
HAL Id: hal-01393964
https://hal.science/hal-01393964v1

Submitted on 8 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mini-batch stochastic approaches for accelerated
multiplicative updates in nonnegative matrix

factorisation with beta-divergence
Romain Serizel, Slim Essid, Gael Richard

To cite this version:
Romain Serizel, Slim Essid, Gael Richard. Mini-batch stochastic approaches for accelerated multiplica-
tive updates in nonnegative matrix factorisation with beta-divergence. IEEE International Workshop
on Machine Learning for Signal Processing (MLSP 2016), Sep 2016, Salerne, Italy. �hal-01393964�

https://hal.science/hal-01393964v1
https://hal.archives-ouvertes.fr

2016 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 13–16, 2016, SALERNO, ITALY

MINI-BATCH STOCHASTIC APPROACHES FOR ACCELERATED MULTIPLICATIVE
UPDATES IN NONNEGATIVE MATRIX FACTORISATION WITH BETA-DIVERGENCE

Romain Serizel, Slim Essid, Gaël Richard

LTCI, CNRS, Télécom ParisTech, Université Paris - Saclay, 75013, Paris, France

ABSTRACT

Nonnegative matrix factorisation (NMF) with β-divergence is a pop-
ular method to decompose real world data. In this paper we pro-
pose mini-batch stochastic algorithms to perform NMF efficiently
on large data matrices. Besides the stochastic aspect, the mini-batch
approach allows exploiting intensive computing devices such as gen-
eral purpose graphical processing units to decrease the processing
time and in some cases outperform coordinate descent approach.

Index Terms— Nonnegative matrix factorisation, GPGPU,
multiplicative rules, online learning

1. INTRODUCTION

Nonnegative matrix factorisation (NMF) is a popular data decom-
position method [1]. NMF indeed allows obtaining meaningfull de-
compositions that are well suited to the underlying structure of the
processed data. Over the past years, owing to these assets NMF has
been used in a wide variety of applications ranging from text anal-
ysis [1], to electroencephalogram decomposition [2, 3], image pro-
cessing [4], blind source separation [5, 6], music transcription [7]
machine listening [8] or speech processing [9, 10].

When considering a large amount of data, applying NMF can
quickly become computationally demanding. Therefore, over the
years, a substantial amount of work has been dedicated to the de-
sign of fast and low complexity optimisation algorithms for NMF.
These methods include the approaches based on coordinate descent
(CD) [11, 12] and the fast hierarchical alternating least squares
method (FastHALS) [11] where each coordinate is optimised se-
quentially. Other examples include the distributed approaches [13]
that could allow one to take advantage of distributed computation
architectures and more recently online approaches [4, 14] inspired
the stochastic gradient approach [15] where the decomposition is
updated on a subset of the data drawn randomly. Most of these
approaches focus on the minimisation of a least square criterion that
assumes a Gaussian noise model.

When considering real world signals, it is often the case that the
noise model is not Gaussian but can be a Poisson distribution or a
Gamma distribution in which case the generalised Kullback-Leibler
(KL) divergence [16] and the Itakura-Saito (IS) divergence [17] can
be more appropriate, respectively.

CD-based approaches have been extended to the KL prob-
lem [11, 12] but to our best knowledge the IS problem was never
considered. The multiplicative update rules (MU) first introduced
for the Euclidean distance [1] and later extended to the KL di-
vergence [18] can be generalised to the β-divergence that encom-
passes the Euclidean distance, the KL divergence and the IS diver-

This work was partly funded by the European Union under the FP7-
LASIE project (grant 607480).

gence [19, 20]. Therefore, MU rules became increasingly popular
when dealing with real world signals and in particular audio signals.
However, MU rules can be computationally demanding and are
generally outperformed by gradient descent based approaches when
considering cost functions based on the Euclidean distance.

In this paper, we propose mini-batch methods for accelerated
MU rules. These approaches are inspired by the work based on on-
line learning for the Euclidean distance [4, 14] and on the stochastic
average gradient approach (SAG) [21]. Besides, these approaches
can be run on devices with constraint memory allowing for exploita-
tion of general purpose graphical processing units (GPGPU). When
dealing with matrices operations (which is essentially the case in
MU rules), GPGPU significantly decrease the processing time fur-
ther compared to central processing units (CPU) and can outperform
CD based approaches even with Euclidean distance cost.

