compact Coxeter 3-orbifold with a boundary ∂O∞
that is a closed Coxeter 2-orbifold admitting a Euclidean structure. A m-generalized Dehn
filling Om of O∞, or simply a m-Dehn filling, is a closed Coxeter 3-orbifold Om such that O∞
is orbifold diffeomorphic (see Davis [Dav14] or Wiemeler [Wie13]) to the complement of an
open neighborhood of an edge r of order m2 of Om (see Figure 1). Note that the existence of
a m-Dehn filling implies that the boundary ∂O∞ of O∞ must be a rectangle with 4 corner
reflectors of order 2.

A corollary of Andreev’s theorems says that if the interior ofO∞ admits a hyperbolic struc-
ture of finite volume, then there exists a natural number N such that, for each m > N, the
3-orbifolds Om admit a hyperbolic structure.

Now we can state the main theorem of the paper: let O∞ be a compact Coxeter d-orbifold
with a boundary ∂O∞ that is a closed Coxeter (d−1)-orbifold admitting a Euclidean struc-
ture. A m-Dehn filling Om of O∞ is a Coxeter d-orbifold such that O∞ is orbifold diffeo-
morphic to the complement of an open neighborhood of a face r of codimension 2 of Om, and
each interior point of r has a neighborhood modeled on (R2/Dm)×Rd−2. We abbreviate a
connected open set to a domain.

Theorem A. In dimension d = 4,5,6 (resp. d = 7), there exists a complete finite volume hyper-
bolic Coxeter d-orbifold O∞ with orbifold fundamental group W∞ and holonomy representa-
tion ρ∞ ∶ W∞→Od,1(R) ⊂SL±d+1(R) such that there is a natural number N and a sequence of

2An edge r ofOm is said to be of order m if each interior point of r has a neighborhood modelled on (R2
/Dm)×

R, where Dm is the dihedral group of order 2m.
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TABLE 1. Examples for Theorem A

representations
( ρm ∶ W∞→SL±d+1(R) )m>N

satisfying the following:
● The image ρm(W∞) is a discrete subgroup of SL±d+1(R) acting properly discontinu-

ously and cocompactly (resp. with finite covolume) on the unique ρm(W∞)-invariant
properly convex domain Ωm ⊂Sd.

● The induced representation W∞/ker(ρm)→ SL±d+1(R) is the holonomy representation
of a properly convex real projective structure on a Dehn filling Om of O∞.

● The representations (ρm)m>N converge algebraically to ρ∞.
● The convex domains (Ωm)m>N converge to Ω∞ =Hd ⊂Sd in the Hausdorff topology.

Remark 1.2. The authors conjecture that the sequence (Om)m of convex projective orbifolds
with Hilbert metrics converge to the convex projective orbifold O∞ in the Gromov-Hausdorff
topology.

Remark 1.3. The Coxeter orbifolds O∞ whose orbifold fundamental groups are the Coxeter
groups in Table 1 (assuming j ≠ 5, p, q = 3 and by setting m = ∞) are “prime” examples
satisfying Theorem A. We describe in Section 9 how to build infinitely many Coxeter orbifolds
O∞ satisfying Theorem A using a gluing procedure and the Coxeter groups of Table 1 given
by setting j = 5 or p = 5. However, this gluing trick can be applied only in dimension 4 and 5.

Remark 1.4. The reader might wonder what “prime” means in this paper. As an ad-hoc
definition, a Coxeter d-orbifold is prime if it arises from a d-polytope with d + 2 faces of
codimension 1, or as a bit more interesting definition, if it cannot be obtained by the gluing
procedure described in Section 9.

In Theorem A, changing the target Lie group of representations from Od,1(R) to SL±d+1(R)
is essential because of the following theorem:



CONVEX PROJECTIVE GENERALIZED DEHN FILLING 5

Theorem 1.5 (Garland and Raghunathan [GR70]). Let d be an integer strictly bigger than
3. Assume that Γ is a lattice in Od,1(R) and ρ∞ ∶Γ→Od,1(R) is the canonical inclusion. Then
there is a neighborhood U of ρ∞ in Hom(Γ,Od,1(R)) such that every ρ ∈U is conjugate to ρ∞.

In other words, every sufficiently small deformation of ρ∞ in Hom(Γ,Od,1(R)) is trivial
(see also Bergeron and Gelander [BG04] for an alternative proof).

By Selberg’s lemma, Theorem A also allows us to find properly convex projective structures
on Dehn fillings of a manifold:

Theorem B. In dimension d = 4,5,6, there exists a finite volume hyperbolic d-manifold M∞

such that an infinite number of closed d-orbifolds Mm obtained by Dehn fillings of M∞ admit
properly convex real projective structures. Moreover, the singular locus of Mm is the union
of disjoint (d−2)-dimensional tori, and hence the orbifold fundamental group of Mm is not
Gromov hyperbolic.

1.3. Another novelty of the examples in Theorem A. A properly convex domain Ω in
Sd is divisible if there exists a discrete subgroup Γ of SL±d+1(R) such that Γ preserves Ω and
the quotient Ω/Γ is compact. In that case, we say that Γ divides Ω. We call Ω decomposable
if there exist non-empty closed convex subsets A,B ⊂Sd such that the spans of A and B are
disjoint and the convex hull of A∪B is the closure Ω of Ω. Otherwise, Ω is called indecom-
posable.

Divisible strictly convex domains exist in every dimension (see [Ben04a], even better for
a construction of divisible strictly convex domains of dimension d ⩾ 4 not quasi-isometric to
the real hyperbolic space, see [Kap07] or [Ben06b] for d = 4). On the other hand, the exis-
tence of indecomposable divisible properly convex domains of every dimension d which are
not strictly convex is still an open question.

At the time of writing this paper, the only known examples of indecomposable divisi-
ble properly convex domains which are not strictly convex are the examples introduced by
Benoist [Ben06a] in dimension d = 3, . . . ,7. The construction of Benoist has been explored by
the third author in [Mar10] and by the second author with Ballas and Danciger in [BDL15],
both in dimension d = 3. Afterwards, the authors [CLM] study further this kind of examples
in dimension d = 4, . . . ,7. Moreover, the construction in this paper is inspired by the work of
Benoist [Ben06b].

The difference between the previously known examples and the examples in Theorem A
can be visually seen from the notion of properly embedded simplex of dimension e (shorten
to e-simplex). A simplex ∆ is properly embedded in a properly convex domain Ω if ∆ ⊂Ω and
∂∆ ⊂ ∂Ω. A properly embedded e-simplex ∆ of a convex domain Ω is tight if ∆ is not included
in a e′-properly embedded simplex ∆′ of Ω with e′ > e.

All the pairs (Γ,Ω) built in [Ben06a, Mar10, BDL15, CLM], assuming that Γ divides Ω,
satisfy the following properties:

● The d-dimensional convex domain Ω contains a properly embedded (d−1)-simplex.
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● The group Γ is Gromov hyperbolic relative to a finite collection of subgroups of Γ
virtually isomorphic to Zd−1.

● The quotient orbifold Ω/Γ is homeomorphic to the union along the boundaries of
finitely many d-orbifolds each of which admits a finite volume hyperbolic structure
on its interior.

Theorem C. Assume that d = 4,5,6, Γ = ρm(W∞) and Ω = Ωm in Theorem A. Then (Γ,Ω)
satisfies the following:

● The d-dimensional convex domain Ω contains a properly embedded tight (d − 2)-
simplex.

● The group Γ is Gromov hyperbolic relative to a finite collection of subgroups virtually
isomorphic to Zd−2.

● The quotient orbifold Ω/Γ is not homeomorphic to the union along the boundaries of
finitely many d-orbifolds each of which admits a finite volume hyperbolic structure on
its interior.

The computations involved in the proof of Theorem A in fact easily extend to give a two
(small) new families of pairs (Γ,Ω) (see the Coxeter graphs in Table 2 for Theorem D and
Table 3 for Theorem E).

k

k = 4,5.

5

5

(A) Four examples in dimension 5

4 5

(B) Two examples in dimension 6

5 5

(C) One example in dimension 7 and one example in dimension 8

TABLE 2. Coxeter groups of Theorem D

Theorem D. For each (d, e) ∈ {(5,2),(6,2),(7,3),(8,4)}, there exists a discrete group Γ ⊂
SL±d+1(R) which divides Ω ⊂Sd such that:

● The d-dimensional convex domain Ω contains a properly embedded tight e-simplex.
● The group Γ is Gromov hyperbolic relative to a finite collection of subgroups virtually

isomorphic to Ze.
● The quotient orbifold Ω/Γ is not homeomorphic to the union along the boundaries of

finitely many d-orbifolds each of which admits a finite volume hyperbolic structure on
its interior.
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TABLE 3. Coxeter groups of Theorem E

Theorem E. For each d = 5,6, there exists a discrete group Γ ⊂SL±d+1(R) which dividesΩ ⊂Sd

such that:
● The d-dimensional convex domain Ω contains a properly embedded tight (d − 2)-

simplex and a properly embedded tight triangle.
● The group Γ is Gromov hyperbolic relative to a finite collection of subgroups virtually

isomorphic to Z2 and Zd−2.
● The quotient orbifold Ω/Γ is not homeomorphic to the union along the boundaries of

finitely many d-orbifolds each of which admits a finite volume hyperbolic structure on
its interior.

Finally, we would like to propose the following question:

Question 1.6. For which integers (d,m, e1, . . . , em) with m ⩾ 1 and 2 ⩽ e1 < e2 <⋯ < em ⩽ d−1,
is there a d-dimensional divisible convex domainΩ ⊂Sd which contains a properly embedded
tight e i-simplex for all i = 1, . . . ,m?
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2. PRELIMINARY

2.1. Coxeter groups. A Coxeter system is a pair (S, M) of a finite set S and a symmet-
ric matrix M = (Mst)s,t∈S whose diagonal entries Mss = 1 and whose off-diagonal entries
Mst ∈ {2,3, . . . ,m, . . . ,∞}. To a Coxeter system (S, M) we can associate a Coxeter group, de-
noted by WS (or simply W): the group generated by S with the relations (st)Mst = 1 for every
(s, t) ∈ S×S such that Mst ≠∞. The rank of W is the cardinality ∣S∣ of S.

The Coxeter diagram (or Coxeter graph) of W is a labeled graph, also denoted by W , such
that the set of vertices of W is S, an edge st connects two vertices s, t ∈ S if and only if Mst ≠ 2,
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and the label of the edge st is Mst ∈ {3, . . . ,m, . . . ,∞}. A Coxeter group W is irreducible if the
Coxeter graph W is connected. The Gram matrix of W , denoted by Cos(W), is an ∣S∣× ∣S∣
symmetric matrix whose entries are given by

(Cos(W))st =−2cos( π

Mst
) for every s, t ∈ S.

An irreducible Coxeter group W (or a connected Coxeter graph W) is spherical (resp. affine
or Lannér) if for every s ∈ S, the (s, s)-minor of Cos(W) is positive definite and the determi-
nant of Cos(W) is positive (resp. zero or negative). If an irreducible Coxeter group W is not
spherical nor affine, then W is large, i.e. there is a homomorphism of a finite index subgroup
of W onto a non-abelian free group (see Margulis–Vinberg [MV00]). Remark that an irre-
ducible affine Coxeter group is virtually Z∣S∣−1. A Coxeter graph W (or a Coxeter group W)
is called spherical (resp. affine) if each connected component of W is spherical (resp. affine).
Note that a Coxeter group W is spherical if and only if W is a finite group.

