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Abstract— There exists a large variety of schedulability anal-
ysis tools based on different, often incomparable timing analysis
models. This variety makes it difficult to choose the best fit
for analyzing a given real-time system. We have developed
RTLib, a library of timed automata templates that represent the
semantics of a large variety of timing related concepts proposed
by existing models and corresponding timing analysis tools. The
key specificity of RTLib is that it is structured to be modular,
such that (1) defining a new variant of a given concept requires
only a localized change, and (2) non contradictory variants can
be trivially combined.

The extensibility of RTLib is demonstrated using five examples
ranging from simple variants of the task activation model to the
more complex mixed-criticality paradigm. RTLib provides the
formal basis needed to compare the concepts offered by models
of different timing analysis tools at the semantic level. This in turn
will allow us to provide a syntactic mapping between the input of
different tools. Our final goal is to help the research community
to better evaluate analysis models and their underlying methods.

Index Terms—Real-time systems, schedulability analysis,
Timed Automata, formal semantics

I. Introduction

Schedulability analysis is an offline approach to evaluating
the temporal correctness of real-time (RT) systems in terms
of whether all tasks satisfy their deadlines at runtime. Since
the 1970s numerous timing models and corresponding schedu-
lability analysis tests have been proposed; see [23] [13] for
surveys. Some of them have been implemented in tools, called
analyzers in the sequel, e.g. MAST [17], TIMES [5], Cheddar
[25], SymTA/S [18], SchedMCore [11], pyCPA [15], etc.

This variety of analyzers makes it difficult to choose the best
fit for a given real-time system under study. Indeed, the timing
models underlying analyzers are often incomparable, mainly
because they make incomparable choices on the precision
with which one can express the timing-relevant aspects of RT
systems. Such choices mainly concern the models describing
(1) the activation of tasks, (2) their resource requirements
and (3) the scheduling policies used to arbitrate between
them. Also, schedulability is only one possible type of timing
requirement: other options include e.g. weakly-hard properties
(no more than m deadline misses out of k executions).

To compare the expressivity of the models used by analyzers
as well as the precision of the analysis results that they
produce, we need a common set of test cases provided in a
common input format. Several frameworks exist (e.g. MARTE
[22] and Amalthea [4]) whose goal is to be as expressive as
possible. Unfortunately they are not suitable for our purpose
as they do not provide a formal semantics. In contrast, Timed
Automata [3] provide a formal model which can be used to
represent real-time systems at an arbitrary level of precision,
and can thus express the operational semantics of any RT
system model. This expressivity comes at a price: there is
currently no generic way of specifying real-time systems in a
Timed Automata based tool such as UPPAAL [19].

In this paper, we present RTLib, a library of UPPAAL
templates formalizing concepts that may vary from one system
model to another, independently of other concepts. The key ad-
vantages of RTLib are: (1) its formal basis, (2) its expressivity,
which can be easily increased if needed; (3) its modularity,
which makes it much easier to compare different models by
allowing the user to focus on the concepts that differ. The
RTLib library is structured around a core of basic concepts
that exist in most frameworks. Thanks to its modular structure,
one can easily enrich RTLib with extensions, i.e., variants of
one or more templates of the basic library. Two extensions that
can be meaningfully combined at the conceptual level can be
combined directly at the library level.

RTLib can be used for specifying concrete RT systems
on which the UPPAAL model checker can conduct exact
schedulability analysis. This can help evaluating the cor-
rectness and accuracy of other analyzers on small systems.
At a higher abstraction level, RTLib is meant to provide a
common, formal basis to describe the semantics of the system
models used by analyzers. This will help proposing formally
verified transformations between models. Our objective is to
complement RTLib with a simple language and associated
model transformations to connect it to a wide set of analyzers.

The RTLib files (UPPAAL input) and a user manual are at
https://www.dropbox.com/sh/hjftdvhghe04cnh/AAC3L-TjbMXhpQZVS48VCUjNa?dl=0.
The library has been developed using v4.1.19, the latest
development version of UPPAAL.