This paper is organised as follows. The notations and the gen-
eral NMF problem are introduced in Section 2. CD for Euclidean
distance and KL divergence are briefly described in Section 3. In
Section 4 we propose mini-batch approaches for MU rules in the
general case of the β-divergence and consideration about GPGPU
implementation are exposed in Section 5. We present the experi-
ments results and discussion in Section 6 and conclusions are ex-
posed in Section 7.

2. PROBLEM STATEMENT AND NOTATIONS

Consider the (nonnegative) matrix V ∈ R
F×N
+ . Without loss of

generality we consider here that V is the time-feature space repre-
sentation of a time series where N the number of frames and F is
the number of features per frames. The goal of NMF [1] is to find a
factorisation for V of the form:

V ≈WH (1)

where W ∈ R
F×K
+ , H ∈ R

K×N
+ and K is the number of compo-

nents in the decomposition. The NMF model estimation is usually
considered as solving the following optimisation problem:

min
WH

D(V|WH) s.t. W ≥ 0, H ≥ 0 (2)

where D is a separable divergence such as:

D(V|WH) =
F
∑

f=1

N
∑

n=1

d([V]fn|[WH]fn), (3)

with [.]fn is the element on the nth column and the f th line of a ma-
trix and d is a scalar cost function. Similarly let [.]:n and [.]f : be the
nth column and the f th row of a matrix. A common choice for the
cost function is the β-divergence [19]. Popular cost functions such as

978-1-5090-0746-2/16/$31.00 c©2016 IEEE

the Euclidean distance, the generalised KL divergence [16] and the
IS divergence [17] are all particular cases of the β-divergence (ob-
tained for β = 2, 1 and 0, respectively). The use of the β-divergence
for NMF has been studied extensively in Févotte et al. [20]. In most
cases the NMF problem is solved using a two-block coordinate de-
scent approach. Each of the factors W and H is optimised alterna-
tively. The sub-problem in one factor can then be considered as a
nonnegative least square problem (NNLS) [22]. Two different ap-
proaches are considered here to solve these NNLS problems: the
coordinate descent approach [11, 12] and the MU rules [1].

3. NMF WITH COORDINATE DESCENT

The main idea in the coordinate descent (CD) method is to update
one coordinate at a time until convergence. Recently a method called
FastHALS was proposed to solve the NMF with Euclidean norm
with CD [11] and an extension to KL was later proposed in Hsieh
et al. [12]. Both these methods are described below and are used as
baseline for performance evaluation.

3.1. Euclidean distance

The goal in CD for NMF is to solve alternatively the set of one vari-
able sub-problems deriving from (3). For (k, n) ∈ [[1, K]] × [[1, N]]
solve (4). Then for (f, k) ∈ [[1, F]] × [[1, K]] solve (5) (see also
Algorithm 1).

min
[H]kn

1

2

∑

f

([V]fn − [WH]fn − [W]fk[H]kn)
2 s.t. [H]kn ≥ 0

(4)

min
[W]fk

1

2

∑

n

([V]fn − [WH]fn − [W]fk[H]kn)
2 s.t. [W]fk ≥ 0

(5)

A full pass through the data is referred to as an epoch to avoid confu-
sion with local iteration (on the coordinate of the matrices or on the
mini-batch in the next section). The number of epochs performed by
the algorithm is controlled by a parameter. Each one variable sub-
problem can be solved exactly. The solutions of these problems lead
to the following update rules [11]:

[H]kn ←

[

[H]kn −
[WT WH−WT X]kn

[WT W]kk

]

+

(6)

[W]fk ←

[

[W]fk −
[WHHT − XHT]fk

[HHT]kk

]

+

, (7)

where [.]+ is the half-wave rectifying operator [.]+ = max(., 0).