We refer to Appendix A for the list of all the irreducible spherical, irreducible affine and
Lannér Coxeter groups, which we will use frequently.

2.2. Coxeter polytopes. Let V be a (d+1)-dimensional vector space over R, and let S(V)
be the projective sphere, i.e. the space of half-lines in V . In order to indicate the dimension
of S(V), we use the notation Sd instead of S(V). Denote by SL±(V) (resp. SL(V)) the
group of matrices with determinant ±1 (resp. 1). The projective sphere S(V) and SL±(V)
are two-fold covers of the real projective space P(V) and the group PGL(V) of projective
transformations of V , respectively.

The natural projection of V ∖{0} onto S(V) is denoted by S, and for every subspace W of
V , S(W) denotes S(W ∖{0}) for the simplicity of the notation. A subset P of S(V) is convex
if for every 2-dimensional subspace Π of V , P ∩S(Π) is connected, and moreover a convex
subset P is properly convex if the closure P of P does not contain a pair of antipodal points.
In other words, P is properly convex if and only if there is an affine chart A of S(V) such
that P ⊂A and P is convex in A in the usual sense. A properly convex set P is strictly convex
if there is no nontrivial segment in the boundary ∂P of P.

A projective polytope is a properly convex subset P of S(V) such that P has a non-empty
interior and

P =
r
⋂
i=1
S({v ∈V ∣αi(v) ⩽ 0})

where αi, i = 1, . . . , r, are linear forms on V . We always assume that the set of linear forms is
minimal, i.e. none of the half spaces S({v ∈V ∣αi(v) ⩽ 0}) contains the intersection of all the
others. A facet (resp. ridge) of a polytope is a face of codimension 1 (resp. 2). Two facets s, t
of a polytope P are adjacent if s∩ t is a ridge of P.

A projective reflection is an element of SL±(V) of order 2 which is the identity on a hyper-
plane. Each projective reflection σ can be written as:

σ = Id−α⊗b
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where α is a linear form on V and b is a vector in V such that α(b) = 2. The projective
hyperplane S(ker(α)) is the support of σ and the half-line S(b) the polar of σ. A projective
rotation is an element of SL(V) which is the identity on a subspace H of codimension 2 and
which is conjugate to a matrix ( cosθ −sinθ

sinθ cosθ ) on V/H with 0 < θ < 2π. The real number θ is
called the angle of rotation.

A mirror polytope is a pair of a projective polytope P of S(V) and a finite number of
projective reflections (σs = Id−αs⊗bs)s∈S with αs(bs) = 2 such that:

● The index set S consists of all the facets of P.
● For each facet s ∈ S, the support of σs is the supporting hyperplane of s.
● For every two distinct facets s, t of P, αs(bt) and αt(bs) are either both negative or

both zero, and αs(bt)αt(bs) ⩾ 4 or = 4cos2θ with 0 < θ ⩽ π
2 .

In fact, αs(bt)αt(bs) = 4cos2θ if and only if the product σsσt is a rotation of angle 2θ. Re-
mark that the definition of mirror polytope does not come out of the blue: It is motivated by
Tits–Vinberg’s Theorem 2.1 (see Proposition 6 of Vinberg [Vin71] or Lemma 1.2 of Benoist
[Ben04b] for more details).

The dihedral angle of a ridge s∩ t of a mirror polytope P is θ if σsσt is a rotation of angle
2θ, and 0 otherwise. A Coxeter polytope is a mirror polytope whose dihedral angles are 0 or
submultiples of π. If P is a Coxeter polytope, then the Coxeter system of P is the Coxeter
system (S, M) such that S is the set of facets of P and for every two distinct facets s, t of
S, Mst = mst if σsσt is a rotation of angle 2π

mst
, and Mst =∞ otherwise. We denote by WP (or

simply W) the Coxeter group of P, and we call P irreducible if WP is irreducible.

2.3. Tits’s simplex. To a Coxeter group W , we can associate a Coxeter polytope ∆W . The
polytope ∆W is a simplex of dimension the rank of W minus 1 and the Coxeter group of ∆W
is W .

Consider the vector space V = (RS)∗ and denote by (es)s∈S the canonical basis of RS. The
simplex we want to obtain is the projectivization P = S(C) of the simplicial cone C = {ϕ ∈
(RS)∗ ∣ ϕ(es) ⩽ 0, ∀s ∈ S}. For each element s ∈ S, the reflection about the facet P ∩S({ϕ ∈
(RS)∗ ∣ ϕ(es) = 0}) is defined by the formula σs(ϕ) = ϕ−2ϕ(es)BW(es, ⋅), where BW is the
symmetric bilinear form given by BW(es, e t) = −2cos( π

Mst
). The matrix (BW(es, e t))s,t∈S is

the matrix of Tits bilinear form of W , and the resulting Coxeter polytope is the Tits simplex
∆W of W . Remark that the group generated by the reflections σs preserves the symmetric
bilinear form BW .

2.4. Tits-Vinberg’s Theorem. Let (S, M) be a Coxeter system. For each subset S′ of S, we
consider the Coxeter group WS′ of the Coxeter subsystem (S′, M′), where M′ is the restric-
tion of M to S′. Theorem 2.1 shows that the natural homomorphism WS′ →WS is injective,
and therefore WS′ can be identified with the subgroup of WS generated by S′. These sub-
groups WS′ are called standard subgroups of WS. If P is a Coxeter polytope and f is a proper
face of P (i.e. f ≠∅, P), then we write S f = {s ∈ S ∣ f ⊂ s} and Wf ∶=WS f .
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Theorem 2.1 (Chapter V of Tits [Bou68] for Tits simplex, and Vinberg [Vin71]). Let P be
a Coxeter polytope of S(V) with Coxeter group WP and let ΓP be the subgroup of SL±(V)
generated by the projective reflections (σs)s∈S. Then:

⋅ The homomorphism σ ∶WP →ΓP defined by σ(s) =σs is an isomorphism.
� The family of polytopes (γ(P))

γ∈ΓP
is a tilling of a convex subset CP of S(V).

∴ The group ΓP is a discrete subgroup of SL±(V) acting properly discontinuously on the
interior ΩP of CP .

 An open proper face f of P lies in ΩP if and only if the Coxeter group Wf is finite.

We call ΓP the projective Coxeter group of P. Theorem 2.1 tells us that ΩP is a convex
domain of S(V) and ΩP/ΓP is a convex real projective Coxeter orbifold.

2.5. The link of a Coxeter polytope at a vertex. Given a mirror polytope P of dimension
d in Sd, we can associate to a vertex v of P a new mirror polytope Pv of dimension d −1
which is “P seen from v”. We call Pv the link of P at v. In order to build Pv, first, look at
the projective sphere Sv =S(Rd+1/⟨v⟩), where ⟨v⟩ is the subspace spanned by v, and second,
observe that the reflections (σs)s∈Sv induce reflections on Sv. Finally, we can construct a
projective polytope in Sv:

⋂
s∈Sv

S({x ∈Rd+1 ∣αs(x) ⩽ 0}/⟨v⟩).

This projective polytope together with the reflections induced by (σs)s∈Sv on Sv give us the
link Pv of P at v, which is a mirror polytope of dimension d−1. It is obvious that if P is a
Coxeter polytope, then Pv is also a Coxeter polytope. Note that if Wv denotes WPv , then the
Coxeter graph Wv is obtained from the Coxeter graph WP by keeping only the vertices in Sv
and the edges connecting two vertices of Sv.

2.6. The Cartan matrix of a Coxeter polytope. An m×m matrix A = (ai j)i, j=1,...,m is a
Cartan matrix if every diagonal entry of A is 2, every off-diagonal entry is negative or zero,
and for all i, j = 1, . . . ,m, ai j = 0 if and only if a ji = 0.

A Cartan matrix A is irreducible if there are no simultaneous permutations of the rows
and the columns of A such that A is a non-trivial block diagonal matrix, i.e. it is not a direct
sum of two matrices. Every Cartan matrix A decomposes into a direct sum of irreducible ma-
trices, which are called the components of A. By Perron–Frobenius theorem, an irreducible
Cartan matrix A has a real eigenvalue. An irreducible Cartan matrix A is of positive type,
zero type or negative type when the smallest real eigenvalue of A is positive, zero or negative,
respectively. If A+ (resp. A0, A−) denotes the direct sum of the components of positive (resp.
zero, negative) type of a Cartan matrix A, then A = A+⊕ A0⊕ A−, i.e. the direct sum of A+,
A0 and A−.

For each Coxeter polytope P, we can define the Cartan matrix AP of P by (AP)st =αs(bt).
Note that AP is irreducible if and only if P is irreducible. The pairs (αs,bs)s∈S that determine
the Coxeter polytope P are unique up to the action of ∣S∣ positive numbers (λs)s∈S given by:

(1) (αs,bs)s∈S↦ (λsαs,λ−1
s bs)s∈S
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This leads to define an equivalence relation on Cartan matrices: Two Cartan matrices A
and A′ are equivalent if there exists a positive diagonal matrix D such that A′ =DAD−1. We
denote by [A] the equivalence class of the Cartan matrix A.

For every sequence (s1, . . . , sk) of elements of S, the number As1s2 As2s3⋯Asks1 is inde-
pendent of the choice of a Cartan matrix in the class [A]. These invariants are called the
cyclic products of A, which determine [A] (see Proposition 16 of [Vin71]). The importance of
Cartan matrix can be seen from:

Theorem 2.2. [Corollary 1 of Vinberg [Vin71]] Let A be an irreducible Cartan matrix of
negative type and of rank d +1. Then there exists a mirror polytope P of dimension d such
that AP = A. Moreover, P is unique up to conjugations by SL±(V).

2.7. Elliptic and Parabolic Coxeter polytopes. A Coxeter polytope P is elliptic (resp.
parabolic) if the projective Coxeter group ΓP of P is derived from a discrete cocompact group
generated by reflections in the sphere (resp. the Euclidean space). These polytopes were
classified by Coxeter:

Theorem 2.3 (Coxeter [Cox49] and Propositions 21 and 22 of Vinberg [Vin71]). Let P be a
Coxeter polytope with Coxeter group W . Then P is elliptic if and only if AP = A+

P . If this is the
case, then P is isomorphic to the Tits simplex ∆W .

In order to describe parabolic Coxeter polytopes, we need to introduce a notation: If W is
an irreducible affine Coxeter group, then Ω∆W is an affine chart of dimension rank(W)−1
on which W acts properly and cocompactly, and W preserves an Euclidean norm on Ω∆W

induced by the Tits bilinear form BW . Now let W be an affine Coxeter group. If we write
W =W1×⋯×Wr the decomposition of W into irreducible components, then

∆̂W ∶=∆W1 ×⋯×∆Wr ⊂Ω∆W1
×⋯×Ω∆Wr

is a Coxeter polytope in the Euclidean space Ee of dimension e = rank(W)− r, where the
symbol × stands for the usual Cartesian product. The Euclidean norm on the affine space
Ω∆W1

×⋯×Ω∆Wr
is the product of the Euclidean norms of the factors, and the action of W on

Ee is again proper and cocompact.

Theorem 2.4 (Coxeter [Cox49] and Propositions 21 and 23 of Vinberg [Vin71]). Let P be a
Coxeter polytope of dimension d with Coxeter group W . Then P is parabolic if and only if
AP = A0

P and AP is of rank d. If this is the case, then P is isomorphic to ∆̂W .