The rest of the paper is organized as follows: Section II

https://www.dropbox.com/sh/hjftdvhghe04cnh/AAC3L-TjbMXhpQZVS48VCUjNa?dl=0


positions RTLib with respect to related work. Section III
describes and justifies the structure of RTLib. Section IV
illustrates the modularity of RTLib on hand of four simple
extensions, and a more complex paradigm switch. Finally,
Section V discusses our contribution and future work.

II. RelatedWork
The purpose of RTLib is to propose a unified semantic

framework for specifying real-time systems. In this section,
we review existing formalisms which could provide such a
framework and show their limitations.

A. Tool-specific input formats
In principle, the input format for any existing analyzer could

be a candidate for the role of common input format. The issue
is that these specification languages can only express, quite
understandably, the system features that their analyzer can
handle. For example, only a few tools such as pyCPA [15]
propose an expressive activation model which specifies the
minimum distance between k task activations. Using an input
format which does not encompass such functions would be
unfair towards the corresponding family of tools and analysis
methods. The same goes for input formats which do not allow
specifying offsets, or dependent tasks etc.

Some simulation tools, e.g. ARTISST [14], provide much
more expressive specification languages. In that case however,
the semantics of the input format is not formally given and
can only be clarified through simulation. This approach is not
suitable for a comparison between input formats.

B. High-level specification languages
There exist a few approaches aiming at generality. For

example, MARTE [22] is a UML profile for embedded and
real-time aspects of systems that has been defined with the
aim of putting together all the concepts used in some existing
framework or tool. This generality, however, is mainly meant
at the level of vocabulary. No formal semantics is given for
the different concepts in the vocabulary, and this is done on
purpose, in order to leave room for semantic variations. The
only semantic framework that is provided would allow to
define a declarative semantics — defined by a set of constraints
on timed event streams.

Amalthea [4] is an open source framework for specifying
real-time embedded systems maintained by an industrial con-
sortium. It aims to be comprehensive with respect of the real-
time features captured by its language. It additionally provides
connections to simulation and analysis. Unfortunately, there
is no explicit effort to formally define a semantics for the
Amalthea language. Instead, the semantics is implicitly defined
by the connections with these external tools, and hopefully in
a non-contradictory manner.

We view our RTLib contribution as complementary to an
initiative such as Amalthea or MARTE. Indeed, our effort is
less focused on having an exhaustive set of timing features
available in our language than on providing a well-founded
semantic background for those features that can currently be
handled by at least one verification tool.

C. Timed Automata based formats

The UPPAAL [19] model checker can be used for the verifi-
cation of real-time systems. For example, TIMES [5] is a front-
end for UPPAAL dedicated to schedulability analysis. TIMES
however deals with a restricted set of concepts (uniprocessor
systems with sporadic tasks).

UPPAAL is also used for the timing analysis of industrial
case studies, e.g. [20], [24]. The model proposed in [20] and
extended in [24] allows describing uniprocessor systems of
independent periodic tasks with a preemptive fixed-priority
scheduler and shared memory. Synchronization protocols for
shared memory access are implemented, including priority-
inheritance and priority-ceiling.

Even more relevant to us are two UPPAAL based modeling
frameworks: [12] comprises 5 Timed Automata (TA) templates
to specify sporadic tasks, partitioned schedulers on multipro-
cessor systems, and a sub-template for job enqueuing for each
scheduling policy. [9] proposes a framework for hierarchical
scheduling systems which consists of templates for specifying
sporadic tasks, schedulers and processing units.

All these approaches are of rather limited expressivity. They
do not support, for example, the GMF model or weakly-
hard RT systems. To fit our purpose, they would therefore
need to be easily extendable. This is unfortunately not the
case because they have not been designed with modularity
and reusability in mind. For example, the Task template in
all these frameworks captures not only the task activation
and task execution pattern, but also its worst case response
time computation and deadline-miss analysis. As a result, one
cannot define independently variants of, e. g., the activation
pattern and of the execution pattern. Instead, one would need
to define a specific template for all possible combinations of
variants of the aspects handled in Task.

