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aUniversité de Lyon, CNRS, France
bINSA-Lyon, CETHIL, UMR5008, F-69621, Villeurbanne, France

cChaire INSA/EDF, Habitats et Innovations Energétiques, Lyon, France
dAgence de l�Environnement et de la Mâıtrise de l�Énergie 20, avenue du Grésillé- BP
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Abstract

A thermally driven flow in a vertical channel with heated walls is studied
through a scaling analysis and results are compared with the experimental
data reported in [1]. As the geometry is symmetrical with respect to the
vertical axis, the half-channel is considered. The domain is split into seven
zones in which the flow behaviour results from a balance between several
phenomena. This zonal analysis exhibits the main phenomena that drive the
flow in each zone. The study leads to an expression of the wall temperature
profile below and above the transition. An expression is given for the driving
pressure that is found to increase along the channel. The increase rate is much
more important above the transition due to the fluid heating in the center of
the channel. Finally, The maximum Reynolds stress is expressed in terms of
the mean velocity values and is found to fit well with the experimental data.

Keywords: Natural convection, turbulent heat transfer, vertical opened
channel, scaling analysis
PACS: 47.55.pb, 44.25.+f, 44.15.+a, 47.27.te

1. Introduction

Natural convection in vertical channels has attracted a large numbers of
researches due to its applications to cooling system of electronic components
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or to thermally driven energy components in buildings. For example, photo-
voltaic double-façades are composed of a vertical photovoltaic wall separated
from the primary envelope of the building by an opened air gap where natu-
ral convection occurs. Understanding heat transfer inside the double-façade
is a challenge for energy management in the building. Such a complex com-
ponent can be modelled by a vertical channel heated on one wall, the other
one being adiabatic and located in an isothermal and infinite surrounding.
Two important characteristics of such a configuration have to be noticed.
Firstly, this flow is characterized by vertical isothermal lines near the heated
wall that are parallel to the direction of the buoyant force. Therefore, there
is no zero-velocity solution for the flow. Secondly, this open flow is charac-
terized by a mean flow rate, the prediction of which is of great interest for
engineering applications.

An experimental study carried out by the authors on a similar configura-
tion characterized by a vertical channel in water with symmetrical heating,
has been first reported in [2]. This study has led to a more detailed exper-
imental characterization reported in [1]. The aim of the present study is to
provide a scaling analysis of the experimental study reported in [1]. Indeed,
numerous experimental or numerical data for such configuration are given in
the scientific literature (see [2] and references therein) but few of them deal
with scaling analysis whereas it is a powerful tool to understand physical
phenomena that drive a flow. Indeed, such analysis have already been used
to study other classical thermally driven flows: the heated vertical plane
plate and the Rayleigh-Bénard flow.

Concerning the thermally driven laminar flow along a vertical heated
plate with isoflux condition, a self-similar solution is given by Sparrow and
Gregg [3]. The wall temperature relative to the ambient and the thermal
boundary layer thickness are found to be proportional to the distance to the
leading edge to the power of 1/5, whereas velocity is found to follow a 3/5
power law. These power laws are easily retrieved by a scaling analysis as
proposed by Lin and Armfield [4] that exhibits a steady state solution for
Prandtl numbers (Pr) lower than unity. For Prandtl numbers larger than
one, Lin, Armfield et al [5] have developed a similar analysis for a vertical
plate heated at a uniform temperature. In these studies, the viscous bound-
ary layer is defined as the zone where vertical velocity is not negligible and
it is split into inner- and outer- layers with respect to the location of the
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velocity peak. To our knowledge, there has been no such scaling analysis for
turbulent flow along a vertical plate. A similar analysis by Khanal and Lei
[6] has been derived for a laminar thermally driven flow in a vertical channel.
A vertical channel with one wall heated at a constant heat flux is analysed
through a scaling analysis of the 2D-equations of conservation. In this study,
the theory developed by Lin et Armfield [4] is adapted to the channel con-
figuration. Two regimes are considered depending on whether the thermal
boundary layers are distinct or not, the later case corresponding to very low
Rayleigh numbers. For the distinct thermal boundary layers case and for
the steady-state regime, the solution found by Lin and Armfield is retrieved.
Hence this result is consistent with the analysis of Bar-Cohen and Rohsenow
[7] that showed a good agreement of the experimental data by Sobel et al.
[8] with the self-similar solution given by Sparrow and Gregg [3].

By contrast, a lot of scaling analysis have been developed for turbulent
convection in the Rayleigh-Bénard configuration (see for example [9] [10]).
In particular, Grossmann and Lohse [11] [12] have proposed a theory based
on scaling analysis to obtain relationship between dimensionless numbers.
Applied to Rayleigh-Bénard configuration, the so-called GL-theory consid-
ers the viscous and thermal turbulent dissipation rates in the whole flow as
the sum of dissipation rates evaluated in the thermal boundary layer and
in the bulk flow. It results in relationships between Nusselt, Rayleigh and
Reynolds numbers that are the sum of two power laws. In all the studies
where GL-theory is applied, the thermal boundary layer that is defined by
the wall-normal temperature gradient, was found to be laminar. The scales
of the thermal- and viscous- boundary layer thickness follow the classical
Blasius law meaning that they are proportional to the Reynolds number to
the power of −1/2, the Reynolds number being based on the height of the
cavity and on the wind velocity ([11]). This Blasius law also applied to the
boundary layers thickness of the laminar flow in the vertical plate configu-
ration ([5]). Indeed, in the energy equation the balance between the vertical
transport of heat by convection and the horizontal conduction of heat leads
directly to the Blasius scaling law. Recently, Ng et al [13] applied the GL-
theory to thermally driven flow in a 2D vertical channel heated on one plate
and cooled on the other one. The temperature of the plates are uniform
and the channel is considered as infinitely long. Using 2D direct numerical
simulation, they showed that the velocity and temperature scales has to be
different in the boundary layers and in the bulk flow to verify the GL-theory.
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The determination of relationships between these scales has to be found out
in order to obtain global Nusselt Rayleigh numbers relationship.