2.8. Hilbert geometry. A Coxeter polytope P of Sd is said to be loxodromic if AP = A−
P and

of rank d +1. Before going any further, we remark that if P is an irreducible loxodromic
Coxeter polytope of dimension d, then the representation σ ∶ WP → SL±d+1(R) in Theorem
2.1 is irreducible and the convex domain ΩP is properly convex (see Lemma 15 of Vinberg
[Vin71]). This situation leads us to study Hilbert geometry.

Given a properly convex domain Ω, we can use the cross-ratio to define a metric dΩ on Ω:
For any two distinct points x, y in Ω, the line l passing through x and y meets the boundary
∂Ω of Ω in two other points p and q. Assume that p and y separate x and q on the line l (see
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Figure 2). The Hilbert metric dΩ ∶Ω×Ω→ [0,+∞) is defined by:

dΩ(x, y) = 1
2

log([p ∶ x ∶ y ∶ q]) for every x, y ∈Ω,

where [p ∶ x ∶ y ∶ q] is the cross-ratio of the points p, x, y, q. The metric topology of Ω is the
same as the one inherited from S(V). The metric space (Ω,dΩ) is complete, the closed
balls are compact, the group Aut(Ω) of projective transformations that preserve Ω acts by
isometries on Ω, and therefore acts properly.

x
y

p

q

l

FIGURE 2. The Hilbert metric

The Hilbert metric comes from a Finsler norm onΩ, and this Finsler metric gives rise to an
absolutely continuous measure µΩ with respect to Lebesgue measure, called the Busemann
measure. We refer to de la Harpe [dlH93] or Vernicos [Ver05] for more details on Hilbert
geometry.

2.9. Perfect, quasi-perfect and 2-perfect Coxeter polytope. Vinberg [Vin71] also shows
that if P is a Coxeter polytope, then the following are equivalent:

● For every vertex v of P, the standard subgroup Wv of W is finite.
● The convex subset CP of S(V) is open, i.e. CP =ΩP .
● The action of ΓP on ΩP is cocompact.

Following him, we call such a Coxeter polytope P perfect (see Definition 8 of [Vin71]). It is
known that a perfect Coxeter polytope is either elliptic, parabolic, or irreducible loxodromic
(see Proposition 26 of [Vin71]).

A Coxeter polytope P is 2-perfect if every vertex link of P is perfect, and it is quasi-perfect if
every vertex link of P is either elliptic or parabolic. It is obvious that a quasi-perfect Coxeter
polytope is 2-perfect. In order to describe the geometric property of 2-perfect projective
Coxeter groups, we introduce the following terminology: Let C(ΛP) be the convex hull of
the limit set3 ΛP of ΓP . The action of ΓP on ΩP is geometrically finite if µΩP(C(ΛP)∩P) <∞,
finite covolume if µΩP(P) <∞, and convex-cocompact if C(ΛP)∩P ⊂ΩP .

Theorem 2.5 (Theorem A, Marquis [Mar14]). Let P be an irreducible, loxodromic, 2-perfect
Coxeter polytope, let ΓP be the projective Coxeter group of P, and let ΩP be the interior of the
Γ-orbit of P. Then the action of ΓP on ΩP is

3The limit set of ΓP is the closure of the set of attractive points of loxodromic elements of ΓP . It is also the
smallest closed ΓP -invariant subset of the projective space. See Lemma 2.9 and 3.3 of Benoist [Ben00].
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⋅ geometrically finite,
� finite covolume if and only if P is quasi-perfect,
∴ convex-cocompact if and only if every vertex link of P is elliptic or loxodromic.

2.10. Deformation spaces of marked Coxeter polytopes. Two projective polytopes G
and G′ are combinatorially equivalent if there exists a bijection δ between the set F of all
faces of G and the set F ′ of all faces of G′ such that δ preserves the inclusion relation, i.e.
for every F1,F2 ∈F , F1 ⊂ F2 if and only if δ(F1) ⊂ δ(F2). We call δ a lattice isomorphism be-
tween G and G′. A combinatorial polytope is a combinatorial equivalence class of polytopes.
A labeled polytope is a pair of a combinatorial polytope G and a ridge labeling on G, which is
a function of the set of the ridges of G to { π

m ∣ m = 2,3, . . . ,∞}.

Let G be a labeled d-polytope. A marked Coxeter polytope realizing G is a pair of a Coxeter
d-polytope P of Sd and a lattice isomorphism φ between G and P such that the label of each
ridge r of G is the dihedral angle of the ridge φ(r) of P. Two marked Coxeter polytopes (P,φ ∶
G→ P) and (P′,φ′ ∶ G→ P′) realizing G are isomorphic if there is a projective automorphism
ψ of Sd such that ψ(P) = P′ and ψ̂○φ = φ′, where ψ̂ is the lattice isomorphism between P
and P′ induced by ψ.

Definition 2.6. The deformation space C(G) of a labeled d-polytope G is the space of isomor-
phism classes of marked Coxeter d-polytopes realizing G.

A labeled polytope G is rigid if the deformation space C(G) is the singleton. Otherwise, G
is flexible.

Remark 2.7. A labeled polytope G and the deformation space C(G) can be thought of as a
Coxeter orbifold O and the deformation space of marked convex real projective structures on
O, respectively (see Thurston [Thu02]).

In a way similar to Coxeter polytopes, we can associate to a labeled polytope G a Cox-
eter system and therefore the Coxeter group WG : the generators and the relations of WG
corresponds to the facets and the ridge labeling of G, respectively. A labeled polytope G is
irreducible (resp. spherical, affine, large, Lannér) if WG is irreducible (resp. spherical, affine,
large, Lannér). We can also define the link Gv of a labeled polytope G at a vertex v using the
usual notion of the link of a combinatorial polytope and labeling Gv accordingly. A labeled
polytope G is perfect (resp. 2-perfect) if every vertex link of G is spherical (resp. perfect). An
easy observation is:

Remark 2.8. Let G be a labeled polytope of dimension d. Then:

● If WG is spherical or Lannér, then G is perfect.
● If WG is affine and virtually isomorphic to Zd, then G is perfect.
● If G is a perfect d-simplex, then WG is spherical, irreducible affine or Lannér.

Note that we cannot define the notion of quasi-perfect labeled polytope because, for exam-
ple, the labeled triangle ( π

∞
, π
∞

, π
∞
) admits a realization for which the link of every vertex is

parabolic (e.g. an ideal triangle of H2) or loxodromic (e.g. a hyperideal triangle of H2).
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To be short, we say that a vertex v of a Coxeter (or labeled) polytope is “something” if the
corresponding link is “something”. Here, the word “something” can be: irreducible, spherical,
affine, large, Lannér, rigid, flexible, perfect, 2-perfect and so on.

2.11. The space of Cartan matrices. Let (S, M) be a Coxeter system with Coxeter group
W . A Cartan matrix A = (ast)s,t∈S realizes (S, M) (or simply W) if astats = 4cos2( π

Mst
) when

Mst ≠∞ and astats ⩾ 4 when Mst =∞. The space of Cartan matrices of W of rank d+1, de-
noted by C(W ,d), is the space of equivalence classes of Cartan matrices of rank d+1 which
realize W (see (1) in Section 2.6 for the equivalence relation).

If G is a labeled d-polytope with Coxeter group WG , then there is a map

Λ ∶ C(G)→ ⋃
e⩽d

C(WG , e)

given by Λ(P) = [AP]. We will see that in the cases we are interested in, the image of C(G)
under Λ is exactly C(WG ,d) and moreover C(G) is homeomorphic to C(WG ,d).

2.12. Dehn filling of Coxeter polytope. Let P∞ be a Coxeter d-polytope and let V =
{v1, . . . ,vk} be a non-empty subset of the set VP of all parabolic vertices of P∞.

Definition 2.9. A projective generalized Dehn filling (or simply Dehn filling) of P∞ at V
is a Coxeter d-polytope Pm1,...,mk with mi ∈ N, i = 1, . . . ,k, such that the underlying labeled
polytope of P∞ is obtained from the underlying labeled polytope of Pm1,...,mk by collapsing
a ridge r i of label π

mi
to the vertex vi for each i = 1, . . . ,k (see Figure 1 for Dehn filling in

dimension 3).

Remark 2.10. Since every vertex v ∈V is parabolic, we know from Marquis [Mar14] that v is
cusped, i.e. there exists a neighbourhood U of v such that

µΩP∞
(P∞∩U) <∞.

In Section 8, we show that the existence of a Dehn filling implies some condition on the
cusp: Let P∞ be an irreducible Coxeter d-polytope with Coxeter group W∞. If there is a
Dehn filling of P∞ at V ⊂VP , then for each v ∈V , the Coxeter group W∞,v of the link of P∞ at
v is equal to Ã1× Ãd−2 (see Appendix A for the notation of the spherical and affine Coxeter
groups).

2.13. Combinatorial 4-polytopes with 6 facets. By taking a cone with basis a polytope
Q of dimension d−1, we obtain a polytope Pyr(Q) of dimension d. Every non-trivial choice of
apex of the cone gives the same combinatorial structure for Pyr(Q). Such a polytope Pyr(Q)
is called the pyramid over Q. We use the notation ∆d to denote the simplex of dimension d.
A polytope P is simple if every vertex link of P is the simplex.

There are 4 different combinatorial polytopes of dimension 4 with 6 facets (see Paragraph
6.5 of Ziegler [Zie95]). Two of them are simple: ∆1 ×∆3 and ∆2 ×∆2, and two others are
pyramids: Pyr(∆1×∆2) and Pyr(Pyr(∆1×∆1)).

We emphasize the following distinction between these four polytopes.
● In ∆1×∆3: there exists a pair of facets that do not intersect.



CONVEX PROJECTIVE GENERALIZED DEHN FILLING 15

● In ∆2×∆2: any two facets are adjacent.
● In Pyr(∆1×∆2) and Pyr(Pyr(∆1×∆1)): any two facets intersect.
● In Pyr(∆1×∆2): there is exactly one pair of non-adjacent facets.
● In Pyr(Pyr(∆1×∆1)): there are exactly two pairs of non-adjacent facets.

A triangular prism (or simply prism) is the combinatorial polytope ∆1 ×∆2, and hence
Pyr(∆1×∆2) is the 4-pyramid over the prism. More generally, ∆1×∆d−1 is the d-prism (or a
simplicial prism).

3. LABELED POLYTOPES G i
m

In Sections 3, 4, 5 and 6, for the sake of demonstrating the construction of the examples in
Theorem A without too many technical details, we concentrate our attention on three fam-
ilies of labeled 4-polytopes G i

m with i = 1,2,3 such that 7 ⩽ m ⩽∞ if i = 1,2, and 3 ⩽ m ⩽∞ if
i = 3. The arguments can easily extended to cover the other families in Table 1.

If m is finite, then the underlying polytope of G i
m is the product of two triangles, and if

m =∞, then the underlying polytope of G i
∞ is the pyramid over the prism (see Figure 3 for

the Schlegel diagrams of these polytopes, and refer to Chapter 5 of Ziegler [Zie95] for more
details about Schlegel diagram). We explain below how to give labels on the ridges of G i

m
using the Coxeter groups W i

m in Table 4.

FIGURE 3. The Schlegel diagram of the product of two triangles and of a pyra-
mid over a prism.

3

1

2

4

5

6

m 3

1

2

4

5

6

m5
3

1

2

4

5

6

m

(A) W1
m. (B) W2

m. (C) W3
m.

TABLE 4. The Coxeter graph of W1
m , W2

m , W3
m
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3.1. The labeled polytopes G i
m for m finite. The underlying polytope of G i

m is the Carte-
sian product G of two triangles. It is a 4-dimensional polytope with 6 facets, 15 ridges and 9
vertices.

