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Abstract. Two mobile robots are initially placed at the same point on
an infinite line. Each robot may move on the line in either direction not
exceeding its maximal speed. The robots need to find a stationary target
placed at an unknown location on the line. The search is completed when
both robots arrive at the target point. The target is discovered at the
moment when either robot arrives at its position. The robot knowing
the placement of the target may communicate it to the other robot. We
look for the algorithm with the shortest possible search time (i.e. the
worst-case time at which both robots meet at the target) measured as a
function of the target distance from the origin (i.e. the time required to
travel directly from the starting point to the target at unit velocity).
We consider two standard models of communication between the robots,
namely wireless communication and communication by meeting. In the
case of communication by meeting, a robot learns about the target while
sharing the same location with the robot possessing this knowledge. We
propose here an optimal search strategy for two robots including the re-
spective lower bound argument, for the full spectrum of their maximal

? J. Czyzowicz—Partially funded by NSERC. Part of this work was done while Jurek
Czyzowicz was visiting the LaBRI as a guest professor of the University of Bordeaux.

?? L. Gąsieniec—Sponsored in part by the University of Liverpool initiative Networks
Systems and Technologies NeST.

? ? ? D. Ilcinkas—Partially funded by the ANR project MACARON (ANR-13-JS02-002).
This study has been carried out in the frame of the “Investments for the future”
Programme IdEx Bordeaux – CPU (ANR-10-IDEX-03-02).
† R. Klasing—Partially funded by the ANR project DISPLEXITY (ANR-11-BS02-
014).
‡ D. Pająk—Partially funded by the National Science Centre, Poland - grant number
2015/17/B/ST6/01897.



speeds. This extends the main result of Chrobak et al. (SOFSEM 2015)
referring to the exact complexity of the problem for the case when the
speed of the slower robot is at least one third of the faster one. In ad-
dition, we consider also the wireless communication model, in which a
message sent by one robot is instantly received by the other robot, re-
gardless of their current positions on the line. In this model, we design
an optimal strategy whenever the faster robot is at most 6 times faster
than the slower one.

1 Introduction

Searching is a well-studied problem in which mobile robots need to find a specific
target placed at some a priori unknown location. In some cases, a team of robots
is involved, trying to coordinate their efforts in order to minimize the time. The
complexity of the multi-robot searching is usually defined as the time when the
first searcher arrives at the target position whose location is controlled by an
adversary.

In distributed computing, one of the central problems is rendezvous when
two mobile robots collaborate in order to meet in the smallest possible time.
The efficiency of the rendezvous strategy is expressed as the time when the last
involved robot reaches the meeting point, and the meeting point is arbitrary,
i.e., the robots may choose the most convenient one.

In the linear search problem studied in the present paper, a pair of robots
has to meet at an unknown fixed target point of the environment and the time
complexity of the process is determined by the arrival of the second robot. More
specifically we consider two mobile robots placed at the origin of an infinite line.
Each robot has its maximal speed that it cannot exceed while moving in either
direction along the line. There is a stationary target, placed at an unknown point
of the line, that a robot discovers when arriving at its placement. The robot which
possesses the knowledge of the target position may communicate it to the other
robot. We consider two communication models of the robots: communication
by meeting when the robots can exchange information only while being located
at the same position, and wireless communication when the robot finding the
target may instantaneously inform the other robot of its position. We want to
schedule the movement of both robots so that eventually each of them arrives at
the target location. The cost of the schedule is the first time when both robots
are present at the target position. We express it as a function of the distance
between the target and the origin.

1.1 Related Work

Numerous papers have been written on the searching problem, studying diverse
models involving stationary or mobile targets, graph or geometric terrain, known
or unknown environment, one or many searchers, etc. (cf. [1, 3, 17, 21]). Depend-
ing on the setting, the problem is known under the name of treasure hunting,



pursuit-evasion, cops and robbers, fugitive search games, etc. Sometimes the
searching robot is not looking for an individual target point, attempting rather
to evacuate being lost in an unknown environment or determine its position
within a known map (e.g. [12, 15]). Several of these research papers offer excit-
ing challenges of combinatorial or algorithmic nature (see [17]). In most papers
studying algorithmic issues, the objective is either to determine the feasibility of
the search, (i.e., whether the search will succeed under all adversarial choices) or
to minimize its cost represented by the search time, assuming some given speeds
of searchers (and perhaps evaders).