In this study, a scaling analysis of a thermally driven flow in a vertical
channel with symmetrically heated plates at a constant heat flux is carried
out. Considering that the height of the channel is much larger than its width
and depth, the flow is studied through 2D boundary layer like equations.
The analysis is based on the partition of the half-channel in 7 zones, each
zone being characterized by specific scales. The hypothesis are verified by
the comparison with experimental data reported in [1]. These experimental

data correspond to a modified Rayleigh number: Ra∗ = gβqwb5

λνκH
= 6.7 107

(notations are given in the next section). The article is organized as follows:
the governing equations are given in Section 2 and the partition of the domain
is described in Section 3. In Section 4, a zonal analysis is conducted. The flow
is analysed in terms of heat transfer, pressure and Reynolds stress evolution
along the channel. Some results are discussed in Section 5.

2. Equations of conservation

A description of the vertical channel is given in [1] and main features are
recalled here. This study deals with a vertical channel with two heated plates
in an infinite and isothermal domain. x is the upward vertical. The height,
width and depth of the channel are H, b and l in the x, y and z directions,
respectively. The vertical walls in the (x, z) plane are symmetrically heated
with a constant heat flux qw, the lateral walls are adiabatic. U , V , W are the
time-averaged velocity components in the x, y and z directions, respectively.
u�, v�, w� are the corresponding fluctuations. ΔT is the temperature difference
with the temperature at the entry of the channel and θ� is the corresponding
fluctuation.

The conservation equations that drive the flow are simplified by consid-
ering the large aspect ratio of the channel (H and l � b). More precisely,
the domain is divided into several zones (see Sec. 3), the thickness of which
are much smaller than their x and z extensions. In the zone i, Ui, Vi,Wi are
the orders of magnitude of the velocity components along x, y, z and ΔTi

is the order of magnitude of the departure of the temperature from the inlet
temperature. In the same way, u∗

i , v
∗
i , w

∗
i and θ∗i are the order of magnitude

of the corresponding fluctuations in the layer i. The correlation coefficient
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cuv ∈ [0, 1] is defined by �u�v�� = cuv (�u�2� �v�2�)1/2, where �.� is the time-
average operator. Denoting cuv,i the order of magnitude of cuv in the layer i,
one obtains the order of magnitude of �u�v�� that holds in this layer,

�u�v�� � cuv,iu
∗
i v

∗
i (1)

In the same way, we define cuw,i, cvw,i, cuθ,i, cvθ,i, cwθ,i ∈ [0, 1], the scale of the
correlation coefficients corresponding to �u�w��, �v�w��, �u�θ��, �v�θ��, �w�θ�� in
the layer i, respectively. Due to the aspect ratio of the channel, we suppose
that quantities evolve slowly along the x and z directions: ∂

∂x
� 1

X
, ∂

∂z
� 1

l
,

where X is the order of magnitude of the distance to the entrance. Con-
cerning the scale of the derivative with respect to y, it depends on the layer
where the derivative is considered. Thus in the layer i having a thickness δi,
the scale of the derivative is ∂

∂y
� 1

δi
. Pi is the order or magnitude of the

driving pressure Pg in zone i.
Our analysis is based on two main hypothesis. Firstly, the mean flow is

roughly two dimensional implying that Wi � Ui and Vi in each layer i, and
we consider X � l. Secondly, due to the aspect ratio of the channel, the
thickness of each layer along y is small with respect to the other dimensions:
δi � X and l. As a consequence, the flow is almost parallel and the equations
of motion under the Oberbeck-Boussinesq approximation are reduced to their
leading terms:

∂U

∂x����
Ui
X

+
∂V

∂y����
Vi
δi

= 0 (2a)

U
∂U

∂x� �� �
U2
i

X

+V
∂U

∂y� �� �
U2
i

X

= −1

ρ

∂Pg

∂x� �� �
Pi
ρX

+ ν
∂2U

∂y2� �� �
νUi
δ2
i

− ∂ �u�2�
∂x� �� �
u∗2
i
X

−∂ �u�v��
∂y� �� �

cuv,i
X u∗

i
v∗
i

δi

+
βgΔT

� �� �
βgΔTi

(2b)

U
∂V

∂x� �� �
δi
X

U2
i

X

+V
∂V

∂y� �� �
δi
X

U2
i

X

= −1

ρ

∂Pg

∂y� �� �
Pi
ρδi

+ ν
∂2V

∂y2� �� �
νUi
Xδi

− ∂ �v�2�
∂y� �� �
v∗2
i
δi

(2c)

0 = −1

ρ

∂Pg

∂z� �� �
Pi
ρX

− ∂ �w�2�
∂z� �� �
w∗2
i
X

(2d)
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U
∂T

∂x� �� �
UiΔTi

X

+V
∂T

∂y� �� �
UiΔTi

X

= κ
∂2T

∂y2� �� �
κΔTi
δ2
i

− ∂ �u�θ��
∂x� �� �

cuθ,i
u∗
i
θ∗
i

δi

− ∂ �v�θ��
∂y� �� �

cvθ,i
v∗
i
θ∗
i

δi

(2e)

∂T

∂y
= −qw

λ
∀x, y = 0 (2f)

∂T

∂y
=

qw
λ

∀x, y = b (2g)

U = V = u� = v� = w� = 0 ∀x, y = 0 or b (2h)

where the expression under the braces are the order of magnitude of each
term in a layer i. ν, κ, β and λ are the kinematic viscosity, the thermal
diffusivity, the isobaric expansion coefficient and the thermal conductivity
of the fluid. g is the gravity acceleration, ΔT = T − Tinlet is the difference
between the temperature of the fluid T and the temperature at the inlet Tinlet.
Using the classical Oberbeck-Boussinesq approximation, the variation of the
density with temperature is given by ρ̃(T ) = ρ(1− β(T − Tref), where Tref is
a reference temperature and ρ is the density at this reference temperature.
Pg = P + ρinlet gx is the mean driving pressure, ρinlet is the density at the
inlet temperature. The cross-correlations �u�w�� and �v�w�� are supposed to
be negligible.