3.2. Generalised Kullback-Leibler divergence

A similar approach can be applied to NMF with KL divergence ex-
cept that now the sets of one variable sub-problems do not have a
closed form solution [11, 12]. However, the cost functions are twice
differentiable, therefore, the sub-problems can be solved with New-
ton method which lead to the following update rules [12]:

[H]kn ←

[H]kn −

∑

f
[W]fk(1−

[X]fn

[WH]kn
)

∑

f

[X]fn[W]fk

[WH]2
kn

+

(8)

[W]fk ←

[W]fk −

∑

n[H]kn(1−
[X]fn

[WH]kn
)

∑

n

[X]fn[H]kn

[WH]2
kn

+

. (9)

Algorithm 1 CD for the Euclidean norm (FastHALS)

Require: V ∈ R
F×N
+ , max epoch

1: Initialise H, W with nonnegative random coefficients
2: for ep = 0; ep < max epoch do

3: Compute WT W and WT X

4: for n = 1; j ≤ N do

5: for k = 1; r ≤ K do

6: Update [H]kn with (6)
7: end for

8: end for

9: Compute HHT and XHT

10: for f = 1; j ≤ F do

11: for k = 1; r ≤ K do

12: Update [W]fk with (7)
13: end for

14: end for

15: end for

16: return H, W

Algorithm 2 CD for the KL divergence

Require: V ∈ R
F×N
+ , max epoch

1: Initialise H, W with nonnegative random coefficients
2: for ep = 0; ep < max epoch do

3: Compute WT W and
4: for n = 1; j ≤ N do

5: for k = 1; r ≤ K do

6: repeat

7: Update [H]kn with (8)
8: [WH]:n ←W[H]:n
9: until Convergence

10: end for

11: end for

12: Compute HHT

13: for f = 1; j ≤ F do

14: for k = 1; r ≤ K do

15: repeat

16: Update [W]fk with (9)
17: [WH]f : ← [W]f :H
18: until Convergence
19: end for

20: end for

21: end for

22: return H, W

4. BETA-NMF WITH MULTIPLICATIVE UPDATES

The MU rules introduced in Lee et al. [1] for the Euclidean distance
were obtained using the heuristic which consists in expressing the
gradient of the cost function (2) as the difference between a positive
contribution and a negative contribution. The MU rules then have
the form of a quotient of the negative contribution by the positive
contribution. These update rules were later generalised to the KL
divergence [18] and the β-divergence [20] leading to the following
expressions:

H← H⊙
WT

[

(WH)β−2 ⊙ V
]

WT (WH)β−1
(10)

W←W⊙

[

(WH)β−2 ⊙ V
]

HT

(WH)β−1HT
; (11)

where ⊙ is the element-wise product (Hadamard product) and divi-
sion and power are element-wise. The matrices H and W are then
updated according to the alternating update scheme described in Al-
gorithm 3.

Algorithm 3 Basic alternating scheme for MU rules

Require: V ∈ R
F×N
+ , β, max iter

1: Initialise H, W with nonnegative random coefficients
2: for it = 0; it < max iter do

3: Update H with (10)
4: Update W with (11)
5: end for

6: return H, W

4.1. Cyclic mini-batch updates

The standard update scheme (described in Algorithm 3) requires the
complete matrix V. When considering time series with a large num-
ber of data points (or time series that are expending in time) running
this algorithm can become prohibitive. Capitalising on the separabil-
ity of the divergence (3) it is possible to perform NMF on mini-batch
of data to reduce the computational burden or to allow for parallel
computations [13].

When considering time series as defined above, each column
([V]:n) of the matrix V contains all the features for a specific time
frame and each row ([V]f :) represents a particular feature along time.
The number of rows is then a parameter of the low-level representa-
tion and only the number of columns can increase while increasing
the amount of data. Therefore, in contrast to the approach proposed
in Şimşekli et al. [13] we decide to decompose the matrix V in B

mini-batches of time frames that contain all the features for the given
frame (see also Figure 1).

For each batch b, the update of the activations Hb corresponding
to Vb can be obtained independently from all the other batches with
the standard MU rules (10). The update of the bases W on the other
hand requires the whole matrix V to be processed. The positive con-
tribution of the gradient (thereafter denoted ∇+W) and the negative
contribution of the gradient (thereafter denoted ∇−W) are accumu-
lated along the mini-batches. W is updated once per epoch with the
standard MU rule (11) as described in Algorithm 1. Note that this is
theoretically similar to the standard full-gradient (FG) MU rules.