We describe more precisely the combinatorial structure of G: Let T1, T2 be two triangles
and let G = T1×T2. Denote the edges of T1 by e1, e2, e3 and the edges of T2 by e4, e5, e6. The
6 facets of G are Fk = ek ×T2, k = 1,2,3, and Fl = T1× e l , l = 4,5,6, and the 15 ridges of G can
be divided into 2 families:

● 9 ridges (quadrilaterals): ek × e l for every k = 1,2,3 and l = 4,5,6.
● 6 ridges (triangles): T1×w and v×T2 for every vertex w (resp. v) of T2 (resp. T1).

The ridge Fk∩Fl is (ek∩e l)×T2 if (k, l) ∈ {(1,2),(2,3),(3,1)}, T1×(ek∩e l) if (k, l) ∈ {(4,5),(5,6),(6,4)},
and ek× e l if k = 1,2,3 and l = 4,5,6. Finally, the 9 vertices of G are vklst = Fk∩Fl ∩Fs∩Ft for
(k, l) ∈ {(1,2),(2,3),(3,1)} and (s, t) ∈ {(4,5),(5,6),(6,4)}.

Note that every two distinct facets of G are adjacent, and hence we can label the ridges of
G according to the Coxeter graph W i

m in Table 4 to obtain the labeled polytope G i
m.

Proposition 3.1. Let G i
m be the labeled polytope with m finite. Then:

● The labeled polytopes G1
m and G3

m are perfect.
● The labeled polytope G2

m is 2-perfect with exactly two Lannér vertices v1345 and v2345.

Proof. First, remark that G i
m is simple, and so every vertex link is a 3-simplex. Hence, by

Remark 2.8, the proof immediately follows from comparing the Coxeter diagrams of the links
of G i

m and the Coxeter diagrams in Appendix A. For example, on the one hand, the Coxeter
group of the link of G1

m (or G3
m) at the vertex v1345 is:

3

1

4

5

which is the spherical Coxeter diagram A4 in Table 6, and on the other hand, the Coxeter
group of the link of G2

m at the vertex v1345 is:

3

1

4

5
5

which is a Lannér Coxeter diagram in Table 9. �

3.2. The labeled polytopes G i
m for m infinite. The underlying polytope of the labeled

polytope G i
∞, i = 1,2,3, is the pyramid G∞ over the prism. It is a 4-dimensional polytope with

6 facets, 14 ridges and 7 vertices.

More precise description of the combinatorial structure of G∞ is as follows: Let I be a
segment with two endpoints a5 and a6, and ∆ be a triangle with three edges b1, b2 and b3.
The prism I ×∆ has 5 faces labeled in the obvious way (see Figure 4). Let G∞ = Pyr(I ×∆).
Among the 6 facets of G∞, the five of them, Fi, i = 1,2,3,5,6, correspond to the facets of I×∆,
and F4 denotes the remaining one. The 14 ridges of G∞ can be divided into 2 families:

● 5 ridges correspond to the faces of I ×∆ and these ridges are in the facet F4.
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1

2

3

65

FIGURE 4. The basis of G∞

● 9 ridges correspond to the edges of I ×∆ and these ridges are F1∩F2, F2∩F3, F3∩F1
and Fk ∩Fl with k = 1,2,3 and l = 5,6.

We remark that every two facets Fk and Fl are adjacent except when {k, l} = {5, 6} and
F5∩F6 is the apex s of the pyramid G∞, and therefore we can label the ridges of G∞ according
to the Coxeter graph W i

∞ in Table 4 to obtain G i
∞.

Proposition 3.2. Let G i
∞ be the labeled polytope G i

m with m infinite. Then:
● For every i = 1,2,3, the labeled polytope G i

∞ is 2-perfect.
● For each i = 1,3, the only non-spherical vertex of G i

∞ is the apex s, which is affine of
type Ã1× Ã2.

● The labeled polytope G2
∞ has 3 non-spherical vertices v1345, v2345 and the apex s. Two

of them, v1345 and v2345, are Lannér, and s is affine of type Ã1× Ã2.

Proof. Remark that except the apex s of G i
∞, every vertex link is a 3-simplex, and the link

of s is a prism. Once again, by Remark 2.8, the proof follows from comparing the Coxeter
diagrams of the links of G i

∞ and the Coxeter diagrams in Appendix A. For the apex s, the
Coxeter group of the link of G i

∞ at s = F1∩F2∩F3∩F5∩F6 is:

3

1

2

5

6

∞

which is the affine Coxeter group Ã2× Ã1 (see Table 7) virtually isomorphic to Z2×Z1 = Z3,
and hence s is perfect. �

4. DEFORMATION SPACES C(G i
m)

This section is devoted to the proof of the following propostion:

Proposition 4.1. Let C(G i
m) be the deformation space of the labeled polytope G i

m with m
finite. Then:

● The deformation space C(G i
m), i = 1,2, consists of two points for every 6 < m <∞.

● The deformation space C(G3
m) consists of two disjoints lines for every 3 < m <∞.

In order to prove Proposition 4.1 and others, we need Theorem 4.2, which tells us how
the combinatorial structure of a Coxeter polytope P is influenced by the Cartan matrix of P.
Recall that S is the set of facets of P, A = AP the Cartan matrix of P and for every face f of
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P, S f = {s ∈ S ∣ f ⊂ s}. Let σ(P) = {S f ∣ f is a face of P} ⊂ 2S. If the dihedral angle between
the facets s and t is π

2 , then we express this fact by writing s ⊥ t. For each T ⊂ S,

Z(T) = {s ∈ S ∣ s ⊥ t for all t ∈T} and AT = (Ast)s,t∈T

Theorem 4.2 (Theorem 4 and 7 of Vinberg [Vin71]). Let P be a Coxeter d-polytope with
Coxeter group W and let T be a proper subset of S.

⋅ If WT is spherical, then T ∈σ(P).
� If AT = A0

T and A0
Z(T) =∅, then T ∈σ(P).

∴ If WT is virtually isomorphic to Zd−1, AT = A0
T and P is not parabolic, then T ∈ σ(P)

and ⋂t∈T t is a vertex of P.

4.1. Preparation of the computation. If ι is a double index (resp. an integer), then let
cι ∶= cos( π

mι
) (resp. ∶= cos(πι )) and sι ∶= sin( π

mι
) (resp. ∶= sin(πι )). We introduce the following

matrix:

Aλ,µ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 −1 −λ−1

−1 2 −1
−λ −1 2 −2c34

−2c34 2 −2c45 −2µ−1c64
−2c45 2 −2c56
−2µc64 −2c56 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

with λ,µ > 0. If (S = {1,2,3,4,5,6}, M i
m) is the Coxeter system associated to W i

m, then:
● If (m34,m45,m56,m64) = (3,3,m,2), then Aλ ∶= Aλ,1 realizes W1

m.
● If (m34,m45,m56,m64) = (5,3,m,2), then Aλ realizes W2

m.
● If (m34,m45,m56,m64) = (3,3,m,3), then Aλ,µ realizes W3

m.
If i = 1,2 (resp. 3), then the equivalence class of Cartan matrices realizing W i

m is deter-
mined by exactly one (resp. two) cyclic product(s): (123) (resp. (123) and (456)). In other
words, every Cartan matrix A realizing W i

m is equivalent to a unique Aλ,µ, and so we call
Aλ,µ the standard form of A.

Proposition 4.3. Suppose 3 ⩽ m <∞. Then C(G i
m) is homeomorphic to:

● {λ ∈R ∣λ > 0 and det(Aλ) = 0} for i = 1,2.
● {(λ,µ) ∈R2 ∣λ,µ > 0 and det(Aλ,µ) = 0} for i = 3.

Proof. We begin with the fact that the rank of Aλ,µ is always greater than or equal to 5 by
computing the (3,3)-minor of Aλ,µ, and therefore the image of the map

Λ ∶ C(Gm)→⋃
e⩽4

C(W i
m, e)

given by P↦ [AP] lies in C(W i
m,4). Moreover, we know from Theorem 2.2 that Λ is injective.

Now let us prove that the image of C(Gm) under Λ is exactly C(W i
m,4): Once again, by

Theorem 2.2, every Cartan matrix A in C(W i
m,4) is realized by some Coxeter 4-polytope P.

We need to check that the combinatorial structure of P is the product of two triangles.
For every two distinct facets s, t of P, the standard subgroup generated by s, t is a finite

dihedral group, which is a spherical Coxeter group, and hence by the first item of Theorem
4.2, the facets s, t are adjacent. Finally, we know from Section 2.13 that the product of two
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triangles is the only 4-polytope with 6 facets such that every two distint facets are adjacent,
which completes the proof. �

4.2. The computation. For α,β,γ ∈R, let:

Ψα,β,γ = 1−cos(α)2−cos(β)2−cos(γ)2−2cos(α)cos(β)cos(γ)
The following equality is remarkable:

Ψα,β,γ =−4cos(α+β+γ
2

)cos(−α+β+γ
2

)cos(α−β+γ
2

)cos(α+β−γ
2

)

If α,β,γ ∈ (0, π2 ], then Ψα,β,γ < 0 (resp. = 0, > 0) if and only if α+β+γ <π (resp. =π, >π). We
introduce the following two matrices:

A1
λ =

⎛
⎜
⎝

1 −c12 −λ−1c31
−c12 1 −c23
−λc31 −c23 1

⎞
⎟
⎠

A2
µ =

⎛
⎜
⎝

1 −c45 −µ−1c64
−c45 1 −c56
−µc64 −c56 1

⎞
⎟
⎠

Implicitly, we assume that m12 = m23 = m13 = m45 = 3, but we keep the notation of double
index in order to the use the remarkable equality. By a direct computation, we have:

1
64

det(Aλ,µ) = det(A1
λ)det(A2

µ)− s2
12c2

34s2
56

Another direct computation gives us:

det(A1
λ) = 1−(c2

12+ c2
23+ c2

31)− c12c23c31(λ+λ−1) =Ψ123− c12c23c31(λ+λ−1−2)
det(A2

µ) = 1−(c2
45+ c2

56+ c2
64)− c45c56c64(µ+µ−1) =Ψ456− c45c56c64(µ+µ−1−2)

where Ψ123 (resp. Ψ456) is Ψα,β,γ with (α,β,γ) = ( π
m12

, π
m23

, π
m31

) (resp. ( π
m45

, π
m56

, π
m64

)).

Remark 4.4. The quantity Ψ123 is negative (resp. zero, positive) if and only if the triangle
{1,2,3} is hyperbolic (resp. affine, spherical). Of course, the analogous statement is true for
the quantity Ψ456 and the triangle {4,5,6}.

4.3. Proof of Proposition 4.1.

Proof of Proposition 4.1. Assume that i = 1,2. By Proposition 4.3, we know that C(G i
m) is

homeomorphic to:
{λ ∈R ∣λ > 0 and det(Aλ) = 0}

Moreover, since c64 = 0 and the triangle (π3 , π3 , π3) is affine, i.e. Ψ123 = 0, we have:
1

64
det(Aλ) =

1
8
(2−(λ+λ−1))Ψ456− s2

12c2
34s2

56

Observe that m > 6 if and only if the triangle (π2 , π3 , πm) is hyperbolic, i.e. Ψ456 < 0. Let x =
λ+λ−1. The function [2,+∞) ∋ x↦ det(Aλ) ∈R is an unbounded strictly increasing function.
If x = 2, i.e. λ = 1, then det(Aλ) =−64s2

12c2
34s2

56 < 0. Hence, there is a unique x > 2 and exactly
two λ ∈R∗+∖{1} such that det(Aλ) = 0.