3. Partition of the domain

The partition of the domain described in this section will be justified all
along the article and the main ideas are given here. A schematic diagram of
the zones is given in Figure 1 and the designation and notations are given
in Table 1. A transition from a laminar heat transfer to a turbulent one
is observed in [1] at xt = 0.71H. Therefore, the first partition is defined
by x = xt, the location of the transition which defines the bottom (x ≤ xt)
and the top (x ≥ xt) parts of the channel. As it is observed in [1], heat
transfer is laminar in the bottom part and it becomes turbulent in the top
part. In the bottom part, Zone I is the near-wall region where the wall
temperature gradient is set by the isoflux condition. At the center of the
channel, Zone IV is the region where the velocity profile is flat. Considering
a half-channel (0 ≤ y ≤ b/2), a shear layer develops between the Zones I
and IV. Indeed, as it is described in [1], the heating of Zone I leads to the
acceleration of the fluid along the heated wall and the velocity at the center
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U
T

<u'v'>

(I) (II) (III)

(IV)

(V) (VI) (VII)

x

xT

y
0 b/2

Figure 1: Partition of the half channel. The designation of the zones and their thickness
are given in Table 1

decreases due to mass conservation. A key point of this study is to split the
shear layer zone according to the sign of the vertical velocity gradient ∂U

∂x
. In

Zone II, the fluid accelerates along the channel whereas it decreases in Zone
III. Buoyancy is found to be the driving force in Zone II and it is negligible
in Zone III. The boundary between these two zones, corresponds also to the
maximum of the Reynolds stress. In the top part, the near-wall region (Zone
V) is also defined by the thermal boundary condition. Outside this zone,
heat is transferred by the fluctuations to the center of the channel ([1]). Like
in the bottom part, the sign of the vertical velocity gradient ∂U

∂x
is used to

define the boundary between Zones VI and VII.

7



Label Designation of the zone Thickness Right boundary
(notation in [1])

I Thermal boundary sublayer in
the bottom part

δI yI = δI
(δT,0)

II Increasing vertical velocity
zone in the bottom part

δII yII = δI + δII
(yuv)

III Decreasing vertical velocity
zone in the bottom part

δIII yIII = δI + δII + δIII
(ySL)

IV Flat vertical velocity profile
zone in the bottom part

δIV yIV = b/2

V Thermal boundary sublayer in
the top part

δV yV = δV
(δT,0)

V I Decreasing vertical velocity
zone in the top part

δV I yV I = δV + δV I

(yuv)
V II Increasing vertical velocity

zone in the top part
δV II yV II = b/2

(ySL)

Table 1: Zones in the left half-channel 0 ≤ y ≤ 0.5b sketched in Figure 1. Experimental
values of the right boundaries are shown in [1] (Fig. 4).

4. Results

4.1. Heat transfer in the near-wall region

4.1.1. Heat transfer below transition

Close to the wall, molecular viscosity dominates and heat transfer is sup-
posed to be laminar. Therefore, the x-momentum equation (Eq. 2b) reduces
to the balance between the viscous term and the buoyant one, and in the
energy equation (Eq. 2e), the transport by fluctuations can be neglected.
Moreover, as the thermal boundary condition (Eq. 2f or 2g) is set by the wall
temperature gradient, the thickness δI of Zone I can be defined by the ratio
of the wall temperature to the wall temperature gradient. Let UI and ΔTI

denote the velocity and the temperature scales in this zone, ones obtains:

νUI

δ2I
� βgΔTI (3a)

κX

UIδ2I
� 1 (3b)

ΔTI

δI
� qw

λ
(3c)
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This leads to the classical order of magnitude of thermal boundary layer
thickness along a vertical plate with isoflux condition [3]:

δI � H

�
gβqwH

4

λνκ

�−1/5 �
X

H

�1/5

(4a)

UI �
κ

H

�
gβqwH

4

λνκ

�2/5 �
X

H

�3/5

(4b)

ΔTI �
qwH

λ

�
gβqwH

4

λνκ

�−1/5 �
X

H

�1/5

(4c)

This result is consistent to the one obtain by Khanal and Lei [6] for the
distinct thermal boundary layers regime in the steady state which is also the
case for the thermal boundary layers along the left and right walls in the
present study. δI is the order of magnitude of the thermal boundary sublayer
(TBsL) thickness δ0T defined in [1] by the following equation:

δ0T =
λΔTw

qw
(5)

In this study, we refer to Zone I as the TBsL where the temperature scaleΔTI

is given by the wall temperature: ΔTw(x ≤ xt) = Tw(x ≤ xt) − Tin � ΔTI .
Figure 2 shows the wall temperature given in [1] and 1.33ΔTI where ΔTI

1.5 2 2.5 3 3.5 4 4.50

0.2

0.4

0.6

0.8

1

x/
H

Δ Tw (K)
 

 

Experimental data
1.33 ΔTI
ΔTw,t(x/xt − α (x−xt)/xt)

1/5

Figure 2: Experimental wall temperature (◦), analytical model in the bottom part 1.33ΔTI

see Eq. 4c (solid line), analytical model in the top part Eq. 12a (dash line) with α = 2.6.

is given by Equation 4c. By taking into account for an errorbar of ±0.1◦C
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experimental data are well approximated by 1.33ΔTI . As δI is proportional
to ΔTI , the comparison of δ0T to δI is similar to the one shown on Figure 2
for the wall temperature. Concerning the velocity, experimental profiles (see
Figure 2a [1]) are not refined enough near the wall to allow an experimental
determination of UI .

4.1.2. Heat transfer above transition

Above the transition, Zone V is the near-wall region where viscosity dom-
inates and the wall temperature gradient is set by the isoflux condition,
therefore one obtains similar expression than those given for Zone I:

νUV

δ2V
= βgΔTV (6a)

ΔTV

δV
=

qw
λ

(6b)

where UV , ΔTV are the velocity and temperature scales in Zone V with
ΔTw(x ≥ xt) � ΔTV . These equations can be written as follow:

UV =
κ

H

λ2βgHΔT 3
w

νκq2w
(7a)

δV = H
λΔTw

qwH
(7b)

But, unlike Zone I, heat from the wall is no longer completely lifted upward
but a significant part is transported through Zone V by molecular diffusion
and then convected to the center of the channel. Let α(x)qw denotes the part
of heat rate extracted from Zone V by the mean flow and the fluctuations:

[VΔT + �v�θ��]x,δV � −α(x)κ
∂T

∂y
� α

qw
ρCp

(8)

To obtain the wall temperature in this zone an energy budget is done
in the near-wall region shown in Figure 3. Let Qconv,V and Q�

conv,V denote
the vertical heat rate through Zone V and the horizontal heat rate at the
boundary V-VI, respectively.

qwx = Qconv,V +Q�
conv,V

= ρCp

� δV

0

UΔTdy + ρCp

� x

xT

[VΔT + �v�θ��]x,δV dx

� α�ρCpUVΔTV δV + ρCp(x− xT ) [VΔT + �v�θ��]x,δV (9)
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Figure 3: Energy budget in the near wall region.

where α� = (UVΔTwδV )
−1

� δV
0

UΔTdy is supposed to be independent on x,

meaning that the solution (U,ΔT ) in Zone V is self-similar: U = UV f
�

y
δV

�
,

ΔT = ΔTV h
�

y
δV

�
.