Algorithm 4 Cyclic mini-batch for MU rules

Require: V ∈ R
F×N
+ , β, max epoch

1: Initialise H, W with nonnegative random coefficients
2: for ep = 0; ep < max epoch do

3: Initialise∇−W = 0 and ∇+W = 0
4: for b = 1; b < B do

5: Update Hb with (10)
6: ∇−W +=∇−Wb

7: ∇+W +=∇+Wb

8: end for

9: W← ∇−W

∇+W

10: end for

11: return H, W

4.2. Stochastic mini-batch updates

When aiming at minimizing an Euclidean distance, it has been
shown that drawing samples randomly can improve greatly the

convergence speed in dictionary learning and by extension in
NMF [4, 14]. We propose to apply a similar idea to MU rules in
order to take advantage of the wide variety of divergences covered
by the β-divergence. Instead of selecting the mini-batch sequentially
on the original data V as in Section 4.1, we propose to draw mini-
batches randomly on a shuffled version of V. The mini-batch update
of H still needs one full pass through the data so the mini-batches
are drawn from brnd, a random permutation of [[1, B]]. On the other
hand, the shuffling of V is then used to ensure that there is enough
data variability in each mini-batch and a single mini-batch can be
used to update W.

Two different strategies can be considered to update W. The
first option is to update W for each mini-batch as described in Algo-
rithm 5. This approach is denoted asymmetric SG mini-batch MU
rules (ASG-MU) as H and W are updated asymmetrically (the full H

is updated once per epoch while W is updated for each mini-batch).
The second option is to update W only once per epoch on a randomly
selected mini-batch. In practice as mini-batches are drawn from a
random permutation of [[1, B]] updating W on the last mini-batch
selected is equivalent to select a random mini-batch as described in
Algorithm 6. This approach will be referred to as greedy SG mini-
batch MU rules (GSG-MU).

Algorithm 5 Asymmetric SG mini-batch MU rules (ASG-MU)

Require: V ∈ R
F×N
+ , β, max epoch

1: Initialise H, W with nonnegative random coefficients
2: Shuffle V

3: for ep = 0; ep < max epoch do

4: brnd ← permutation of [[1, B]]
5: for b ∈ brnd do

6: Update Hb with (10)
7: Update W with (11) (with H replaced by Hb)
8: end for

9: end for

10: return H, W

Algorithm 6 Greedy SG mini-batch MU rules (GSG-MU)

Require: V ∈ R
F×N
+ , β, max epoch

1: Initialise H, W with nonnegative random coefficients
2: Shuffle V

3: for ep = 0; ep < max epoch do

4: brnd ← permutation of [[1, B]]
5: for b ∈ brnd do

6: Update Hb with (10)
7: end for

8: Update W with (11) (with H replaced by H[brnd]B)
9: end for

10: return H, W

4.3. Stochastic average gradient mini-batch updates

SAG [21] is a method recently introduced for optimizing cost func-
tions that are a sum of convex functions (which is the case here).
SAG provides an intermediate between FG-like methods (as used
in Section 4.1) and SG-like methods (as used in Section 4.2). SAG
then allows to obtain similar convergence rate than FG methods with
a complexity comparable to SG methods.

We propose to apply SAG-like methods to update the dictionar-
ies W in a mini-batch based NMF. Note that, as the full pass through
the data is needed to update H it would not make sense to apply
SAG here. The key idea is that for each mini-batch b instead of us-
ing the gradient computed locally to update W, we propose to use

V2 Vb VB−1 VBV1

N time frames / B batches

N time frames / B batches

F
fe

at
u

re
s

H2 Hb HB−1 HBH1W≈ ×

Fig. 1. Mini-batch decomposition of the data matrix V

the mini-batch data to update the full gradient negative and positive
contributions. In the case of MU rules, in order to prevent the oldest
(and possibly outdated) values of the gradient from causing instabil-
ties we use an averaging based on an exponential forgetting factor
λ ∈ [0, 1]:

∇−
W← (1− λ)∇−

W + λ∇−
newWb (12)

∇+
W← (1− λ)∇+

W + λ∇+
newWb (13)

where∇−
newWb and∇+

newWb are the negative and positive contribu-
tion to the gradient of W calculated on the mini-batch b, respectively.
Note that for λ = 1 this gradient update formulation is equivalent to
the SG approach described above.