Most of the time searching is considered for a single robot. As one robot usu-
ally cannot map the graph being explored (unless e.g., leaving pebbles at some
nodes; see [8]), the second searcher makes the task feasible (cf. [9]). However, op-
timization of the search by the use of multiple robots often involves coordination
issues, where the searchers need to communicate in order to synchronize their
efforts and adequately split the entire task into portions assigned to individual
robots (cf. [11, 14, 16, 18]). As this objective is often not easy to achieve, some
multi-robot search problems turn out to be NP-hard (e.g., see [18]).

Several papers on searching consider online algorithms (cf. [19]), where the
information about the environment is acquired as the search progresses. The
performance of an online algorithm is measured by its competitive ratio, i.e., the
worst-case ratio of its cost with respect to the offline cost, which is the search time
of the optimal algorithm with full a priori knowledge of the environment and the
target placement. Many search problems, especially for geometric environments,
are analyzed from this perspective, in particular when the cost of the offline
solution is just the distance to the target; see [3, 11, 16, 19].

The linear search problem for a single robot was introduced by Beck [6]
and Bellman [7]. They proposed an optimal on-line algorithm with search time
9d, where d is the distance from the origin to the target. This question was
extended to the cow-path problem in [2], in which the searcher has more than two
directions to follow, to searching in the plane [3], and numerous other variations.
Bose et al. [10] recently studied a variant of these problems where upper and
lower bounds on the distance to the target are given. On a line, without this
information the time 9d cannot be improved even if the search is performed by
a team of same-speed robots communicating by meeting if all robots have to
reach the target [11]; see also [4]. Surprisingly, time 9d can still be achieved by
distinct-speed robots if the slowest robot is at most 3 times slower than the
fastest one.

The rendezvous problem has been central to distributed computing for many
years. It was studied in various settings (cf. [22]), but even for environments as
simple as a line or a ring, optimal solutions are not always known. Feasibility
of the rendezvous problem is often determined by a symmetry breaking process,
which must prevent the robots from falling into an infinite pattern avoiding the
meeting. Searching and rendezvous may be viewed as problems with opposite
objectives. Searching is a game between a searcher, who tries to find the target
as fast as possible and the adversary, who knows the searching strategy and



attempts to maximize the search time by its choice of the environment param-
eters, target placement (or its escape route), etc. Hence in searching, the two
players have contradictory goals. In rendezvous the two players collaborate, try-
ing to quickly find one another (see [1]). Contrary to the searching problem, the
rendezvous destination is not given in advance but it may be decided by the
robots.

Equivalent to our setting are evacuation problems, where a collection of mo-
bile robots need to find an unknown exit in the environment and the exit must
be reached by all involved robots. In previous research usually robots travelling
at the same speed were considered (cf. [11, 12]). For other problems considering
robots with distinct speeds (e.g., the patrolling problem studied in [13, 20]), only
partial results were obtained. Optimal patrolling using more than two robots on
a ring [13], or more than three robots on a segment [20], is unknown in general
and all intuitive solutions have been proved sub-optimal for some configurations
of the speeds of the robots. Another example is the long-standing lonely run-
ner conjecture [23], concerning k entities moving with constant speeds around a
circular track of unit-length. If the speeds are pairwise different, the conjecture
states that at some moment all runners are located equidistantly on the cycle.
The conjecture is open in general, having been verified for up to 7 runners [5].

1.2 Our Results

In this paper, we consider the linear search problem for two robots equipped
with distinct maximal speeds. For the convenience of presentation we scale their
speeds so that the speed of the faster robot is 1 and the slower one is 0 < v ≤ 1.