Equations 8 and 9 lead to:

UVΔTV δV � qwxT

α�ρCp

[α + (1− α)
x

xT

] (10)

Using Equations 7 and 10, one obtains the temperature, velocity and thick-
ness scales in Zone V:

ΔTV =
qwxT

λ

�
βgqwx

4
T

λνκ

�−1/5 �
α

α� +
1− α

α�
x

xt

�1/5

(11a)

δV = xT

�
βgqwx

4
T

λνκ

�−1/5 �
α

α� +
1− α

α�
x

xt

�1/5

(11b)

UV =
κ

xT

�
βgqwx

4
T

λνκ

�2/5 �
α

α� +
1− α

α�
x

xt

�3/5

(11c)
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These equations can be rewritten in terms of ΔTI,t, δI,t and UI,t which are
the orders of magnitude at x = xt found in Zone I (Eqs. 4):

ΔTV = α�−1/5ΔTI,t

�
α + (1− α)

x

xt

�1/5

(12a)

δV = α�−1/5δI,t

�
α + (1− α)

x

xt

�1/5

(12b)

UV = α�−3/5UI,t

�
α + (1− α)

x

xt

�3/5

. (12c)

As the wall temperature in the top part is clearly a decreasing function of
x (Fig. 2), Equation 11a implies α ≥ 1 which means that the local heat rate
at the boundary between Zones V and VI exceeds the wall heat rate (Eq. 8).

At the position of the transition,

ΔTV,t = α�−1/5ΔTI,t (13a)

δV,t = α�−1/5δI,t (13b)

UV,t = α�−3/5UI,t (13c)

ΔTV,t is chosen equal to the experimental value of the wall temperature at
the transition:

ΔTV,t = ΔTw,t (14)

Equation 4c at x = xt, Equations 12a and 13a give the value of α�:

α� =

�
βgqwH

4

λνκ

�−1 �
qwH

λΔTw,t

�5
xt

H
≈ 0.4 (15)

This value of α� which comes from experimental results in [1], is consistent

with the following self-similar solution in Zone V: U = UV (x)
�

y
δV

�0.2

and

ΔT = ΔTw(x)
�
1− y

δV

�
. However, these solutions come from scale analysis

and should not be taken as exact functions, but they allow to check the
consistency of the results.
Moreover, as the factors α�−3/5 = 1.7 and α�−1/5 = 1.2 are of the order of the
unity, one may consider that the continuity of the scales is ensured between
Zones I and V: UI,t � UV,t, δI,t � δV,t, ΔTI,t � ΔTV,t. Figure 2 shows the
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comparison between the experimental results and Equation 12a with α = 2.6.
In fact, the extension of the top part of the channel is not long enough
to obtain accurate values of these coefficients. However, with a constant
coefficient α = 2.6, the expression given in Equation 12a is consistent with
the experimental data as shown in Figure 2. Experimental data with a longer
top part of the channel is required to find a more accurate expression of the
function α(x).

4.2. Pressure field in the channel

4.2.1. Velocity and pressure field in Zone IV

The experimental study reported in [1] shows a flat velocity profile at
the entry. Let Uinlet denotes the velocity at the entry. Zone IV is defined
as the region at the center of the channel, where the vertical velocity profile
remains flat. Indeed, as shown in [1], the velocity profile is flat at the entry
of the channel and a positive momentum is transported from the peak of the
velocity profile toward the center of the channel as the fluid rises. Therefore,
there is a central region that is not directly influenced by this momentum
transport. The corresponding velocity field is:

UIV = Umin(x) (16a)

VIV =

�
b

2
− y

�
∂Umin

∂x
(16b)

where Umin(x) is the vertical velocity at the center of the channel and the
expression of VIV results from the mass conservation. By using Equations 2b
and 2c, one can find the following expression for the velocity and pressure in
Zone IV (see Appendix A for details):

UIV = Umin(x) = −Amx+ Uinlet (17a)

VIV = −Am

�
b

2
− y

�
(17b)

PgIV

ρ
+
�
u�2� =

�
PgIV

ρ
+
�
u�2�

�
(x = 0, y) +

U2
inlet − U2

min

2
(17c)

Figure 4 shows the velocity at the centre of the channel and the best linear
fit of the curve. The difference between the experimental data and the linear
fit is less than 9% below the transition exceeding the uncertainty for velocity
measurement ±4% (see [1]). However, as it will be mentioned at the end

13
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0.2

0.4

0.6

0.8

1

mm.s−1

x/
H

 

 

U
max

 13 (x/H) + 7.5
U

min

 −8(x/H) + 8.6

Figure 4: Maximum velocity and velocity at the centre of the channel and the correspond-
ing linear best fits (values are expressed in mm.s−1)

of Section 4.2.2, the hypothesis
∂(�u�2�−�v�2�)

∂y
= 0 in the entire Zone IV is

probably too strong which could explain this large difference between exper-
imental data and Equation 17a. The linear approximation leads to an inlet
velocity of 8.6 mm.s−1. As the flow is quasi-parallel, it is possible to extend
the validity domain of Equation 17c to the whole section in the bottom part
of the channel except in the near-wall region as shown in the next section.

4.2.2. Expression of the pressure below transition

We evaluate the order of magnitude of the terms of Equation 2c from the
data given in [1] where the aspect ratio is Γ = H/b = 10.4 and the turbulent
intensity is around Iu,entry = 35% at the entry of the channel. Thus, the ratio

between the derivative of the rms velocity

�
∂�v�2�
∂y

�
and the convective term

leads to the following order of magnitude:

v∗2i
U2
i

X2

δ2i
� Iu,entryΓ

2 b
2

δ2i
� 35

b2

δ2i
� 1.

Therefore, the convective terms are negligible with respect to the turbulent
momentum diffusion one. Moreover, in Equation 2c, the viscous term will
appear not to dominate in Zones II, III and IV (see Sec. 4.3.2, 4.3.3). As a
consequence, the convective terms and the viscous terms can be neglected in
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the y-momentum equation and Equation 2c reduces to:

0 = −1

ρ

∂Pg

∂y
− ∂ �v�2�

∂y
(18)

Equations 2d and 18 show that the pressure differences in the spanwise di-
rections are balanced by velocity fluctuations.