Now assume that i = 3. Once again, by Proposition 4.3, we need to solve the equation:
1

64
det(Aλ,µ) =

1
8
(λ+λ−1−2)(c45c56c64(µ+µ−1−2)−Ψ456)− s2

12c2
34s2

56 = 0

on the set {(λ,µ) ∈R2 ∣λ,µ > 0}. Let x =λ+λ−1 and y =µ+µ−1. The equation is of the form:

(x−2)(y−A) =B
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with B > 0 and A < 2, and thus the solution space of the equation on {(x, y) ∈ R2 ∣ x, y ⩾ 2} is
homeomorphic to a closed half-line whose extremity E is a point (x0,2) with x0 > 2 (see the
blue curve in Figure 5 (A)). It follows that the set of solutions in (λ,µ) is homeomorphic to
two disjoints lines (see the two blue curves in Figure 5 (B)), which completes the proof. �

-1 1 2 3 4 5

-1

1

2

3

4

5

E = (x0,2)

(A) xy-coordinate
with x = λ + λ−1

and y =µ+µ−1

-2 -1 1 2

-2

-1

1

2

(B) ab-coordinate
with a = log(λ)
and b = log(µ)

FIGURE 5. The deformation space C(G3
m) with m = 7

Remark 4.5. If i = 1,2 and 3 ⩽ m ⩽ 6, then C(G i
m) =∅.

Remark 4.6. If i = 3 and m = 3, then the equation to solve is of the form:

(x−2)(y−2) =B

with B > 0, and thus the set of solutions in (λ,µ) is homeomorphic to four disjoints lines.

Definition 4.7. For each Coxeter polytope P ∈ C(G3
m), the Cartan matrix AP is equivalent to

the unique standard form Aλ,µ, and thus the real number µ is an invariant of P. It is called
the µ-invariant of P and denoted by µ(P).

By the parametrization of C(G3
m), the map C(G3

m)→ R∗+ given by P ↦ µ(P) is a two-to-one
covering map. More precisely, for any µ > 0, there exist exactly two Coxeter polytopes Pm
and P′

m in C(G3
m) such that APm = Aλ,µ and AP′m = Aλ−1,µ with some λ > 0.

Remark 4.8 (Duality). If i = 1,2, then C(G i
m) = {P,P♯} and AP♯ is the transpose of AP , and so

P and P♯ are dual in a sense that there is an outer automorphism of SL±5(R) which exchange
them. If i = 3, then the analogous statement is true for each pair {P,P♯} of Coxeter polytopes
in C(G i

m) such that AP = Aλ,µ and AP♯ = Aλ−1,µ−1 (up to equivalence).

5. LIMITS OF Pm

In this section, we study the limit of the sequence (Pm)m.

Proposition 5.1.
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● Let i = 1,2. Assume Pm is one of the two points of C(G i
m). If APm has the standard

form, then as m goes to infinity, APm converges to the symmetric matrix:

A i
∞ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 −1 −1
−1 2 −1
−1 −1 2 −2c34

−2c34 2 −1
−1 2 −2

−2 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

● Let i = 3 and µ > 0. Assume Pm is one of the two points of C(G3
m) such that µ(Pm) = µ.

If APm has the standard form, then as m goes to infinity, APm converges to the matrix:

A3
∞,µ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 −1 −1
−1 2 −1
−1 −1 2 −1

−1 2 −1 −µ−1

−1 2 −2
−µ −2 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Proof. This is a straightforward computation. �

For each m ∈ N∪{∞}, let Pm be a Coxeter polytope with Coxeter group Wm and Coxeter
system (Sm, Mm), and let ρm ∶ Wm → SL±d+1(R) be the corresponding representation. A se-
quence of Coxeter polytopes (Pm)m converges to P∞ as m→∞ if:

⋅ There is a bijection φ̂ ∶ S∞→ Sm which induces the homomorphism φ ∶W∞→Wm.
� The sequence of representations (ρm○φ)m converges algebraically to ρ∞ ∈Hom(W∞,SL±(V)).

Note that Hom(W∞,SL±(V)) is the space of all homomorphisms of W∞ into SL±(V) with
the topology of pointwise convergence.

Corollary 5.2. Let i = 1,2 or 3 and µ > 0. Let Pm be one of the two points of C(G i
m) (such that

µ(Pm) = µ if i = 3). As m goes to infinity, the sequence (Pm)m converges to a Coxeter polytope
P∞ whose Cartan matrix is A i

∞ if i = 1,2 and A3
∞,µ if i = 3. Moreover, the underlying polytope

of P∞ is the pyramid over the prism.

Proof. We ignore the subscript i and the index µ because the proof does not depend on i and
µ.

The Cartan matrix A∞ is irreducible, of negative type and of rank d + 1. By Theorem
2.2, there exists a unique Coxeter polytope P∞ realizing A∞. The obvious bijection between
S∞ and Sm and Proposition 5.1 immediately tell us that the sequence (Pm)m converges to
a Coxeter polytope P∞. The only remaining part is to prove that the underlying polytope
of P∞ is the pyramid over the prism. Let T = {1,2,3,5,6}. The Cartan matrix AT = A0

T
and WT = Ã1× Ã2 virtually isomorphic to Z3, and thus the third part of Theorem 4.2 shows
that T ∈ σ(P) and the intersection of the five facets corresponding to T is a vertex v of P∞.
By Theorem 2.4, the link of P∞ at v∞ is a parabolic Coxeter 3-polytope whose underlying
polytope is a prism, and so P∞ is indeed the pyramid over the prism. �
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6. GEOMETRIC DESCRIPTION

In this section, we explain the geometric properties of the Coxeter polytopes Pm and of the
action of the projective reflection groups ΓPm of Pm on ΩPm . To do so, we need the following
theorem:

Theorem 6.1 (Theorem E of Marquis [Mar14] using Benoist [Ben04a] and Cooper–Long–Till-
mann [CLT15]). Let P be a quasi-perfect loxodromic Coxeter polytope. Then the following are
equivalent:

● The group WP is Gromov hyperbolic relative to the standard subgroups of WP corre-
sponding to the parabolic vertices of P.

● The convex domain ΩP is strictly convex.
● The boundary ∂ΩP of ΩP is of class C1.

6.1. Description of the geometry of the first example. Assume i = 1, and drop the index
i. The Coxeter polytope P∞ is a quasi-perfect hyperbolic polytope of dimension 4, listed in
Tumarkin [Tum04]. In particular, P∞ is a hyperbolic Coxeter polytope of finite volume, i.e.
the projective Coxeter group of P∞ is a non-uniform lattice of POd,1(R).

The Coxeter 4-polytope Pm is perfect. The group Γm is not Gromov hyperbolic since the
group generated by the reflections corresponding to {1,2,3} is an affine Coxeter group vir-
tually isomorphic to Z2, and so by Theorem 6.1, the convex domain Ωm is not strictly convex
nor with C1 boundary.

6.2. Description of the geometry of the second example. Assume i = 2, and drop the
index i. The Coxeter polytope P∞ is a 2-perfect hyperbolic polytope of dimension 4 with
four spherical vertices, one parabolic vertex and two loxodromic vertices, and the Coxeter
polytope Pm is a 2-perfect Coxeter polytope of dimension 4 with seven spherical vertices and
two loxodromic vertices (see the right subfigure 6). We will come back on these examples in
Section 9.

6.3. Description of the geometry of the third example. Assume i = 3, and drop the in-
dex i. The Coxeter polytope P∞ is a quasi-perfect polytope of dimension 4 with six spherical
vertices, one parabolic vertex (see the left subfigure 6). Moreover, Γ∞ is a non-uniform lattice
of POd,1(R) if and only if µ(P∞) = 1. In other words, if µ(P∞) ≠ 1, then P∞ is not a hyperbolic
Coxeter polytope and the convex domain ΩP∞ is not an ellipsoid, however by Theorem 6.1,
it is strictly convex with C1 boundary.

The Coxeter polytope Pm is a perfect Coxeter polytope of dimension 4. Once again, by
Theorem 6.1, the convex domain Ωm is not strictly convex nor with C1 boundary. Note that
compare to Section 6.1, in the case when i = 3, there is a one-parameter family of deforma-
tions of the convex domains.

7. MORE PRIME EXAMPLES IN DIMENSION 4

In Table 1A, we give a list of Coxeter groups Wm, which is not redundant but contains the
previous three examples. For each of them, if m is an integer greater than or equal to 7,
then we can label the product of two triangles in order to obtain a labeled polytope Gm. The
technique we previously describe easily extends to show:
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(A) For examples i = 1 or i = 3 (B) For the example i = 2

FIGURE 6. The spherical vertices are in black, the parabolic vertices are in
white, the loxodromic vertices are in grey.

Theorem 7.1. Choose one of the 13 families (Wm)m⩾7 in Table 1A. If the Coxeter graphs of
the family have one loop, then C(Gm) consists of two points. If the Coxeter graphs of the family
have two loops, then C(Gm) consists of two disjoints lines.

If m =∞, then we can label a pyramid over a prism in order to obtain a labeled polytope
G∞. Eventually, we can show:

Theorem 7.2. Choose one of the 13 families (Wm)m⩾7 in Table 1A.
● Assume that the Coxeter graphs of the family have one loop. If Pm is one of the two

points of C(Gm), then the sequence (Pm)m converges to the unique hyperbolic polytope
P∞ whose Coxeter graph is W∞.

● Assume that the Coxeter graphs of the family have two loops. If µ > 0 and Pm is one
of the two points of C(Gm) with µ(Pm) = µ, then (Pm)m converges to P∞ which is the
unique Coxeter 4-polytope such that µ(P∞) =µ and WP∞ =W∞.

8. NECESSARY CONDITIONS FOR DEHN FILLINGS

Let P∞ be a Coxeter polytope with Coxeter group W∞ and for some mi ∈N, let Pm1,...,mk be
a Dehn filling of P∞ at a non-empty set V = {v1, . . . ,vk} of some parabolic vertices of P∞, i.e.
the underlying labeled polytope of P∞ is obtained from Pm1,...,mk by collapsing a ridge r i of
label π

mi
to the vertex vi for every vi ∈V .

Proposition 8.1. Let d ⩾ 3, and let P∞ be an irreducible Coxeter polytope of dimension d. If
there exists a Dehn filling of P∞ at V , then for every v ∈ V , W∞,v = Ã1 × Ãd−2. Moreover, the
link P∞,v of P∞ at v is a (d−1)-prism.

Before beginning the proof, we recall the following notations and a lemma of Vinberg:
Let P be a Coxeter polytope with Coxeter group W , and S the set of facets of P. For each
face f of P, let S f = {s ∈ S ∣ f ⊂ s}, and σ(P) = {S f ∣ f is a face of P} ⊂ 2S. If T ⊂ S, then
Z(T) = {s ∈ S ∣ s ⊥ t ∀t ∈ T}. Finally, WT and AT denote the Coxeter group and the Cartan
matrix restricted to T, respectively, and S0 denote the subset T of S such that AT = A0

S.
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Lemma 8.2 (Lemma 13 and Proposition 21 of Vinberg [Vin71]). Let W be an irreducible
affine Coxeter group. If A0 is the Tits matrix of W and A is a Cartan matrix realizing W , then
the following is true:

● rank(A) ⩽ rank(A0)+1.
● rank(A) ⩾ rank(A0), and the equlity holds if and only if A and A0 are equivalent.
● If A is not of zero type, then W = Ãk for some k ⩾ 1.