In the model with communication by meeting, we propose an optimal strategy
for any value of v. And in particular our strategy works in time 1+3v

v−v2 d, for any
v ≤ 1

3 for the target being placed at unknown distance d from the origin. The
remaining part of the spectrum has been covered in [11] where the authors
provide: an implicit (in the limit) argument for the lower bound 9d when the
robots share the maximal speed 1; and they show that this bound can be met
from above when the slower robot’s maximal speed is at least 1

3 .
In the model with wireless communication, we design a strategy achieving

search time 2+v+
√
v2+8v

2v d. We show that this is optimal for any v ≥ 1
6 . Note that

for v >
√

17−4 ≈ 0.123 our strategy for wireless communication outperforms the
optimal strategy for communication by meeting, which shows that the feature of
wireless communication is useful. On the other hand, one can observe that this
feature becomes less significant as v decreases. For v = 1, the optimal algorithm
for wireless communication is 3 times faster than the optimal algorithm for
communication by meeting whereas for v = 1

6 , it is only 1.08 times faster.

2 Preliminaries

For any algorithm A, we denote by t(A, p) the search time of algorithm A if the
target is located at point p. We define τ(A) = lim sup|p|→∞

t(A,p)
|p| as the main



efficiency measure of the algorithms. Whereas all the lower bounds we derive
hold for the efficiency measure τ(A), all the algorithms A we design actually
satisfy the stronger property t(A, p) ≤ τ(A)|p| for every point p ∈ R (sometimes
by making infinitesimal moves as the time approaches 0). In consequence, our
bounds are in particular directly adaptable to a setting where the target place-
ment must lie at a distance at least x from the origin, where x is a fixed constant,
and one measures performance of the algorithms using sup{ t(A,p)|p| : |p| > x}.

Having fixed an algorithm A for a set R of robots, each robot Γ ∈ R follows
a fixed trajectory while it is unaware of the location of the target. We use Γ (t) to
denote the position of robot Γ at time t provided that the target location is not
known to the robot. Our lower bounds rely on the analysis of the progress speeds
lim supt→∞

|Γ (t)|
t . The largest of these values over Γ ∈ R is called the overall

progress speed. For each point p, the time T (p) = min{t : ∃Γ∈RΓ (t) = p} is called
the discovery time of p (it is the first moment when any robot visits p) and φ(p)
denotes the set of robots which visit p at time T (p). To simplify notation, we will
not make explicit the dependence of Γ (t), T (p), and φ(p) on the algorithm A.
Our results are primarily designed for a set R of two of robots, denoted R and r.
Their speed limits are 1 and v (v ≤ 1), respectively.

3 Communication by Meeting

In this model, once a robot finds the target, it must walk to meet the other
robot, and then the robots travel to the target. Naturally, the schedule consists
of three phases: exploration phase while the target is unknown, pursuit phase
where the informed robot chases after the other one in order to tell it about the
target, and target phase when both robots walk to the target location. Recall
that for robots with equal speeds, one of the possible optimal solutions consists
in both robots following together a cow-path trajectory [4, 11], thus the pursuit
and target phases may be nonexistent.

3.1 The Upper Bound

A robot following a standard cow-path trajectory visits, in order of increasing k,
the points pk := (−2)k, k ∈ Z, on alternating sides of the origin, travelling at full
speed between consecutive points pk.7 In this strategy, the robot discovers new
locations after it passes pk on the way from pk+1 to pk+2. This happens from
7 Note that the sequence (pk)k∈Z is understood as prescribing infinitesimally small
moves for the robot in the two directions around the origin at the beginning of
the execution (when time is in the neighborhood of 0, i.e., at the beginning of the
execution, the robot visits points pk for k in the neighborhood of −∞, hence it
makes infinitesimal moves). Algorithm A∗, described below, has similar behavior.
In order to avoid this, we could start the sequence pk from any finite k (instead
of −∞). This would result in small constant additive terms appearing throughout
the calculations, but the asymptotic behavior of the algorithm and in particular the
efficiency measure τ(A) would be unaffected.
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Fig. 1. Illustration of algorithm A∗ before target detection (left), and when the target
has been located (right). The horizontal axis represents the line searched and the
vertical axis represents the time. The empty circle denotes the target discovery. Double
and single solid lines represent the trajectories of the faster and the slower robot,
respectively. Dashed lines correspond to the overall progress speed and dotted lines to
the search time.