To go further, some hypotheses are required. As the geometry and the
boundary conditions are symmetrical with respect to the plane z = 0.5 l, we
suppose that the rms values of the velocity fluctuations are uniform in the
z-direction. Therefore, Equation 2d leads to a zero pressure gradient in the
z-direction. Then by using Equations 17c and 18, one obtains (see Appendix
B for details):

∂

∂x

�
Pg

ρ
+
�
u�2�

�
= −Umin

∂Umin

∂x� �� �
Ū2

X

(19)

+

�
∂ �u�2�
∂x

− ∂ �v�2�
∂x

�
(x, y)−

�
∂ �u�2�
∂x

− ∂ �v�2�
∂x

�
(x, b/2)

� �� �
ū∗2
X

Let’s denote h�(x, y) = [�u�2� − �v�2�] (x, y) − [�u�2� − �v�2�] (x, b/2). Then
Equation 19 can be written:

∂

∂x

�
Pg

ρ
+
�
u�2�

�
=

1

2

∂(−U 2
min)

∂x
+

∂h�(x, y)

∂x
(20)

Figure 5 shows experimental values of −U2
min/2 and maxy h

�, the maximum
of h� with respect to y along the channel. These two quantities evolve in
a similar way below the transition (x < xt) suggesting that the two terms
in the right-hand side of Equation 20 are of the same order of magnitude.
Therefore, all the velocity fluctuation terms in Equation 19 can be taken into
account by doubling the first term and Equation 19 can be written:

∂

∂x

�
Pg

ρ
+
�
u�2�

�
≈ −2Umin

∂Umin

∂x
(21)

This equation has to be compared with the expression of the pressure in
Zone IV obtained from Equation 17c:

∂

∂x

�
Pg,IV

ρ
+
�
u�2�

�
= −Umin

∂Umin

∂x
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The difference is due to the assumption,
∂�u�2�

∂y
=

∂�v�2�
∂y

= 0 used in the

whole Zone IV (see Appendix A). Therefore, the exact value of the pressure
gradient lies between these approximations and Equation 21 is an accept-
able expression of the pressure gradient in the Zones II, III and IV. As a
consequence, Equation 2b in these zones can be written:

U
∂U

∂x
+ V

∂U

∂y
= 2Umin

∂Umin

∂x
+ ν

∂2U

∂y2
− ∂ �u�v��

∂y
+ βgΔT (22)

4.2.3. Expression of the pressure above transition

Equations 2d and 18 remain valid above the transition. As in the bottom
part, rms values of the velocity fluctuations are supposed to be independent
on z, so is the mean driving pressure. Therefore, using Equation 18, the
pressure in Zones VI and VII can be written:

Pg

ρ
� f(x)−

�
v�2

�
(23)

In reference [1], the rms velocity components are shown to be weakly depen-
dent on x above the transition. Supposing that �u�2� and �v�2� are indepen-
dent on x leads to:

∂

∂x

�
Pg

ρ
+
�
u�2�

�
� ∂f

∂x
(x) (24)

This equation is used in Section 4.3.4.
In Section 4.3.4, an expression is given for the momentum equation above

the transition (Eq. 39) that is valid in Zones VI and VII:

−∂f

∂x
(x) + βgΔTc(x) � Umax

∂Umax

∂x
+ Umin

∂Umin

∂x
.

16



In this equation, ΔTc is the difference between the temperature of the bulk
(outside the TBsL) and the temperature at the entry. ΔTc is supposed to
be independent on y (see Sec. 4.3.4). Supposing that �v�2� is independent on
x, the pressure in the top part of the channel is deduced from Equations 23
and 39:

Pg

ρ
− Pg,t

ρ
� +gβ

� x

xt

ΔTcdx− 1

2

�
U2
max + U2

min

�
+

1

2

�
U2
max,t + U2

min,t

�
(25)

Considering the expression of the pressure gradient in the bottom part (Eq. 21),
one obtains the following expression for the pressure at the transition:

Pg,t

ρ
− Pg,inlet

ρ
�

�
u�2�

inlet
−

�
u�2�

t
− U2

min,t + U2
inlet (26)

Equations 25 and 26 lead to the pressure in the top part of the channel:

Pg

ρ
+
�
u�2�

t
� Pg,inlet

ρ
+
�
u�2�

inlet
+ gβ

� x

xt

ΔTcdx (27)

− 1

2

�
U2
max + U2

min

�
+

1

2

�
U2
max,t − U2

min,t

�
+ U2

inlet x ≥ xt

To obtain a simplified expression of the pressure, the temperature at the
centre is taken as constant in the upper part of the channel: ΔTc � ΔTc,t �
0.4◦C. Moreover, from experimental data, one can show that the velocity
terms in the right-hand side of Equation 27 are found to be small with respect
to the temperature term, so they are reduced to their value at the transition.
Finally, the pressure in the channel can be approximated by the following
expressions:

Pg

ρ
+
�
u�2� � Pg,inlet

ρ
+
�
u�2�

inlet
+ U2

inlet − U2
min x ≤ xt (28a)

Pg

ρ
+
�
u�2�

t
� Pg,inlet

ρ
+
�
u�2�

inlet
+ U2

inlet − U2
min,t (28b)

+ gβΔTc,t(x− xt) x ≥ xt

Equations 28a and 28b are plotted on Figure 6. The heating of the bulk
flow above the transition (Zones VI and VII) results in a large increase in
the longitudinal pressure gradient. This result is discussed in Section 5.
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�

Pg

ρ +
�
u�2�−

�
Pg

ρ +
�
u�2��

inlet

�
computed from Equations 28a

and 28b

4.3. Characterization of the shear layer

4.3.1. Definition of the boundary between Zone II and Zone III

Vertical velocity increases along the channel in Zone I due to buoyant
effect (Sections 4.1.1) whereas it decreases in Zone IV due to mass conser-
vation (Section 4.2.1). The boundary between Zones II and III (Figure 1) is
basically defined by the location where the vertical velocity is independent
on x. This boundary yII is defined by the following equation:

∂U

∂x
= 0 x, y = yII (29)

As the velocity gradient along y is negative between the velocity peak and the
channel center, a change of sign of the velocity gradient along x on each side of
this boundary tends to increase the local slope of the velocity profile which
increase the fluctuations. Therefore, one may suppose that this boundary
corresponds also to the maximum Reynolds stress location. Indeed, between
Zones I and IV, the Reynolds stress exhibits a maximum as shown in [1].