In comparison, the primary focus of RTLib is on modularity,
as we emphasize throughout the paper. Our work builds on
top of the TA based representations of real-time systems —
in particular tasks and schedulers — of [20] and the tasks
activation patterns of [16] (which use Task Automata, a variant
of TA for expressing task activation patterns).

III. General Structure of RTLib

RTLib is organized in a set of UPPAAL files, one for the
so-called basic library, RTLib Basic, and one per extension.

UPPAAL is the standard tool for editing, executing and
analyzing Timed Automata1. A real-time system is represented
as a network of automata running in parallel and interacting
through synchronization channels and global variables. Time
progress and time dependent behavior are expressed using a
set of clocks — which represent stop watches — that can
be started, halted, reset and read. Automata are instances
of parameterized automaton “types” defined by templates. In
UPPAAL, a system definition consists of three major parts:
• Declarations: defines the data types, synchronization

channels, variables and functions utilized in templates;

1We assume that the reader is familiar with TA and with UPPAAL.



• Templates: consists of a set of templates defined as an
automaton and parameters;

• System declarations: defines a system instance as a
network of Timed Automata which are instances of
templates and their parameters.

Each template in RTLib represents the common behavior
of some component of an RT system. RTLib Basic comprises
15 templates. It includes at least one semantic variant of the
ingredients present in every real-time system. Note that the
decision to consider some templates as part of the basic library
rather than extensions is arbitrary and has little consequence.

Following the principle of separation of concerns, we make
templates as hierarchical as possible, so as to ease their
understanding and increase their reusability. We encapsulate
parts of the behavior of a template into sub-templates, so that
the main-template can invoke its sub-templates like a function
calls its sub-functions. In the following, templates are denoted
by the use of the sans serif font (e.g. Task).

A. Generic structure of RT systems

A real-time system comprises three components: a platform
which provides computation and communication resources
including processors, buses and memory; a set of tasks which
require access to these resources; and a set of schedulers which
manage the allocation of resources to tasks.

In this paper, we address the diversity of task models
and scheduling policies. We have at the moment a rather
limited platform model (no shared memory for example). A
more comprehensive set of templates for specifying complex
platforms is left for future work. We focus here on the
specification of task sets and schedulers. We also discuss how
to specify timing requirements other than schedulability.

B. Tasks

In RTLib a task specification has three components: its
arrival pattern, its resource requirement (e.g. for execution
time) and its timing constraint. We have chosen this structure
because it appears that task models, e.g. the periodic and
sporadic task models, often differ in only one of these three
aspects . In RTLib Basic, the task related templates are:

• Task: releases a job after synchronization with its activa-
tion pattern sub-template. The activation pattern of a task
is represented by one of the following two sub-templates:
– ActivationPattern Dependent: describes the prece-

dence of a dependent task.
– ActivationPattern Independent: describes the initial

arrival and recurrence pattern of an independent task.
Three sub-templates, Offset, Interval and Jitter, capture
the corresponding properties of an independent task.

• Job: represents the life cycle of a job, i.e. an instance
of a task. A sub-template ExecutionPattern represents a
job’s execution process, which in turn has a sub-template
ExeTime representing the job’s execution time, i.e. its
requirement on CPU resource.

Note that defining a sub-template for each parameter allows
us to extend these behaviors independently, possibly by replac-
ing the very simple behavior described in the basic library by
an arbitrarily complex one.

To build a concrete RT system model in UPPAAL using
the above templates, we need to instantiate the Task automaton
once for each task. We also need to instantiate the Job template
as many times for each task as there may be simultaneously
pending jobs of that task. For a schedulable RT system, a task
can have at most dDeadline/MinIntervale jobs. In weakly hard
RT systems, a task may have more pending jobs.