Algorithm A∗ [for two robots with communication by meeting]

1. Until the target is located, both robots visit, in order of increasing k, the points
pk = (−c)k for all k ∈ Z, where c = 1+ṽ

2ṽ
and ṽ = min(v, 1

3
). Robot R moves with

speed 1 between consecutive points, and robot r with speed ṽ.
2. When R finds the target, it moves with speed 1 to meet and notify r.
3. After the meeting, robots move together to the target at speed ṽ.

time tk := |pk|+2
∑k+1
j=−∞ |pj | = 9·2k = 9|pk| to t′k+2 := |pk+2|+2

∑k+1
j=−∞ |pj | =

12 · 2k = 3|pk+2|. Consequently, the search time is bounded from above by 9|p|.
As observed by Chrobak et al. [11], this strategy generalizes to a collection of

two robots with speed limits 1 and 1
3 . Both robots follow the cow-path trajectory

at their maximal speed, which means that they meet in pk at time tk = 3t′k.
When the faster robot R discovers the target at a point p between pk and pk+2,
it pursues the slower robot r and brings it to the target, which turns out to be
feasible within time 9|p|; see Fig. 1.

We extend this strategy to allow v < 1
3 as the speed limit of the slower robot r.

We insist on the two robots meeting in points pk at times tk for adjusted values
pk and tk. The smaller speed v of r allows R to travel further before going back
to pk. More formally, we increase the ratio |pk+1|/|pk| and instead of taking
pk = (−2)k, we set pk = (−c)k for some c > 2. We still make both robots visit
consecutive points pk at their full speeds, and we choose c so that they meet
in pk while r is there for the first time and R for the second time. A condition
inductively forcing the meeting at pk to be followed by a meeting in pk+1 can
be expressed as 1

v |pk+1 − pk| = tk+1 − tk = |pk+1 − pk+2| + |pk+2 − pk|, i.e.,
1
v (c+ 1) = 2c2 + c− 1. This gives c = 1+v

2v , which we use for our algorithm A∗.
The following theorem bounds the search time by robots using this strategy.



Theorem 1. For the algorithm A∗ and every point p ∈ R, we have:

t(A∗, p) = 1+3v
v−v2 |p| if v ≤ 1

3 , (1)

t(A∗, p) = 9|p| if 1
3 < v ≤ 1. (2)

Proof. First, let us show (1). Let us choose k so that the target p is located
between pk and pk+2. The meeting time in pk is

tk = 1
v

(
|pk|+ 2

∑
j≤k−1

|pj |
)
≤ 1

v
ck
(

1 +
2

c− 1

)
=

1

v
ck
c+ 1

c− 1
= ck

1 + 3v

v − v2
.

Suppose that |p−pk| = δ. After meeting r in pk, robot R needs time δ to discover
the target. At that time, the distance between the robots is δ(1 + v) since they
were going in opposite directions with their maximal speeds until time tk + δ.
Then, the faster robot pursues the slower one. With the speed difference of 1−v
this takes δ(1+v)

1−v units of time. Next, the robots go back to the target at speed
v which requires time δ(1+v)

v−v2 , i.e., 1
v times more than the pursuit. In total, the

time between tk and the moment when both robots reach the target is

δ +
δ(1 + v)

1− v
+
δ(1 + v)

v − v2
= δ

v − v2 + v + v2 + 1 + v

v − v2
= δ

1 + 3v

v − v2
.