Similarly as in Section 4.2, two different strategies can be con-
sidered to update W. The first option is to update W for each mini-
batch as described in Algorithm 7. This approach is denoted asym-
metric SAG mini-batch MU rules (ASAG-MU). The second option
is to update W only once per epoch on the last mini-batch from the
permutation brnd, as described in Algorithm 8. This approach is
termed greedy SAG mini-batch MU rules (GSAG-MU).

Algorithm 7 Asymmetric SAG mini-batch MU rules (ASAG-MU)

Require: V ∈ R
F×N
+ , β, max epoch

1: Initialise H, W with nonnegative random coefficients
2: Shuffle V

3: for ep = 0; ep < max epoch do

4: brnd ← permutation of [[1, B]]
5: for b ∈ brnd do

6: Update Hb with (10)
7: Udpate∇−W with (12)
8: Udpate∇+W with (13)

9: W← ∇−W

∇+W

10: end for

11: end for

12: return H, W

5. GPGPU IMPLEMENTATION FOR ACCELERATED

UPDATES

Over the past years, GPGPU become increasingly popular in sci-
entific computing as they allow one to drastically improve execu-
tion speed on computationally intensive functions such as manipu-
lation on large matrices. Owing to these assets, GPGPU program-
ming played a central part in the recent success of deep learning and
many GPGPU programming packages have emerged among which:
Theano [23], Torch7 [24] or tensorflow [25]. During this work we
decided to use Theano which is a python library and therefore allows
flexible integration within a full scientific programming framework.

The latency in data transfers to and from the GPGPU internal
memory is a critical aspect in GPGPU programming. Indeed the

Algorithm 8 Greedy SAG mini-batch MU rules (GSAG-MU)

Require: V ∈ R
F×N
+ , β, max epoch

1: Initialise H, W with nonnegative random coefficients
2: Shuffle V

3: for ep = 0; ep < max epoch do

4: brnd ← permutation of [[1, B]]
5: for b ∈ brnd do

6: Update Hb with (10)
7: end for

8: Udpate∇−W with (12) (with H replaced by H[brnd]B)

9: Udpate∇+W with (13) (with H replaced by H[brnd]B)

10: W← ∇−W

∇+W

11: end for

12: return H, W

cost in time of these transfers is high and transfering data too often
to and from the GPGPU internal memory can quickly overcome the
benefits of GPGPU programming. One consequence of this limita-
tion is that loop-based algorithms have to be treated really carefully
as any transfer to or from the GPGPU internal memory inside the
loop would result in slow execution.

5.1. Coordinate descent

The general CD scheme relies on iterations over the coordinate of the
factor. There is only limited performance gains in performing the full
nested loop section on the GPGPU (except that it would reduce the
risk of unecessary memory transfer). The positive impact of GPGPU
computing on CD algorithms essentially resides in the dot product to
be performed at the beginning of each epoch. For Euclidean distance
cost (Algorithm 1), the dot products WT W (line 3), WT X (line 3),
HHT (line 9) and XHT (line 9) are computed on the GPGPU, the
rest is executed on the CPU side. For KL divergence cost WT W

(line 3) and HHT (line 12) are computed on the GPGPU, the rest is
executed on the CPU side.

5.2. Multiplicative updates

By design, the MU rules essentially rely on matrices operation and
therefore appear as a good match for GPGPU programming. The
only looping in MU rules is related to iterating on epoch and on
mini-batch, all the rest (the core of the optimisation algorithm) can
be executed on GPGPU. Therefore, for each variation on the MU
rules described above, the portion of code running on the GPGPU is
the following: cyclic mini-batch MU (Algorithm 4, lines 5–7 and 9),
ASG-MU (Algorithm 5, lines 6–7), GSG-MU (Algorithm 6, lines 6
and 8), ASAG-MU (Algorithm 7, lines 6–9) and GSAG-MU (Algo-
rithm 8, lines 6 and 8–10).