C. Schedulers

A platform described in RTLib Basic has a number of
nodes, onto which the task set is partitioned. Each node
is a multiprocessor system managed by a global scheduler.
A platform with a single node is in fact a multiprocessor
system under global scheduling. If every node contains only
one processor, it is a multiprocessor system under partitioned
scheduling. For capturing more complicated types of plat-
forms, e.g. multicore systems with shared memory, RTLib
Basic needs to be extended.

A scheduler in RTLib is either non-priority, e.g. FIFO, or
fixed priority, e.g. Deadline Monotonic, or user-designated task
priority or dynamic priority such as EDF. A scheduler is either
preemptive or non-preemptive. A global scheduler allows job
migration or task migration.

RTLib Basic implements event-triggered schedulers. Such
a scheduler reacts to two kinds of events: job arrival and job
finish. A scheduler’s reactions to these events are specified in
separate templates. For representing these different kinds of
schedulers, RTLib Basic provides the following templates.
• Scheduler: reschedules when a job arrives or a job

finishes. This is handled by two of the following sub-
templates depending on the scheduler type:
– OnJobFinish: schedules a ready job on the processor

which just got idle.
– OnJobArrive FP: enqueues the arrived job according

to its fixed priority (notice that FIFO is a special case).
– OnJobArrive EDF: enqueues the arrived job under the

EDF policy. A sub-template Enqueue inserts a job into
the ready job queue.

D. Timing requirements

A timing requirement is defined at two levels, it is given by
the deadline of each task and a system-level requirement. The
system-level requirement determines the goal of the timing
analysis. In RTlib Basic, the system level requirement is that
no deadline can be missed, which is the usual requirement for
hard real-time systems. In the extensions, we also consider
weakly-hard systems which tolerate certain deadline misses.
We use two templates to represent timing requirements:
• ResponseTime represents the task-level timing require-

ment (deadline). For each job, a ResponseTime automa-
ton measures the time elapsed from its release until its



finish, and it sends a message to DeadlineMiss when the
elapsed time exceeds the deadline.

• DeadlineMiss represents the system-level timing require-
ment. For each task, a DeadlineMiss automaton termi-
nates the analysis on the first detection of a deadline miss.

IV. RTLib Extensions

By extension, we understand either the introduction of an
entirely new concept or a new variant of an existing one.
To define an extension, one must proceed in two steps: (1)
possibly extend the data type definitions to express the new
concepts; (2) add or replace the relevant templates. We present
now five such extensions to demonstrate that the chosen level
of decomposition achieves sufficient modularity2.

A. The minimum distance activation model

The event stream model [2] is a generalization of the
sporadic task model which constrains not only the minimal
time distance between any 2 consecutive activations of task τ,
but may for any k impose a stronger constraint for the minimal
time interval that may contain k activations. In practice, it is
sufficient to consider a strictly increasing constraint sequence
only for some first N values for k. Thus, such a minimum dis-
tance function can be specified by a vector [D0,D1, ...,DN−1]
of minimal distances Di between the activation of job τk

and τk+i+1 ∀k. Note that a sporadic model is specified by a
minimum distance vector with a single element D0.

Fig. 1. Interval Fig. 2. Interval MinDistance for 3
distances

Extending the basic activation pattern of the sporadic task
model to handle minimum distance functions only requires to
modify the Interval template (see Figure 1) which specifies
that the inter-arrival time (i.e. the time interval between two
consecutive activations), recorded by the clock x, is between
a minimum value Min I and a maximum value Max I.

To represent a vector of N minimum distances requires N
clocks. Figure 2 shows the template for N = 3. It extends
the Interval template with two additional clocks: x1 records
the distance between τk and τk+2, and x2 records the distance

2We use the following conventions. Template A B is a specialization of
template A for extension B. Synchronization channels are named as follows:

• A e B: automaton A sends a message to B on event e;
• A call B: automaton A calls its sub-automaton B;
• A return B: automaton A, a sub-automaton of B, returns.

between τk and τk+3. Function countJob() counts the first job
arrivals up to N − 1.

B. The GMF task model

Remember, a sporadic task is characterized by timing
attributes defining arrival pattern, resource requirement and
timing constraint.