The sign of the momentum diffusion term −∂�u�v��
∂y

in Equation 2b changes

on both sides of this maximum: on its left (−∂�u�v��
∂y

< 0), a vertical layer of
fluid is slowed down by the adjacent layers whereas it is accelerated on its
right (−∂�u�v��

∂y
> 0).
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4.3.2. Accelerating zone below transition: Zone II

In Zone II, the momentum diffusion term is negative in Equation 22. A
closer look at the sign of each term of this equation shows that buoyancy is
the only driving force of the flow. Among the other terms, none seems to
dominate, therefore, we suppose that they have the same order of magnitude
which leads to:

∂ �u�v��
∂y

� U
∂U

∂x
� 1

5
βgΔT

Considering the following orders of magnitude �u�v�� � �u�v��max,
∂U2

∂x
�

U2
max−U2

inlet

X
, one obtains:

�u�v��max �
U2
max − U2

inlet

X
δII (30a)

βgΔTII � 5
U2
max − U2

inlet

X
(30b)

where ΔTII is the temperature scale in Zone II. Figure 7 shows that the
experimental values of �u�v��max are well approximated by the expression
given in Equation 30a.
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Figure 7: Reynolds stress in the bottom part: comparison of the experimental data with
Equations 30a and 34

Concerning the energy equation (Eq. 2e), the heat transfer model in
Zone I implies that the energy is contained inside the TBsL. Indeed, let QI

19



denotes the vertical heat rate at a location x in Zone I. Its order of magnitude
can be calculated from Equations 4:

QI � ρCpUIΔTIδI = qwx. (31)

It corresponds to the whole energy injected at the wall below x. However, to
be consistent with the slight heating of Zone II (Eq. 30b), the heat transfer
from Zone I to Zone II is not zero. If one supposes that the convective terms
are balanced by the diffusive one in Zone II, it would lead to the following

order of magnitude for δII :
�

κX
Umax

. But this scale is found to be much

lower than the experimental data shown in [1]:
�

κX
Umax

� yuv. Therefore,
�

κX
Umax

is not the order of magnitude of δII and the diffusive term is negligible

in the energy equation in Zone II. As a consequence, the left-hand side of
the energy equation (Eq. 2e) is balanced by a small turbulent transport
at the boundary I-II. This transport by fluctuations are attributed to the
relatively high turbulent intensity observed at the entry (Iu,entry = 35%): the
fluctuating flow entering the channel tends to extract some fluid from the
TBsL to Zone II. However, we claim that this heat transported from Zone I
to Zone II remains negligible with respect to the heat transported in Zone I
but it induces a heating that has an impact on the momentum transport as
explained at the beginning of the section. Indeed, the balance between the
convective terms and the turbulent transport in Equation 2e in Zone II is
written:

U
∂ΔT

∂x
+ V

∂ΔT

∂y
� ∂ �v�θ��

∂y

which leads to the following order of magnitude:

�v�θ��X � UmaxΔTIIδII (32)

where UII = Umax. Using Equation 30b, the experimental value of Umax and
an approximation of δII (see [1] Fig.4, yuv), one obtains:

ρCp �v�θ��
q

� 0.5

The fact that this ratio is not negligible with respect to 1 can be attributed
to prefactors in the expressions of the scales in Zone II (Eqs. 30b and 32).
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Indeed, the good agreement between the experimental value and the wall
temperature model (Eq. 4c and Fig. 2) suggests that the energy is mainly
contained in Zone I. Moreover, a more efficient turbulent heat transfer takes
place in the top part of the channel at the Boundary V-VI. The comparison of
the experimental data with the heat transfer model in Zone V exhibits a much
larger horizontal turbulent heat flux (Eq. 8 with α = 2.6). As a consequence,
despite the existence of a weak heat transfer due to the fluctuations at the
Boundary I-II, it is not a turbulent regime as it has almost no impact on the
overall heat transfer in the bottom part. But the resulting slight heating of
Zone II has a real impact on the vertical momentum transport as buoyancy
is the driving force in this zone.

4.3.3. Decelerating zone below transition: Zone III

The left boundary of Zone III (yII) is defined by Equation 29. Its right
boundary corresponds to the edge of the shear layer which is denoted ySL in
[1]. ySL is defined as the closest position on the right of the velocity peak
where,

U(x, ySL) = 1.2Umin (33)

Indeed, the velocity uncertainty is estimated to ±4% in [1], so a coefficient
of 1.2 corresponds to the detection of an overspeed that it is larger than the
errorbar. This definition also means that Umin is the relevant velocity scale in
Zone III up to a multiplicative factor. In this zone, the turbulent momentum
diffusion term is positive and it is supposed to be larger than the buoyant
and viscous terms. Therefore, Equation 22 can be written:

�u�v��max � −a
U2
min − U2

inlet

X
δIII (34)

where a is a multiplicative factor of the order of the unity. This expression
is plotted in Figure 7 with a = 1.7 and it fits with the experimental data.

4.3.4. Shear layer above transition

Above the transition, heat is transported by the fluctuations from Zone V
to the centre of the channel which leads to the heating of the Zones VI and
VII to a temperature Tc (see [1]). We suppose that due to the mixing, Tc

depends only on x. The boundary between Zone VI and VII is given by the
location where vertical velocity is independent on x:

∂U

∂x
= 0 x, y = yV I (35)
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As for the boundary between Zones II and III, this location is also supposed
to correspond to the maximum of the Reynolds stress. In Zone VI, turbulent
momentum tends to slow down the fluid whereas it tends to be accelerated
in Zone VII. By taking into account Equation 24, the x-momentum equation
(Equation 2b) can be written in Zones VI and VII:

U
∂U

∂x
+ V

∂U

∂y
= −∂f

∂x
(x) + βgΔTc(x)−

∂ �u�v��
∂y

(36)

where the viscous term is neglected. This equation is differentiated with
respect to y:

∂

∂y

�
U
∂U

∂x

�
+ V

∂2U

∂y2
+

∂V

∂y

∂U

∂y
= −∂2 �u�v��

∂y2
(37)

To evaluate �u�v��max, we estimate the order of magnitude of each term at
the boundary between Zones VI and VII. In Zones VI, the vertical velocity
profile is roughly concave whereas it is convex in Zone VII. Therefore, one
expects an inflexion point around the boundary between these two zones and
the term V ∂2U