Proof of Proposition 8.1. For the simplicity of the notation, we assume that ∣V ∣ = 1 and denote
by Pm a Dehn filling of P∞ at V . The proof of the general case is the same.

Let Sv be the set of facets of P∞ containing v ∈ V . First, look at the v-link Coxeter group
W∞,v of W∞, i.e. the Coxeter group of the link P∞,v of P∞ at v. Since v is a parabolic vertex,
each component of the decomposition of the Coxeter group W∞,v:

W∞,v =W1
∞,v×⋯×W l

∞,v for some l ∈N
is an irreducible affine Coxeter group (see Table 7) and W∞,v is virtually isomorphic to Zd−1.

The facets of P∞ are in correspondence with the facets of Pm, and so we can consider the
Coxeter subgroup Wm,v of Wm corresponding to the set Sv. Moreover, two adjacent facets of
Sv in P∞ are also adjacent in Pm with the same dihedral angle. Remark that the converse
statement is false. Also, the decomposition of W∞,v gives a partition of the set Sv = S1

v⊔⋯⊔Sl
v,

where W i
∞,v corresponds to S i

v for each i = 1, . . . , l, with the geometric interpretation that if
s ∈ S i

v and t ∈ S j
v with i ≠ j, then s and t are adjacent in P∞ and the dihedral angle is π

2 . As a
consequence, the decomposition of W∞,v induces a decomposition of the Coxeter group Wm,v:

Wm,v =W1
m,v×⋯×W l

m,v

At this moment, it is not obvious that each factor of this decomposition is irreducible, how-
ever we will see in the next paragraph that this is the case.

Let r be the ridge of Pm that collapses to the vertex v to obtain P∞, and r = s∩ t with two
facets s, t ∈ Sv. Then W{s,t} = I2(m) in Wm and W{s,t} = Ã1 in W∞, and so we can assume
that W1

m,v = I2(m) and W1
∞,v = Ã1. Finally, collapsing the ridge r is the only change of the

adjacency rule, and hence for all i = 2, . . . , l, we have W i
m,v =W i

∞,v.

Let A∞,v (resp. Am,v) be the Cartan submatrix of A∞ ∶= AP∞ (resp. Am ∶= APm) corre-
sponding to Sv. According to the decomposition of W∞,v, we can decompose A∞,v and Am,v
as the direct sum:

A∞,v = A1
∞,v⊕⋯⊕Al

∞,v and Am,v = A1
m,v⊕⋯⊕Al

m,v

where each A i
∞,v and A i

m,v, i = 1, ..., l, corresponds to S i
v, respectively, i.e. each A i

∞,v (resp.
A i

m,v) is a component of A∞,v (resp. Am,v). Observe that l ⩾ 2: Otherwise,

d−1 = rank(A∞,v) = rank(A1
∞,v) = 1,

which contradicts to the fact that d ⩾ 3.

Now, we have the following equalities or inequalities for rank:
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● rank(Am,v) ⩽ rank(Am) = d+1,
● rank(A∞,v) = d−1,
● rank(A1

m,v) = rank(A1
∞,v)+1,

● rank(A i
m,v) ⩾ rank(A i

∞,v) for every i ∈ {2, . . . , l},
● rank(A i

m,v) = rank(A i
∞,v)+1 for at least one i ∈ {2, . . . , l}.

The first item is trivial. The second item follows from the fact that v is a parabolic vertex
of P∞. The third item is also trivial. The fourth item is a consequence of the second item of
Lemma 8.2 and W i

m,v =W i
∞,v.

In order to prove the fifth item, we assume on the contrary that for every i ∈ {2, . . . , l},
rank(A i

m,v) = rank(A i
∞,v). Let T = S2

v ⊔⋯⊔Sl
v. First, by the second item of Lemma 8.2,

for each i ∈ {2, . . . , l}, the Cartan matrix A i
m,v is of zero type, and hence Am,T = A0

m,T . If
U = T ∪Z(T)0, then Am,U = A0

m,U and Z(U)0 =∅, so by the second item of Theorem 4.2, the
intersection of the facets of Pm corresponding to U is non-empty. It follows that the intersec-
tion of the facets of Pm corresponding to T is also non-empty, contradicting the combinatorial
structure of the Dehn filling Pm.

From the fifth item, we can assume without loss of generality that:

rank(A2
m,v) = rank(A2

∞,v)+1.

Now we have to show that l = 2. Suppose for contradiction that l ⩾ 3. Since

rank(A∞,v) =
l
∑
i=1

rank(A i
∞,v) and rank(Am,v) =

l
∑
i=1

rank(A i
m,v),

the previous five equalities and inequalities implies that:

rank(Am) = rank(Am,v) = d+1 and rank(A i
m,v) = rank(A i

∞,v) for every i ∈ {3, . . . , l}

and hence by the second item of Lemma 8.2, we conclude that for every i = 3, . . . , l, A i
m,v is

equivalent to A i
∞,v, which is of zero type.

Now look at the Cartan matrix Am:

Am =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1
m 0 0 . . . 0 C1

0 A2
m 0 . . . 0 C2

0 0 A3
m . . . 0 C3

. . . . . . . . . . . . 0 . . .
0 0 0 0 Al

m Cl
D1 D2 D3 . . . Dl F

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where Ci, D i, i = 1, . . . , l, and F are some matrices. First, all entries of Ci and D i are negative
or null. Second, since A i

m is of zero type, for every i = 3, . . . , l, there is a vector X i > 0 such
that A i

mX i = 0. Recall that X > 0 if every entry of X is strictly positive. Moreover, since
rank(Am) = rank(Am,v), we also have that

rank [Al
m

Dl
] = rank(Al

m)
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and so the vector Dl X should be zero. As a consequence, Dl is a zero matrix, and so is Cl ,
which contradicts the fact that Am and A∞ are irreducible. Finally, we prove that l = 2.

In the previous paragraph, we show that A2
m,v cannot be of zero type, and therefore the

Coxeter group W2
∞,v =W2

m,v must be an irreducible affine Coxeter group which can be realized
by a Cartan matrix not of zero type. By the third item of Lemma 8.2, only one family of irre-
ducible affine Coxeter group satisfies this property: Ãk (see Table 7). After all, W∞,v = Ã1×Ãk
virtually isomorphic to Zk+1, and therefore k = d−2.

Finally, the Coxeter polytope P∞,v satisfies the hypothesis of Theorem 2.4, and so P∞,v is
isomorphic to ∆̂Ã1×Ãd−2

, which is a prism. �

9. HOW TO MAKE MORE EXAMPLES

9.1. Some definitions.

Truncation. Let G be a combinatorial polytope, and let v be a vertex of G. A (combinatorial)
truncation of G at v is an operation that cuts the vertex v (without touching the facets not
containing v), creating a new facet in place of v (see Figure 7). The truncated polytope of G
at v is denoted by G†v. If G is a labeled polytope, then we attach the labels π

2 to all new ridges
of G†v, and we denote this new labeled polytope again by G†v. Given a set V of vertices of G,
in a similar way, we define the truncated polytope G†V of G at V .

v
↝

π
2

π
2

π
2

FIGURE 7. An example of truncation: G ↝ G†v

If P is a Coxeter polytope of Sd and v is a vertex of P, then we can also define a (geometric)
truncation applied to P in the case when:
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Definition 9.1. The vertex v of P is truncable if the projective subspace Πv spanned by the
polars [bs] for all facets s of P containing v is a hyperplane such that for every (closed) edge
e ∋ v, the set Πv∩ e consists of exactly one point in the interior of e.

Assume that a vertex v of P is truncable. Then a new Coxeter polytope P†v can be ob-
tained from P by the following operation of truncation: Let Π−v (resp. Π+v ) be the connected
component of Sd ∖Πv which does not contain v (resp. which contains v), and let Π−v be the
closure of Π−v . The underlying polytope of P†v is Π−v ∩P, which has one new facet given by the
hyperplane Πv and the old facets given by P. The reflections about the old facets of P†v are
unchanged, and the reflection about the new facet is determined by the support Πv and the
polar v. It is easy to see that the dihedral angles of the ridges in the new facet of P†v are π

2 .

Remark 9.2. The hyperplane Πv is invariant by the reflections about the facets of P contain-
ing v, and thus the intersection Πv ∩P is a Coxeter polytope of Πv isomorphic to Pv. Also,
note that the polytope Π+v ∩P is the pyramid over Πv∩P.

In a similar way, if V is a subset of the set of truncable vertices of P, then we define
the truncated Coxeter polytope P†V of P at V . The following lemma is an easy corollary of
Proposition 4.14 and Lemma 4.17 in Marquis [Mar14].

Lemma 9.3. Let G be a labeled polytope with Coxeter group W , and let V be a subset of the
set of simple vertices of G. Assume that W is irreducible and for every v ∈V , the v-link Coxter
group Wv is Lannér. Then the map χ ∶ C(G)→ C(G†V) given by χ(P) = P†V is well-defined and
χ is a homeomorphism.

Remark 9.4. If G is a labeled polytope with only spherical and Lannér vertices and V is the
set of Lannér vertices, then G†V is perfect.

Gluing. Let G1 and G2 be two labeled d-polytopes, and let vi, i = 1,2, be a vertex of Gi. If
there is an isomorphism f ∶ (G1)v1 → (G2)v2 as labeled polytope, then we can construct a new
labeled d-polytope, denoted by G1 v1♯v2 G2 (or simply G1 ♯G2), by gluing together two truncated
polytopes G†v1

1 and G†v2
2 via f (see Figure 8).

♯v1 v2G1 G2

G1 ♯ G2

=

FIGURE 8. Gluing two 3-polytopes G1 and G2 along v1 and v2

Similarly, we can also define a (geometric) gluing applied to Coxeter polytopes: let P1 and
P2 be Coxeter polytopes of Sd and let vi, i = 1,2, be a truncable vertex of Pi. If there is
an isomorphism g ∶ (P1)v1 → (P2)v2 as Coxeter polytopes, then the Coxeter polytope P1 ♯P2

is obtained by gluing two truncated polytopes P†v1
1 and P†v2

2 via g. For more details about
truncation, we refer to [CLM].
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9.2. Examples of truncable polytopes. In order to check whether the Coxeter group is
relatively Gromov hyperbolic or not, we need the following theorem. Recall that if (S, M) is a
Coxeter system, then a subset T of S gives us a Coxeter subsystem (T, MT), where MT is the
restrictioin of M to T. Here, we abbreviate (T, MT) to T. If s, t ∈ S are commuting elements
of WS, then we express this fact by writing s ⊥ t. In a natural way, we can understand the
following notations: S1 ⊥ S2 for S1,S2 ⊂ S, and U⊥ for U ⊂ S.

Theorem 9.5 (Moussong [Mou88] for Gromov hyperbolic case and Caprace [Cap09, Cap15]).
Let (S, M) be a Coxeter system, and let T be a collection of subsets of S. Then the group WS
is Gromov hyperbolic relative to {WT ∣ T ∈ T } if and only if the following hold:

⋅ If U is an affine subsystem of S of rank ⩾ 3, then U ⊂T for some T ∈ T .
� If S1,S2 are irreducible non-spherical subsystems such that S1 ⊥ S2, then S1∪S2 ⊂ T

for some T ∈ T .
∴ If T,T′ are two distinct elements of T , then T ∩T′ is a spherical subsystem of S.
 If T ∈ T and U is an irreducible non-spherical subsystem of T, then U⊥ ⊂T

First example. Let P ∈ C(G2
m) and let V be the set of the two Lannér vertices of P. By Lemma

9.3, every vertex v ∈V is truncable, and hence we obtain the perfect polytope P†V .