Some tasks’ timing characteristics vary greatly from one
activation to another. The sporadic task model takes into
account the worst case for defining each attribute, which leads
to safe analysis but possibly a waste of computation resources.
To enable more precise analysis, the Generalized Multi-Frame
(GMF) task model characterizes such tasks by a set of frames
defining different versions of this task [6]. For a task with M
frames, each of the timing attributes is now a vector of length
M. A cyclic GMF (cGMF) task cycles through its frames,
while a non-cyclic GMF [21] task takes them in an arbitrary
order.

The Task template in Figure 3 defines the task activation
behavior for a simple sporadic task: at system start and after
each job release, a sub-template ActivationPattern is invoked;
on termination of the invoked behavior, the activation pattern
is met, and the task releases the next job. This means that the
definition of Task is independent of the actual ActivationPat-
tern.

Fig. 3. Task Fig. 4. Task MultiFrame

To represent GMF task model, we need to extend the Task
template to take into account multiple frames. A multiframe
task depicted in Figure 4 must choose a frame before invoking
ActivationPattern. Choosing a frame is done by invoking the
behavior defined by the sub-template FrameControl GMF,
which selects a frame for a cGMF or ncGMF task, as shown
in Figure 5.

In addition, since a GMF task is defined by arrays, the
get-functions of the form get(para, taskID) used in diverse
templates have to be extended to arrays with an additional
parameter for the array index. The only modification that is
needed in any of the other templates, including ActivationPat-
tern, is to replace the get-functions.

C. Weakly-hard real-time requirements

A hard RT system does not allow any deadline miss,
whereas a weakly hard RT system tolerates a certain number
of deadline misses. Therefore to analyze weakly hard systems,



Fig. 5. FrameControl GMF

we have to modify the system level requirement. There is no
other modification needed.

DeadlineMiss in Figure 6 represents the timing requirement
for a hard RT system, which terminates the analysis on a
deadline miss.

Fig. 6. DeadlineMiss Fig. 7. DeadlineMiss WeaklyHard

For weakly hard RT systems, one usually considers for each
task, different restrictions on the allowed patterns of deadline
misses in a window of m task invocations [8].

Now to represent the weakly hard requirement, only the
DeadlineMiss template needs to be modified. Instead on sys-
tematically terminating the analysis with “error” on occurrence
of a deadline miss, one has to analyze whether this is an
allowed deadline miss or not, and only a forbidden deadline
miss terminates the analysis. To determine whether a deadline
miss is allowed, additional variables are needed to store the
relevant deadline miss history in the window of the last m
invocations depending on the chosen criterion.

The template DeadlineMiss WeaklyHard in Figure 7
shows this behavior. The evaluation of whether a deadline
miss is allowed or not is hidden in the boolean function
bOverMiss and the recording of the relevant history in the
functions onMeet and onMiss.

D. The abort-on-miss execution paradigm

In a soft RT or weakly hard RT system, several option to
deal with a deadline overrun situation which depends on the
specific overload management policy [1]: run-to-completion
means to continue the overrun job until it completes, somehow
assuming “better late than never”. abort-on-miss means to
abort a job as soon as it misses its deadline, assuming that
“whatever it has been doing, this is now useless”.

The overload management policy, which determines the
execution pattern of overrun jobs, is modeled by Execution-
Pattern template in RTLib. In RTLib Basic, the template
ExecutionPattern Completion in Figure 8 implements the
run-to-completion policy. It is the only template to modify
for representing the abort-on-miss policy. In the template

Fig. 8. ExePattern Completion Fig. 9. ExePattern Abort

ExecutionPattern Abort (see Figure 9), Elapse is a clock
recording the time elapsed since a job has been released. The
invariant on Elapse on the locations Ready and ExeTime
imposes the constraint that a job cannot exceed its deadline
when it is ready or running. When the deadline is reached
before proper termination, the job “kills itself” and informs
the scheduler. Note that this does of course not represent the
behavior of the implementation, but it nevertheless correctly
represents the corresponding timed behavior. This is sufficient
for our purpose.