∂y2
is supposed to be negligible. In the same way, the fluid is

slowed down (∂U
∂x

< 0) in almost the whole Zone VI whereas it is accelerated
(∂U
∂x

> 0) in Zone VII. Due to mass conservation, the velocity gradient ∂V
∂y

is
positive in Zone VI and negative in Zone VII. Therefore, this gradient is zero
around the boundary between Zones VI and VII and the term ∂V

∂y
∂U
∂y

can be
neglected. At y = δV I in the top part, the order of magnitude of Equation 37
leads to:

�u�v��max �
b

2

�
Umin

∂Umin

∂x
− Umax

∂Umax

∂x

�

� b

2

�
Umin

Umin − Umin, t

x− xt

− Umax
Umax − Umax, t

x− xt

�
(38)

where b/2 is taken as the relevant length scale for the derivative with respect
to y, UV I = Umax and UV II = Umin are the velocity scales in Zones VI
and VII, respectively. Umin, t and Umax, t are the minimum and maximum
vertical velocity at the transition, respectively. The comparison with the
experimental data is plotted in Figure 8.

From the expression of the maximum Reynolds stress, we estimate the
magnitude of the sum of pressure and buoyant terms in Equation 36. How-
ever, this estimation is tricky because it cumulates uncertainties in the esti-
mate of the derivatives and of the order of magnitude of the Reynolds stress.
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Figure 8: Maximum Reynolds stress: experimental value (�) and corresponding model (♦
Equation 38) that is valid above the transition (x/H ≥ 0.71).

Therefore, we give an estimate of the right-hand side that is consistent with
the order of magnitude of the Reynolds stress.

Equation 36 leads to:

2Umax
∂Umax

∂x
� −∂f

∂x
(x) + βgΔTc(x)− 2

�u�v��max

b
Zone VI

2Umin
∂Umin

∂x
� −∂f

∂x
(x) + βgΔTc(x) + 2

�u�v��max

b
Zone VII

Finally, one obtains:

−∂f

∂x
(x) + βgΔTc(x) � Umax

∂Umax

∂x
+ Umin

∂Umin

∂x

� Umax
Umax − Umax, t

X −Xt

+ Umin
Umin − Umin, t

X −Xt

(39)

This expression is used in Section 4.2.3 to estimate the pressure above the
transition.

The estimation of the amount of heat transported by the flow in Zones VI
and VII comes from the energy equation that can be written:

U
∂ΔTc

∂x
� −∂ �u�θ��

∂x
− ∂ �v�θ��

∂y
(40)

where the molecular diffusion is neglected. Due to the symmetry of the flow
with respect to y = b/2, the horizontal turbulent heat flux ρCp �v�θ�� is zero
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at y = b/2. Considering Equation 8, one can estimate:

∂ �v�θ��
∂y

� −α(x)
2qw
ρCpb

where the horizontal transport due to the mean flow is neglected as the
bulk temperature is supposed to be independent on y in Zones VI and VII.
Equation 40 can be written:

∂ �u�θ��
∂x

� −U
∂ΔTc

∂x
+ α

2qw
ρCpb

(41)

From this expression, one can obtain the following order of magnitude :

UΔTc + �u�θ�� � α
2qw
ρCpb

(x− xT ) (42)

The upper part of the channel is too short to exhibit a clear behaviour of the
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Figure 9: Temperature profile measured at the center of the channel.

temperature in the centre ΔTc shown on Figure 9. According to Equation 41,
a constant or a decreasing ΔTc in the upper part, means that the vertical
turbulent heat flux �u�θ�� increases in the Zones VI and VII as the fluid rises.

5. Discussions

The partition of the domain proposed in this study results from the mod-
elling of the main physical phenomena driving the flow and the validation
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comes from the comparison with experimental data. Two points are dis-
cussed below.

These results confirm the scenario for the transition given in [1]. In the
near-wall region, heat transfer remains laminar in a TBsL along the walls.
In the bottom part, the flow is similar to the one that results from a laminar
thermally driven flow along a vertical flat plate, in particular, the velocity
increases along the heated plate due to buoyant effect (UI ∝ X3/5, Eq. 4b).

Considering a two-dimensional flow, this leads to a decrease in the veloc-
ity at center of the channel and according to the analysis of Zone IV, this
decrease is linear with respect to x : UIV = Umin ∝ X (Eq. 17a). It is then
observed that the dynamic of the flow at the center of the channel drives the
dynamic of the flow outside the TBsL. Indeed, a best linear fit for Umax in
the bottom part is shown in Figure 4. The good agreement with the exper-
imental data suggests that Umax − Uinlet ∝ Umin − Uinlet ∝ X which means
that these two quantities can be scaled by the same quantity. If we suppose
that Umin − Uinlet is the relevant velocity scale in the Zones II, III and IV,
the flow exhibits two different velocity scales in the near-wall region where
UI ∝ X3/5 (Eq. 4b) and in the bulk flow where Umin − Uinlet ∝ X which is
consistent with the analysis done by Ng et al. [13] for an infinite channel
with isothermal plates.

Supposing that the Reynolds stress follows the same scale outside the
TBsL, Equations 30a and 34 leads to :

δII ∝ X (43)

δIII ∝ X. (44)

These linear evolutions are consistent with the experimental data (see Fig-
ure 4 in [1]). Moreover, Equation 30b leads to a linear evolution for the
temperature in Zone II:

ΔTII ∝ X (45)

But the experimental temperature profile close to the wall is too coarse and
this last prediction cannot be checked from the experimental data.

Following the scenario describes in [1], the transition is triggered by the
junctions of the left and right shear layers. Indeed, at this point, the de-
crease in Umin is counteracted by the momentum diffusion, therefore ∂Umin

∂x
,
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as well as ∂Umax

∂x
approach zero at x = xt. By continuity, one expects that the

decrease in the velocity peak leads to a decrease in the velocity scale inside
the TBsL. Therefore the energy conservation ρCpUIΔTIδI = qwx that holds
in the bottom part is no longer valid at the transition point. As Equations 4
lead to UIΔTIδI ∝ U

5/3
I , close to the transition, a decrease in the velocity

inside the TBsL leads to a decrease in the heat transported in this zone. As
the wall heat flux is constant all along the plate, energy conservation implies
that a part of the energy contained inside the TBsL has to be ejected from
this sublayer which is modelled by Equation 8. As a consequence, in the top
part of the channel, a turbulent transport occurs between this TBsL and the
bulk flow. However, the assumptions leading to the wall temperature profile
in the top part (Eq. 12a, Fig. 2) are consistent with a laminar TBsL. From
a physical point of view, the horizontal heat transfer in Zone V is dominated
by conduction and outside this zone, velocity fluctuations are strong enough
to pull hot fluid out of the TBsL leading to an efficient turbulent heat transfer.