Second example. Take the Coxeter group U in the left diagram of Table 5. As in Section 3,
we can label the product of two triangles according to the Coxeter diagram U to obtain a
labeled 4-polytope GU , which has 5 spherical vertices and 4 Lannér vertices. By Moussong’s
criterion (see Theorem 9.5), the Coxeter group U is Gromov hyperbolic, however we will
see that U is not hyperbolizable, i.e. U cannot be the Coxeter group of a hyperbolic Coxeter
4-polytope, by computing the deformation space of GU .

3

1

2

4

5

6

4 4
5

3

1

2

4

5

64

4

TABLE 5. Coxeter diagram of U and V

We will compute the deformation space C(GU) of GU and see that C(GU) satisfies the sur-
prising property of being homeomorphic to a circle. In a way similar to Section 4, the defor-
mation space C(GU) is homeomorphic to {(λ,µ) ∈R2 ∣λ,µ > 0 and det(Aλ,µ) = 0}, where:

Aλ,µ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 −
√

2 −λ−1

−
√

2 2 −1
−λ −1 2 −2c5

−2c5 2 −1 −µ−1

−1 2 −
√

2
−µ −

√
2 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

A straightforward computation gives us:

1
64

det(Aλ,µ) = (1− 1
4
− 1

4
− 1

2
− 1

2
1
2

√
2

2
(λ+λ−1))(−

√
2

8
(µ+µ−1))− c2

5s2
4s2

4

1
2

det(Aλ,µ) = (λ+λ−1)(µ+µ−1)−8c2
5
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In other words, the deformation space C(GU) is homeomorphic to:

{(λ,µ) ∈R2 ∣λ,µ > 0 and (λ+λ−1)(µ+µ−1)−8c2
5 = 0}

which is homeomorphic to a circle (see Figure 9).

0.5 1.0 1.5 2.0 2.5

0.5

1.0

1.5

2.0

2.5

FIGURE 9. The deformation space GU

As a consequence, first GU is not hyperbolizable since λ =µ = 1 is not in C(GU), and second
we can answer the following question asked by Benoist if we weaken slightly the assumption:

Question 9.6. Is there a perfect labeled polytope G such that G can be realized as a hyperbolic
Coxeter polytope and the deformation space C(G) is compact and is of dimension ⩾ 1?

Theorem 9.7. There exists a perfect labeled 4-polytope G such that WG is Gromov hyperbolic
and C(G) is homeomorphic to the circle.

Proof. Let V be the set of all Lannér vertices of GU . Then the truncated polytope G†V
U is

perfect, and by Lemma 9.3, C(G†V
U ) = C(GU), which is homeomorphic to the circle. �

Remark that if we take the Coxeter group V in the right diagram of Table 5, then C(GV )
is also homeomorphic to a circle and every Coxeter polytope P ∈ C(GV ) is quasi-perfect and
of finite volume. Note that the link of GV at the vertex v2345 has the Coxeter group:

3

2

4

5

4

4

which is the affine Coxeter group C̃4 virtually isomorphic to Z3 (see Table 7).

9.3. Playing Lego.

First game. Let N be an integer ⩾ 2, and let T be a line tree with N vertices, i.e. each vertex
of T is of valence 1 or 2, and enumerate the vertices t1, . . . , tN of T. Choose N integers

t1 t2 tN−1 tN

FIGURE 10. First game

m1, . . . ,mN > 6, and for each i = 1, . . . , N, select a Coxeter polytope Pi from two polytopes in
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C(G2
mi

) (see Section 4). Each Pi has two truncable vertices whose links are isomorphic as
Coxeter polytope because every Lannér vertex of G2

mi
is rigid. Let Vi be the set of truncable

vertices of Pi. If each vertex ti of T corresponds to Pi, then the tree T naturally gives us
a pattern to glue the Coxeter polytopes P†Vi

i , i = 1, . . . , N, along the new facets of P†Vi
i in

order to obtain a perfect Coxeter 4-polytope Pm1,...,mN . Remark that for each ti, there are
two possible positions of Pi.

If we make every mi go to infinity, then the limit P∞,...,∞ is a finite volume hyperbolic
Coxeter 4-polytope with N cusps. In other words, the Coxeter polytopes Pm1,...,mN are Dehn
fillings of P∞,...,∞. An important remark is that since the choice of the integers m1, . . . ,mN > 6
are independent each other, we can apply the Dehn filling operation to each cusp of P∞,...,∞
independently.

Second game. Choose two integers N, N′ ⩾ 1 and a tree T with N +N′ vertices such that
N vertices, denoted by {τ1, . . . ,τN} =∶ τ, are of valence 1 or 2 and N′ vertices, denoted by
{τ′1, . . . ,τ′N′} =∶ τ′, are of valence 1,2,3 or 4. Select N integers m1, ...,mN > 6. For each vertex

τ2

τ1

τ′1

τ3

τ′2

τ4

τ′3

τ5 τ′5

τ′4

FIGURE 11. Second game with N = N′ = 5

t ∈ τ (resp. τ′), we put a Coxeter polytope Pi (resp. Q j) among the polytopes in C(G2
mi

) (resp.
C(GU)). Each Coxeter polytope Pi (resp. Q j) has two (resp. four) truncable rigid vertices,
and all the links of Pi and Q j at the truncable vertices are isomorphic to each other. Let Vi
(resp. V ′j) be the set of truncable vertices of Pi (resp. Q j). Then the tree T gives us a pattern

to glue the Coxeter polytopes P†Vi
i , i = 1, . . . , N, and Q

†V ′j
j , j = 1, . . . , N′, along their new facets

in order to obtain a perfect Coxeter 4-polytope P′
m1,...,mN

.
Once again, if every mi goes to infinity, then by Theorem 2.5, the limit polytope P′

∞,...,∞
is of finite volume in ΩP′∞,...,∞

. Remark that by Theorem 9.5 of Caprace, the Coxeter group
of P′

∞,...,∞ is Gromov hyperbolic relative to the standard subgroups corresponding to the
parabolic vertices of P′

∞,...,∞, however P′
∞,...,∞ is not hyperbolizable since GU is not.

10. HIGHER DIMENSIONAL EXAMPLES

10.1. Tumarkin’s classification. The simplest polytope is the simplex, however we know
from Proposition 8.1 that a hyperbolic Coxeter d-polytope which allows us to get a Dehn
filling must have a vertex whose link is a (d −1)-prism, but the simplex has only simple
vertices.

The next simplest polytopes have d+2 facets, and Tumarkin [Tum04] classified all finite
volume hyperbolic Coxeter d-polytopes with d+2 facets: They exist only in dimension d ⩽ 17,
and among them, hyperbolic Coxeter d-polytopes P∞ with a Ã1 × Ãd−2 cusp exist only in
dimension d ⩽ 7. In this paper, for prime examples, we restrict ourself to d-polytopes with
d+2 facets, and thus Proposition 8.1 (or the work of Tumarkin) implies that the underlying



CONVEX PROJECTIVE GENERALIZED DEHN FILLING 31

polytope of P∞ is Pyr(∆1 ×∆d−2). We will see that the underlying polytopes of the Dehn
fillings Pm of P∞ are ∆2×∆d−2.

10.2. The labelling of the Gm. In a way similar to Section 3, we can label the product of a
(d−2)-simplex and a triangle according to each of the 12 families of Coxeter groups (Wm)m⩾7
in Tables 1 B,C,D in order to get a labeled polytope Gm:

First, let a1, ...,ad−1 be the vertices in the loop Ãd−2 of Wm, and b1,b2,b3 the remaining
vertices of Wm. Next, denote the facets of the (d−2)-simplex by the same symbols a1, ...,ad−1
and the edges of the triangle by the symbols b1,b2,b3. Then the symbols a1, ...,ad−1,b1,b2,b3
are naturally assigned to the facets of ∆d−2×∆2. Finally, we obtain the labeled polytopes Gm
with a ridge labelling on ∆d−2×∆2 according to Wm. The techniques we describe before can
be easily extended to show:

Theorem 10.1. Choose one of the 12 families (Wm)m⩾7 in Tables 1 B,C,D. If the Coxeter
graphs of the family have one loop, then C(Gm) consists of two points. If the Coxeter graphs of
the family have two loops, then C(Gm) consists of two disjoints lines.

If m =∞, then we can label a pyramid over a prism according to W∞ in order to obtain a
labeled polytope G∞. Eventually, we can show:

Theorem 10.2. Choose one of the 12 families (Wm)m⩾7 in Tables 1 B,C,D.

● Assume that the Coxeter graphs of the family have one loop. If Pm is one of the two
points of C(Gm), then the sequence (Pm)m converges to the unique hyperbolic polytope
P∞ whose Coxeter graph is W∞.

● Assume that the Coxeter graphs of the family have two loops. If µ > 0 and Pm is one
of the two points of C(Gm) such that µ(Pm) = µ, then (Pm)m converges to P∞ which is
the unique Coxeter polytope such that µ(P∞) =µ and whose Coxeter graph is W∞.

Proof of Theorems 10.1 and 10.2. We first need to compute C(Gm), the proof is identical to
the proof of Proposition 4.1, so we leave it to the reader. To help the reader do the actual
computation, we remark that if c1, . . . , cn are real numbers and Dλ is the determinant of the
following matrix Mλ

Mλ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 −c1 −cnλ
−1

−c1 2 −c2
−c2 2 −c3

−c3 2 ⋱
⋱ 2 −cn−1

−cnλ −cn−1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

then we have the following equality:

Dλ =D1− c1c2⋯cn((λ+λ−1)−2))

Now we need to check that Gm is the underlying labeled polytope of any Coxeter polytopes
realizing Wm. In the case when m =∞, there is a standard subgroup of W∞ that is an affine
Coxeter group Ã1× Ãd−2, and hence as in the proof of Corollary 5.2, P∞ is a pyramid over a
prism (see also Proposition 8.1).
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In the case when m <∞, we need to be more careful. The shortest path is probably to
do a bit of book-keeping and to separate dimension 5 from dimensions 6,7. If we denote by
Pyrg(Q) the pyramid over . . . the pyramid over Q (g times), then every d-polytope with d+2
facets is of the form Pyrg(∆e ×∆ f ) with e+ f + g = d (see Section 6.5 of Ziegler [Zie95]). It is
easy to show that Pyrg(∆e×∆ f ) is a polytope with (e+1)( f +1)+ g vertices and among them
exactly (e+1)( f +1) vertices are simple. Moreover, the number of edges of Pyrg(∆e ×∆ f ) is
(e+1)( f +1)(g+ e+ f

2 )+ g(g−1)
2 .

First in dimension 6 or 7, remark that the 3(d −1) standard subgroups of Wm given by
erasing one node of the Ãd−2 loop and one node of the remaining part are spherical Coxeter
groups of rank d. It follows that the Coxeter group Wm contains at least 3(d−1) standard
spherical subgroups of rank d, and by Theorem 4.2, Pm has at least 3(d−1) simple vertices.

However, a careful inspection shows that: if d = 6 or 7, then the only d-polytope with at
least 3(d −1) vertices are: ∆2 ×∆4, ∆3 ×∆3, ∆2 ×∆5 and ∆3 ×∆4. In particular, P must be
simple, and we just have to eliminate the possibility of ∆3×∆3 and ∆3×∆4.