E. Mixed Criticality: a special system model

The recent years has witnessed an increasing research
interest on Mixed Criticality systems [7]. Such a system has
two groups of tasks: high and low critical ones. A high critical
task has two versions of worst case execution time: C(LO) and
C(HI), where C(LO) < C(HI) [10]. When a high critical task
overruns C(LO) and enters the long execution mode where it
needs at most C(HI) CPU time, the system switches to a “high
criticality” mode, where all the low critical jobs in the ready
queue are killed to save CPU time.

The MixedCrit extension describes a system’s mode switch
in 3 steps: (1) A high critical job informs the scheduler to
switch to high criticality mode as soon as its execution time
exceeds C(LO); (2) The scheduler kills all the low critical jobs
in the ready job queue; (3) The high critical job completes
when its execution time reaches C(HI).

a) FrameControl MixedCrit: A high critical task has
two frames: one has C(LO) as its WCET and the other C(HI).
The template Task MultiFrame in Figure 4 is reused here.
Its sub-template FrameControl MixedCrit randomly chooses
either frame before each activation of a high critical task.

b) ExecutionPattern Completion MixedCrit: The Ex-
ecutionPattern Completion template in Figure 8 is extended
to represent the execution of high and low critical jobs. If a
high critical job is in the long execution frame, its execution
consists of two stages [0,C(LO)] and (C(LO),C(HI)]. The
first stage is represented by a sub-template ExeTime in RTLib
Basic. The second stage is represented by another sub-template
ExeTime MixedCrit, which is a variant of ExeTime.

c) Scheduler MixedCrit: The template Scheduler in
Figure 10 is extended with the scheduler’s reaction to a
mode switch, as shown in Figure 11. The scheduler sends a



broadcast message S ched discard Job to terminate all low
critical jobs. Function dequeueLowCrit(schID) removes the
low critical jobs from the ready queue. Furthermore, the sub-
template OnJobArrival is extended to take care of discarding
low critical jobs which are released after the system switches
to the high criticality mode. In the current RTLib, a system
stays at the high criticality mode once it switches to it.

Fig. 10. Scheduler Fig. 11. Scheduler MixedCrit

d) Job MixedCrit: The template Job is extended to
Job MixedCrit, so that low critical jobs can be killed.

V. Discussion and Conclusion

We see RTLib as the first easily extensible framework
for defining the formal semantics of a wide scope of real-
time system models. Thanks to its fine-grained modularity,
adding a feature to RTLib can be realized through localized
modifications, and extensions on different aspects can be
composed. Once a timing model is constructed, it can be used
to formalize concrete RT systems, where users only need to
instantiate some templates in RTLib with actual parameters of
specific RT systems.

Note that the fact that model checking does not scale is
not an issue for us. RTLib can of course be used for exact
schedulability analysis to assess the correctness and accuracy
of the results obtained using a given analyzer. But we do not
mean to use RTLib for directly analyzing industrial systems.
Instead, the strength of RTLib is that it provides a framework
for explicitly defining the semantics of the terminology related
to RT systems, thus bridging the gap between analyzers which
are currently uncomparable. RTLib can be used to formally
compare the expressivity of different analyzers, and thus better
assess the chosen compromises between precision of the
timing model and accuracy of the analysis. The comparsion
and evaluation help users to combine various analyzers in the
analysis of concrete systems.

RTLib is the first step in a project for evaluating and
comparing RT schedulability analysis techniques and tools,
including: (1) an intermediate formalism on top of RTLib,
called RTSpec, for specifying RT systems, (2) a set of
benchmarks specified in RTSpec, (3) automatic translators
between RTSpec and existing analyzers, and (4) translations
from RTSpec to formal models. In this approach, RTLib serves
as the underlying, easily extensible semantics of RTSpec. Our
future work also includes to develop a toolset to facilitate
the application and extension of RTLib, so that RT system

researchers and engineers who may not be experts in formal
methods can conduct lightweight extensions on RTLib.
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