Concerning the pressure, Figure 6 shows that the pressure force is an
opposing force all along the channel. However, the exit to entry pressure
difference is mainly due to the buoyant term in the top part of the channel.
Indeed, Equation 28b can be approximated as follows:

Pg

ρ
(H)− Pg

ρ
(xt) � gβΔTc,t(H − xt) (46)

If the pressure difference in the bottom part is neglected with respect to the
one in the top part, the order of magnitude of the pressure difference in the
channel is roughly given by:

Pg

ρ
(H)− Pg

ρ
(0) � gβΔTc,t(H − xt) (47)

Supposing that the surrounding of the channel is at rest and thermally strat-
ified with a temperature difference of ΔTsurr over the height of the channel,
the corresponding pressure difference is given by:

ΔPg,surr

ρ
= gβΔTsurrH (48)

Therefore, a thermal stratification of the surrounding of the channel with a
temperature difference of ΔTsurr = ΔTc,t

H−xt

H
≈ 0.1◦C between x = H and
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x = 0, leads to the same order of magnitude for the pressure difference inside
and outside the channel. In reference [1] the thermal stratification of the sur-
rounding is not known accurately so we can suppose that the pressure at the
exit is set by the pressure of the surrounding at the same level. Therefore,
a larger external stratification of the surrounding would increase the pres-
sure difference along the channel which would increase the opposing pressure
force in the channel. However, this hypothesis has to be assessed by other
investigations with a better control of the stratification of the surrounding.

6. Conclusion

In this study, the transition to a turbulent heat transfer in a vertical
channel with wall heating at a modified Rayleigh number of 6.7 107 is anal-
ysed through a scaling analysis. This analysis leads to analytical expressions
that can be used in simplified modelling of such a system. In particular, the
wall temperature is found to follow an x1/5 law below the transition whereas
it is proportional to (a − bx)1/5 (a and b > 0) in the upper part. Due to
turbulent heat transfer in the upper part, the fluid is heated in the center of
the channel which leads to a large increase in the driving pressure. As the
pressure difference along the channel is of the same order of magnitude as
the one that results from a possible external stratification, more researches
are needed to find whether the pressure at the exit is set by the external
stratification or not.
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Appendix A. Analytical expression of the pressure in Zone IV

In the central zone IV,

UIV = Umin(x)

VIV =

�
b

2
− y

�
∂Umin

∂x
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The momentum equation along x leads to:

PgIV

ρ
+
�
u�2�−

�
PgIV

ρ
+
�
u�2�

�

inlet

=
U2
inlet − U2

min

2

+ ν

�
∂Umin

∂x
(x)− ∂Umin

∂x
(0)

�
(A.1)

where Uinlet = Umin(x = 0). The y-momentum gives:

�
b

2
− y

��
Umin

∂2Umin

∂x2
−

�
∂Umin

∂x

�2
�

= − ∂

∂y

�
PgIV

ρ
+
�
u�2�

�

inlet

+
∂(�u�2� − �v�2�)

∂y

where the subscript inlet denotes quantities evaluated at x = 0. Due to the
symmetry of the mean flow with respect to the plane y = b/2,

∂ �u�2�
∂y

(x, y =
b

2
) =

∂ �v�2�
∂y

(x, y =
b

2
) = 0.

We suppose that these terms remains negligible in Zone IV. Therefore, as the
quantities at the inlet depends on y and Umin depends on x, one can write:

Umin
∂2Umin

∂x2
−

�
∂Umin

∂x

�2

= 2AA (A.2)

��
PgIV

ρ
+
�
u�2�

�

inlet

�y

b/2

= AA

�
b

2
− y

�2

(A.3)

where AA is constant. To solve Equation A.2, it is supposed that Umin � Xn.
Then, first equation leads to n = 1 which implies

−
�
∂Umin

∂x

�2

= 2AA = −A2
m ≤ 0

where Am is introduced to take into account for the negative sign of AA.
So in the central region, one obtains:

UIV = Umin(x) = −Amx+ Uinlet

VIV = −Am

�
b

2
− y

�
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Equation A.3 gives the pressure profile at the inlet:

��
PgIV

ρ
+
�
u�2�

�

inlet

�y

b/2

= −A2
m

2

�
b

2
− y

�2

Then from Equation A.1, one obtains the pressure in Zone IV:

PgIV

ρ
+
�
u�2� =

�
PgIV

ρ
+
�
u�2�

�
(x = 0, y) +

U2
inlet − U2

min

2
(A.4)

=

�
PgIV

ρ
+
�
u�2�

�
(0, b/2)− Amx(Amx− 2Uinlet)−

A2
m

2

�
b

2
− y

�2

In particular, at x = 0, it implies:

�
PgIV

ρ
+
�
u�2�

�
(x = 0, y) =

�
PgIV

ρ
+
�
u�2�

�
(0, b/2)− A2

m

2

�
b

2
− y

�2

Appendix B. Analytical expression of the pressure gradient below
transition

As the flow is symmetrical with respect to z = 0.5l, one can suppose that
rms fluctuations are independent of z and Equation 2d leads to a zero pressure
gradient in the z-direction. Then by using Equations 18, one obtains:

Pg

ρ
= −

�
v�2

�
+ g(x)

The unknown function g is deduced from Equation 17c:

g(x) =
Pg

ρ
(x, b/2) +

�
v�2

�
(x, b/2)

= −
�
u�2� (x, b/2) +

�
v�2

�
(x, b/2) +

U2
inlet − U2

min

2
+

�
PgIV

ρ
+
�
u�2�

�
(x = 0, y)

So, the pressure gradient in the streamwise direction is:

∂

∂x

�
Pg

ρ
+
�
u�2�

�
= −Umin

∂Umin

∂x

+
∂

∂x

��
u�2�−

�
v�2

��
(x, y)− ∂

∂x

��
u�2�−

�
v�2

��
(x, b/2)
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