6. EXPERIMENTS

6.1. Experimental setup and corpus

The NMF algorithms are evaluated on a subset of the ESTER cor-
pus. ESTER is a corpus for automatic speech recognition composed
of data recorded on broadcast radio [26]. The subset of ESTER used
for evaluation is composed of 6 hours and 11 minutes of training
data [10], 132 constant Q transform [27] coefficients are extracted
16ms frames resulting in a 132 × 1 394 375 data matrix V. A
larger corpus would not fit in the memory of the GPGPU used in
these experiments (see also below) and we would not be able to
compare standard batch algorithms to the proposed mini-batch al-
gorithms. Note also that on much smaller datasets, the benefits of
using a GPGPU would vanish and CPU may outperform GPGPU.

Two different platforms are used to run the CPU code and the
GPU code1. The CPU code runs on Intel R© Xeon R© E5-2687W with
16 cores at 3.10GHz and 64GiB, processing is accelerated with
Intel R© math kernel library (Intel R© MKL) to fully exploit the 16
cores. The GPU code runs on Nvidia R© Tesla S2050 with 3GiB
internal memory. The host computer is equipped with 4 Intel R©

Xeon R© X5670 with 6 cores at 2.93GHz each (24 core in total) and
192GiB of RAM. The access to the GPGPU platform is mutualised
so there is no guarantee to access all the 24 cores at once within a
limited waiting time. Therefore it was decided to run the CPU part
of the code on a single core without Intel R© MKL acceleration to
ensure consistent hardware setup from one experiment to another.

NMF are trained with K = 100 components. The Euclidean
norm cost and the KL divergence cost and the IS divergence cost are
considered. In order to limit the performance variability due to the
random initialisation, the processing time and the value of the cost
function are averaged over 5 different initialisations and the set of
5 initialisations is the same for all the algorithms in order to ensure
consistency of the tests. The forgetting factor for the SAG-based
algorithms is set to λ = 2 for the Euclidean norm cost and and the
KL divergence and λ = 1 for IS divergence. The mini-batch size
is 50 000. For clarity, we decided to plot the logarithm of the cost
function normalised by the initial cost function:

log(
D(X|WH)

D(X|WinitHinit)
) (14)

6.2. Results

In a first experiment we aim at comparing the performance of the CD
and the MU rules for CPU and GPGPU implementations. The MU
rules are applied to the three particular cases of the β-divergence: the
Euclidean norm (Figure 2-a), the KL divergence (Figure 2-b) and the
IS divergence (Figure 2-c). The CD is applied to the Euclidean norm
case and the KL divergence case. To our best knowledge there is
no CD for IS divergence and deriving one is out of the scope of this
paper. In general, GPGPU are always subsentially faster than CPU
implementations. This difference is lower for NMF with Euclidean
norm cost which was expected as they need a bit less matrix ma-
nipulations. Regarding the NMF with Euclidean norm cost, the CD
allows to obtain a lower cost than the MU rules which confirms pre-
vious work in the domain. Applying the CD to the KL divergence
was too slow (about 2 hours per epoch) compared to the MU rules
so the results are not presented here.

In a second experiment we compare the behaviour of the mini-
batch approaches to the baselines established earlier (see Figure 3).

1Source code is available be at https://github.com/rserizel/
minibatchNMF

The greedy algorithms (GSG-MU and GSAG-MU) in general obtain
performance comparable with the MU baseline. The dimension of
W is rather small compared to the H so it seems that there is not
much speed to gain by updating W only once per epoch. The be-
haviour of SAG-based algorithms is more spurious as can be seen of
Figure 3-b and depends largely of the forgetting factor λ. In the KL
divergence case λ = 2 seems already too large. The asymetric algo-
rithms (ASG-MU and ASAG-MU) decrease the cost function faster
than other MU rules and to a lower value. However, in the case of
the Euclidean norm cost they are still outperformed by the CD.

7. CONCLUSIONS

In this paper we proposed mini-batch stochastic approaches for the
MU rules and compared their performance with CD when available
for the divergence considered. The GPGPU was used to take advan-
tage of the particular mini-batch structure and to efficiently deal with
the matrices manipulations. In every case, the GPGPU allowed re-
ducing the computation time. When considering the Euclidean norm
cost, the proposed ASG-MU and ASAG-MU improved the standard
MU performance and bring the MU rules closer to CD. When con-
sidering other cost functions (the KL divergence and the IS diver-
gence), the CD is inefficient or simply has not been derived yet and
MU is the most credible approach to perform NMF. The proposed
approaches then provide significant reduction in computation time
and obtain lower cost than standard NMF.