Since tk = |pk| 1+3v
v−v2 , the total search time is t(A, p) = (|pk|+ δ) 1+3v

v−v2 = |p| 1+3v
v−v2 ,

as claimed.
To show (2), we simply observe that, for v = 1

3 , we have
1+3v
v−v2 = 9. Note that

for v > 1
3 , the searcher moving at velocity 1

3 could increase its speed to v, but
no additional gain in efficiency is possible (see the lower bounds in [11, 4] and in
Section 3.2). ut

3.2 The Lower Bound

We show that the strategy from Section 3.1 is optimal, achieving the best possible
bound on the search time. In fact, some results of this section are presented in
order to work for collections R of any number of robots. Consequently, in this
section v denotes the slowest maximal speed among all the robots in R, and r
denotes some robot with maximal speed v. We also define τ∗ = 1+3v

v−v2 and, for
any fixed algorithmA, the overall progress speed w = maxΓ∈R lim supt→∞

|Γ (t)|
t .

Note that the functions Γ and w depend on A, but we do not make this relation
explicit in our notation.

Before we proceed with the actual lower bound, let us prove a lemma relating
the search time and the overall progress speed for any collection R of robots.

Lemma 2. For any algorithm A and any collection R of robots with speeds not
exceeding 1, we have τ(A) ≥ 1+3w

w−w2 , when w ∈ (0, 1). If w = 0 or w = 1, then
τ(A) cannot be bounded from above by any finite number.



1
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≈ w≈ w

Γ

p q

1

1
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t

τ̄dq

dp dq

Fig. 2. Illustration of notions used in the proof of Lemma 2. Rays starting from the
origin as well as thick lines representing constraints are all annotated with the corre-
sponding speeds. Here, robot Γ , while in p at time t, must know that the target is not
in q, or it must be able to reach q before the deadline.

Proof. We proceed with a proof by contradiction. That is, we suppose that τ(A)
can be bounded from above if w ∈ {0, 1}, and that τ(A) < 1+3w

w−w2 if w ∈ (0, 1). In
both cases, the assumption implies the existence of a finite τ̄ such that τ(A) < τ̄
and (w − w2) τ̄ < 1 + 3w. The former condition yields that there exists d0 such
that t(A, p) < τ̄ |p| for |p| ≥ d0. We will obtain a contradiction with respect to
the latter condition.

Let us fix ε > 0. Note that there exists t0 such that |Γ (t)|
t ≤ w + ε for every

t ≥ t0 and every robot Γ ∈ R. Also, there exists a robot Γ and arbitrarily large
time values t such that |Γ (t)|

t ≥ w − ε. We fix such a robot Γ and time t, which
satisfies t ≥ (τ̄ − 1) max(d0, t0).

Let p = Γ (t) and dp = |p|. Also, consider a point q at distance dq =
t+dp
τ̄−1

from the origin on the opposite side of p; see Fig. 2. Note that dq ≥ d0, so
t(A, q) < τ̄dq.

Suppose that robot Γ at time t cannot exclude the possibility that the target
is located at q. Then, it must be able to reach q by the deadline, at t(A, q) < τ̄dq,
starting at time t from point p. The robot cannot exceed the speed limit of 1,
so we conclude τ̄ dq − t > dp + dq. However, the distance dq is defined so that
τ̄ dq − t = dp + dq, a contradiction.

Consequently, robot Γ must already know at time t that the target is not
at point q. Since robots can only communicate by meeting and their speeds are
limited by 1, this information needs dq + dp time to travel from q to p. In other
words, some robot Γ ′ must have visited q at time t′ ≤ t− dp − dq.

On the other hand, the speed limit of Γ ′ is at most 1, so we have t′ ≥ dq ≥ t0.
Hence, we can use a stronger bound using progress speed: dq = Γ ′(t′) ≤ t′(w+ε).
Consequently, we obtain dq ≤ (w+ε)(t−dp−dq). Plugging in the definition of dq,
after some term rearrangements, we get (1+w+ε)(t+dp) ≤ (t−dp)(w+ε)(τ̄−1).