In order to so, we need to introduce the following: Let S be the set of facets of a polytope P.
A subset A of (k+1) elements of S is k-adjacent if for every subset B of k elements of A, the
intersection of the facets in B is a (d−k)-dimensional face of P. Notice that for the polytope
∆e×∆ f with e ⩽ f , there is a f -adjacent subset of ( f +1) facets but no ( f +1)-adjacent subset
of ( f +2) facets. However, the Coxeter group Wm contains Ãd−2 and so by Theorem 4.2, there
exists a (d−2)-adjacent subset of (d−1) facets of Pm. As a consequence, P must be ∆2×∆d−2.

Second, in dimension 5, we should remark that the 30 standard subgroups of Wm given
by erasing one node (resp. two nodes) of the Ã3 loop and two nodes (resp. one node) of the
remaining part are spherical of rank d −1. So the Coxeter group Wm contains at least 30
standard spherical subgroups of rank d −1. By Theorem 4.2, this implies that Pm has at
least 30 edges. But, a careful inspection show that the only 5-polytope with 7-facets with at
least 30 edges is ∆2×∆3. �

Remark 10.3. The following is the reason why we separate the arguments for dimension 5
and dimensions 6,7: The right Coxeter group in Table 1B with k = l = 5 has only 6 spherical
subsystem of rank 5; and the polytope Pyr(∆3×∆3) has 64 edges, however ∆2×∆5 has only
63 edges.

10.3. Nine examples in dimension 5. See the left diagram in Table 1B. If p = 3, then the
Coxeter polytopes Pm with m finite are perfect and ΩPm is not strictly convex nor with C1-
boundary. The polytope P∞ is a quasi-perfect hyperbolic Coxeter polytope with one parabolic
vertex.

If p = 4, then the polytopes Pm with m finite are quasi-perfect with one parabolic vertex
and ΩPm is not strictly convex nor with C1-boundary. The polytope P∞ is a quasi-perfect
hyperbolic Coxeter polytope with two parabolic vertices.

If p = 5, then the polytopes Pm with m finite are 2-perfect with three rigid loxodromic
vertices and ΩPm is not strictly convex. The polytope P∞ is a 2-perfect hyperbolic Coxeter
polytope with one parabolic vertex and three rigid loxodromic vertices.

Now look at the right diagram in Table 1B. Here we will only mention the properties
of the Coxeter polytope Pm when m is finite. When (p, q) = (3,3), the Coxeter polytopes
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Pm are perfect. When (p, q) = (4,3), the Coxeter polytopes Pm are quasi-perfect with one
parabolic vertex. When (p, q) = (4,4), the Coxeter polytopes Pm are quasi-perfect with two
parabolic vertices. When (p, q) = (5,3), the Coxeter polytopes Pm are 2-perfect with three
rigid loxodromic vertices. When (p, q) = (5,4), the Coxeter polytopes Pm are 2-perfect with
one parabolic vertex and three rigid loxodromic vertices. Finally, when (p, q) = (5,5), the
Coxeter polytopes Pm are 2-perfect with six rigid loxodromic vertices.

An important remark is that when p = 5, we can apply the operation of truncation to Pm
in order to build infinitely many non-prime examples.

10.4. Two examples in dimension 6. The two Coxeter polytopes we find in dimension 6
are perfect when m is finite (see Table1C). The following remark explains why we cannot
contruct infinitely many non-prime examples in dimension ⩾ 6. In other words, it is hard to
find truncable vertices of polytope of dimension ⩾ 6.

Remark 10.4. By the work of Lannér, we know that large perfect Coxeter simplex, which
corresponds to Lannér Coxeter group, exists only up to dimension 4. However, Lemma 9.3
which is the starting point for truncation requires a truncable vertex to be simple, and hence
the operation of truncation/gluing works only up to dimension 5. Remark that there exists a
Coxeter polytope with a non-truncable non-simple loxodromic perfect vertex.

10.5. Two examples in dimension 7. The two Coxeter polytopes we find in dimension 7
are quasi-perfect when m is finite (see Table 1D). Note Pm is not perfect.

11. PROOF OF THE MAIN THEOREMS

11.1. Proof of Theorem A.

Proof of Theorem A. In Sections 5 and 10, we provide finite volume hyperbolic Coxeter poly-
topes P∞ of dimension d = 4,5,6,7 that admit Dehn fillings (Pm)m⩾7.

Here, we remark that since the Coxeter polytopes (Pm)m⩾7 and P∞ are quasi-perfect, by
Theorem 8.2 of [Mar14], the convex domains (Ωm)m⩾7 (resp. Ω∞) that are different from Sd

and that are invariant by ρm(W∞) (resp. ρ∞(W∞)) are unique.
Let (S∞, M∞) be the Coxeter system of P∞. We know that the representations (ρm)m⩾7

converge algebraically to ρm, and therefore for each s ∈ S∞, the supports and the polars of
reflections ρm(σs) converges to the support and the polar of reflections ρ∞(σs). It follows
that the underlying projective polytopes of (Pm)m⩾7 converge to the underlying projective
polytope of P∞ in the Hausdorff topology for the closed subsets of Sd. Moreover, the properly
convex closed subsets (Ωm)m⩾7 of Sd converges to a convex closed set K in some affine chart
of Sd (up to subsequence), and so the uniqueness of ρ∞(W∞)-invariant convex domain Ω∞

implies that K =Ω∞ and (Ωm)m⩾7 converges to Ω∞. �

11.2. Proof of Theorem B.

Proof of Theorem B. Let W∞ (resp. Wm) be the orbifold fundamental group ofO∞ (resp. Om).
By Selberg’s Lemma, there is a torsion-free finite-index subgroup Γ∞ of W∞ such that the
quotient M∞ = Ω∞/Γ∞ is a manifold. Let Γm be the projection of Γ∞ via the surjective
homomorphism W∞→Wm. The subgroup Γm of Wm is of finite index bounded above by the
index of Γ∞ in W∞, and the closed d-orbifolds Mm =Ωm/Γm are Dehn fillings of M∞. �
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Remark 11.1. In the proof of Theorem B, the orbifold Mm is not a manifold.

Proof of Remark 11.1. We can assume that Γ∞ is normal in W∞, i.e. Γm is a finite-index nor-
mal subgroup of Wm. Assume for contradiction that Γm is torsion-free. Since Γm is torsion-
free, the restriction of the homomorphism Wm→Wm/Γm to Dm is injective. This implies that
the index of Γm inside Wm is unbounded, which is a contradiction. �

11.3. Proof of Theorems C, D and E. The main tools to prove Theorem C are Theorem
9.5 of Moussong–Caprace and a Theorem of Druţu–Sapir. We state a simplifed version of the
main theorem in Druţu–Sapir [DS05]. Recall the definition of quasi-isometry: Let (X ,dX)
and (Y ,dY ) be metric spaces. A map f ∶ X →Y is called a (c,D)-quasi-isometric embedding
if there exist constants c ⩾ 1 and D ⩾ 0 such that for all x, x′ ∈ X

1
c

dX(x, x′)−D ⩽ dY ( f (x), f (x′)) ⩽ cdX(x, x′)+D.

Moreover, a quasi-isometric embedding f ∶ X → Y is a quasi-isometry if there is E > 0 such
that the E-neighborhood of f (X) is Y .

Theorem 11.2 (Druţu-Sapir [DS05]). Let Γ be a Gromov hyperbolic group relative to a family
A1, ..., Ar of infinite abelian subgroup of finite type. Let Λ be a group of finite type and B an
abelian group of finite type.

● For every quasi-isometric embedding of B into Γ, the image of B is at bounded distance
from a conjugate of A i for some i.

● If Λ is quasi-isometric to Γ, then Λ is Gromov hyperbolic relative to a family B1, ...,Bs
of subgroups, each of which is quasi-isometric to A i for some i.

Proof of Theorem C. The fact that the group Γ is Gromov hyperbolic relative to a family of
subgroups virtually isomorphic to Zd−2 is an easy consequence of Theorem 9.5 of Caprace.

By Lemma 8.19 of Marquis [Mar14], the convex domain Ω contain a properly embedded
(d−2)-simplex. Now, we show that the convex domain Ω does not contain a properly embed-
ded (d−1)-simplex.

First, note that a (d−1)-simplex equipped with Hilbert metric is bilipshitz equivalent to
the Euclidean space Rd−1 (see de la Harpe [dlH93]). Second, since Γ divides Ω, by S̆varc-
Milnor lemma, the group Γ is quasi-isometric to the metric space (Ω,dΩ). Hence, any prop-
erly embedded (d−1)-simplex induces a quasi-isometric embedding f of Rd−1 into Γ, which
is Gromov hyperbolic to a family of subgroups virtually isomorphic to Zd−2. By the first
item of Theorem 11.2, the embedding f induces a quasi-isometric embedding of Rd−1 into a
peripheral Zd−2 of Γ, but there is no quasi-isometric embedding of Rd−1 into Zd−2.

The quotient orbifold is not homeomorphic to a union along the boundaries of finitely many
d-orbifolds each of which admits a finite volume hyperbolic structure on its interior because
otherwise Γ would be Gromov hyperbolic relative to a finite collection of subgroups virtually
isomorphic to Zd−1, and Γ is Gromov hyperbolic relative to a finite collection of subgroups
virtually isomorphic to Zd−2, which contradicts the item 2 of Theorem 11.2. �

Proof of Theorem D. See the Coxeter graphs of Table 2. Each of those Coxeter graph W is
obtained by linking a Coxeter subgraph Wle f t which is an Ã2, Ã3 or Ã4 Coxeter graph to a
disjoint Coxeter subgraph Wright which is Lannér, by an edge with no label.
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One can label the product G of two simplex ∆e×∆ f with e (resp. f ) being the rank of Wle f t
(resp. Wright) minus one using W as in section 3, after that the same computation as the one
in section 4 shows that C(G) is two points if W has one loop and two disjoints lines if W has
two loops.

The fact that G is perfect is a consequence of the fact that for every node s of Wle f t, and
every node t of Wright, the Coxeter group obtained by erasing the node s and t of W is
spherical.

Finally, the same arguments than for Theorem C show that the group W is relatively
hyperbolic and that Ω contains only tight properly embedded simplex of the expected di-
mension. �

Proof of Theorem E. See the Coxeter graphs of Table 3. The only difference with Theorem
D is that the computation that gives the existence of such Coxeter polytope is this time an
extension of the computation of Remark 4.6. �

APPENDIX A. USEFUL COXETER DIAGRAMS

A.1. Spherical and affine Coxeter diagram. The irreducible spherical and affine Cox-
eter group were classified by Coxeter [Cox34]. We reproduce the list of those Coxeter dia-
grams in Figures 6 and 7. We use the usual convention that an edge that should be labeled
by 3 has in fact no label.

A.2. Lannér Coxeter groups. A Coxeter group associated to a large irreducible perfect
simplex is called a Lannér Coxeter group, after Lannér [Lan50] first enumerated them in
1950. These groups are very limited, for example they exist only in dimension 2,3,4, and
there exist infinitely many in dimension 2, 9 in dimension 3 and 5 in dimension 4.
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An (n ⩾ 1)

Bn (n ⩾ 2) 4

Dn (n ⩾ 4)

I2(p)
p

H3
5

H4
5

F4
4

E6

E7

E8

TABLE 6. Irreducible
spherical Coxeter diagram

Ãn (n ⩾ 2)

B̃n (n ⩾ 3) 4

C̃n (n ⩾ 3) 4 4

D̃n (n ⩾ 4)

Ã1
∞

B̃2 = C̃2
4 4

G̃2
6

F̃4
4

Ẽ6

Ẽ7

Ẽ8

TABLE 7. Irreducible
affine Coxeter diagram
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p q
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