8. REFERENCES

[1] D. D. Lee and H. S. Seung, “Learning the parts of objects by
non-negative matrix factorization.,” Nature, vol. 401, no. 6755,
pp. 788–791, 1999.

[2] H. Lee and S. Choi, “Group nonnegative matrix factorization
for eeg classification,” in Proc. of AISTATS, 2009, pp. 320–
327.

[3] F. Miwakeichi, E. Martınez-Montes, P. A. Valdés-Sosa,
N. Nishiyama, H. Mizuhara, and Y. Yamaguchi, “Decom-
posing EEG data into space–time–frequency components us-
ing parallel factor analysis,” NeuroImage, vol. 22, no. 3, pp.
1035–1045, 2004.

[4] F. Mairal, J.and Bach, J. Ponce, and G. Sapiro, “Online learn-
ing for matrix factorization and sparse coding,” The Journal of

Machine Learning Research, vol. 11, pp. 19–60, 2010.

[5] A. Ozerov, E. Vincent, and F. Bimbot, “A general flexi-
ble framework for the handling of prior information in audio
source separation,” IEEE Transactions on Audio, Speech, and

Language Processing, vol. 20, no. 4, pp. 1118–1133, 2012.

[6] T. Virtanen, “Monaural sound source separation by nonnega-
tive matrix factorization with temporal continuity and sparse-
ness criteria,” IEEE Transactions on Audio, Speech, and Lan-

guage Processing, vol. 15, no. 3, pp. 1066–1074, 2007.

[7] P. Smaragdis and J. C. Brown, “Non-negative matrix factoriza-
tion for polyphonic music transcription,” in Proc. of WASPAA.
IEEE, 2003, pp. 177–180.

[8] V. Bisot, R. Serizel, S. Essid, and G. Richard, “Acoustic scene
classification with matrix factorisation for unsupervised feature
learning,” in Proc. of ICASSP, 2016.

[9] A. Hurmalainen, R. Saeidi, and T. Virtanen, “Similarity in-
duced group sparsity for non-negative matrix factorisation,” in
Proc. of ICASSP, 2015, pp. 4425–4429.

0 50 100 150 200 250 300

time (s)

−22.5

−22.0

−21.5

−21.0

−20.5

−20.0

−19.5

−19.0

−18.5

−18.0

lo
g

X
|W

H

D
2
(X

|W
in
it
H

in
it
)

CD (CPU)

CD (GPU)

MU (CPU)

MU (GPU)

(a) CD and MU rules
with Euclidean distance

0 50 100 150 200 250 300 350 400

time (s)

−14.0

−13.5

−13.0

−12.5

−12.0

−11.5

−11.0

−10.5

−10.0

lo
g

X
|W

H

D
1
(X

|W
in
it
H

in
it
)

MU (CPU)

MU (GPU)

(b) MU rules
with KL divergence

0 100 200 300 400 500

time (s)

−6

−5

−4

−3

−2

−1

0

lo
g

D
0
(X

|W
H

)

D
0
(X

|W
in
it
H

in
it
)

MU (CPU)

MU (GPU)

(c) MU rules
IS divergence

Fig. 2. Cost function evolution for CPU and GPU implementation

0 50 100 150 200 250 300 350 400

time (s)

−22

−21

−20

−19

−18

−17

lo
g

D
2
(X

|W
H

)

D
2
(X

|W
in
it
H

in
it
)

CD

MU

ASG-MU

GSG-MU

ASAG-MU

GSAG-MU

(a) Euclidean distance

0 100 200 300 400 500 600 700

time (s)

−15

−14

−13

−12

−11

−10

lo
g

D
1
(X

|W
H

)

D
1
(X

|W
in
it
H

in
it
)

MU

ASG-MU

GSG-MU

ASAG-MU

GSAG-MU

(b) KL divergence

0 100 200 300 400 500 600 700

time (s)

−6

−5

−4

−3

−2

−1

0

lo
g

D
0
(X

|W
H

)

D
0
(X

|W
in
it
H

in
it
)

MU

ASG-MU

GSG-MU

ASAG-MU

GSAG-MU

(c) IS divergence

Fig. 3. Comparison of the different mini-batch algorithms (GPU implementation)

[10] R. Serizel, S. Essid, and G. Richard, “Group nonnegative ma-
trix factorisation with speaker and session variability compen-
sation for speaker identification,” in Proc. of ICASSP, 2016.

[11] A. Cichocki and A.-H. Phan, “Fast local algorithms for large
scale nonnegative matrix and tensor factorizations,” IEICE

transactions on fundamentals of electronics, communications

and computer sciences, vol. 92, no. 3, pp. 708–721, 2009.

[12] C.-J. Hsieh and I. S. Dhillon, “Fast coordinate descent methods
with variable selection for non-negative matrix factorization,”
in Proc. of the 17th SIGKDD, 2011.

[13] U. Şimşekli, H. Koptagel, H. Güldaş, A. Taylan Cemgil,
F. Öztoprak, and Ş. İlker Birbil, “Parallel Stochastic Gradient
Markov Chain Monte Carlo for Matrix Factorisation Models,”
ArXiv e-prints, June 2015.

[14] Arthur Mensch, Julien Mairal, Bertrand Thirion, and Gaël
Varoquaux, “Dictionary Learning for Massive Matrix Factor-
ization,” in Proc. of ICML, 2016.

[15] L. Bottou, “Online learning and stochastic approximations,”
On-line learning in neural networks, vol. 17, no. 9, pp. 142.

[16] S. Kullback and R. A. Leibler, “On information and suffi-
ciency,” The annals of mathematical statistics, pp. 79–86,
1951.

[17] F. Itakura, “Minimum prediction residual principle applied to
speech recognition,” IEEE Transactions on Acoustics, Speech

and Signal Processing, vol. 23, no. 1, pp. 67–72, 1975.

[18] D. D. Lee and H. S. Seung, “Algorithms for non-negative ma-
trix factorization,” in Proc. of NIPS, 2000, pp. 556–562.

[19] A. Cichocki and S.-I. Amari, “Families of alpha-beta-and
gamma-divergences: Flexible and robust measures of similari-
ties,” Entropy, vol. 12, no. 6, pp. 1532–1568, 2010.

[20] C. Févotte and J. Idier, “Algorithms for nonnegative matrix
factorization with the β-divergence,” Neural Computation, vol.
23, no. 9, pp. 2421–2456, 2011.

[21] M. Schmidt, N. Le Roux, and F. Bach, “Minimizing Finite
Sums with the Stochastic Average Gradient,” ArXiv e-prints,
Sept. 2013.

[22] N. Gillis, “The why and how of nonnegative matrix factoriza-
tion,” in Regularization, Optimization, Kernels, and Support

Vector Machines, M. Signoretto J.A.K. Suykens and A. Ar-
gyriou, Eds., Machine Learning and Pattern Recognition Se-
ries, pp. 257 – 291. Chapman & Hall/CRC, 2014.

[23] R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bah-
danau, N. Ballas, F. Bastien, et al., “Theano: A Python frame-
work for fast computation of mathematical expressions,” arXiv

e-prints, vol. abs/1605.02688, May 2016.

[24] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A
matlab-like environment for machine learning,” in Proc. of

BigLearn, NIPS Workshop, 2011.

[25] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, C. S. Corrado, et al., “TensorFlow: Large-scale
machine learning on heterogeneous systems,” 2015, Software
available from tensorflow.org.

[26] G. Gravier, J.-F. Bonastre, E. Geoffrois, S. Galliano, K. Mc
Tait, and K. Choukri, “ESTER, une campagne d’évaluation
des systemes d’indexation automatique d’émissions radio-
phoniques en français.,” in Proc. of Journées d’Etude sur la

Parole, 2004.

[27] J. C. Brown, “Calculation of a constant q spectral transform,”
The Journal of the Acoustical Society of America, vol. 89, no.
1, pp. 425–434, 1991.