Equivalently, dp ≤ t (w+ε)(τ̄−2)−1
(w+ε)τ̄+1 . However, recall that time t was chosen so that



dp ≥ (w−ε)t. Therefore, w−ε ≤ (w+ε)(τ̄−2)−1
(w+ε)τ̄+1 . As ε > 0 can be chosen arbitrarily

close to 0, we conclude that w ≤ w(τ̄−2)−1
wτ̄+1 , that is (w − w2)τ̄ ≥ 1 + 3w. This

contradicts the definition of τ̄ . ut

The following immediate corollary gives an alternative proof of the optimality
of A∗ for v ≥ 1

3 . (Recall the lower bound of 9 in [11]; see also [4].)

Corollary 3. For any algorithm A and any collection R of robots with speeds
not exceeding 1, we have τ(A) ≥ 9.

Proof. It suffices to observe that 1+3w
w−w2 ≥ 9 for any w ∈ (0, 1). ut

We continue the analysis assuming that v < 1
3 and w ∈ (0, 1). We provide a

series of lemmas, each imposing certain constraints on hypothetical algorithms
A satisfying τ(A) < τ∗. Eventually, we deduce that some of these constraints
exclude each other. Due to space restrictions, in this version of the paper some
proofs are only sketched, with rigorous arguments deferred to the full version.

Lemma 4. If v < 1
3 and τ(A) < τ∗, then w < 1−v

1+3v .

Proof. Suppose that w ≥ 1−v
1+3v . Note that w ≥

1−v
1+3v >

1− 1
3

1+1 = 1
3 (because v < 1

3 )
and the function f(x) = 1+3x

x−x2 is increasing on ( 1
3 , 1). Thus 1+3v

v−v2 = f( 1−v
1+3v ) ≤

f(w) = 1+3w
w−w2 . Consequently, Lemma 2 implies τ(A) ≥ f(w) ≥ 1+3v

v−v2 = τ∗. ut

Lemma 5. If v < 1
3 and τ(A) < τ∗, then lim supt→∞

|r(t)|
t < vwτ∗−wv−v−w

vwτ∗+1 .

Proof (sketch). We choose an arbitrarily large time t. Let p = r(t) and dp =

|p|. We also consider a point q at distance dq =
vt+dp
vτ̄−1 from the origin on the

1
τ̄

≈ wdp
t

r

p q

1

v

0

t′

t

τ̄dq

dp dq

Fig. 3. Illustration of notions used in the proof of Lemma 5. The slowest robot r, while
in p at time t, must know that the target is not in q or it must be able to reach q before
the deadline.



opposite side of p. Here, τ̄ is an arbitrary value such that τ(A) < τ̄ < τ∗ and
1
v < τ̄ < τ∗ = 1

v + 4
1−v . We may assume t(A, q) < τ̄dq if t is sufficiently large.

The distance dq is defined so that 1
v (dq+dp)+t = τ̄ dq. Hence, it is impossible

for the slower robot r to reach point q before τ̄ dq > t(A, q), starting from p at
time t. Consequently r already knows at time t that the target is not located
at q. Hence, some robot must have visited q at time t′ ≤ t − dp − dq, where
the inequality is due to the fact that information cannot travel faster than at
speed 1. On the other hand, the progress speed w gives an upper bound on dq

t′

as t′ approaches infinity. We combine these two inequalities to bound dp
t from

above and derive the claimed result. ut

Corollary 6. If v < 1
3 and τ(A) < τ∗, then lim supt→∞

|r(t)|
t < 1

τ∗ . In particu-
lar, the set {p : r ∈ φ(p)} of points discovered by r is bounded.

Proof (sketch). By Lemma 4, we may assume w < 1−v
1+3v . Upon substituting this

inequality into the upper bound of Lemma 5, this implies vwτ∗−wv−v−w
vwτ∗+1 < 1

τ∗ .
Thus, the slowest robot visits sufficienly far points only after the deadline. To
arrive at some location earlier, it must be notified by some other robot about
the target location. ut

While Lemmas 4 and 5 and Corollary 6 hold for arbitrary collections of
robots, this is not the case for the following lemma.

Lemma 7. If v < 1
3 and τ(A) < τ∗, then lim supt→∞

|r(t)|
t ≥ vW+v+W−vWτ∗

vWτ∗+1

where W = w−w2

1+3w .

Proof (sketch). By Corollary 6, we may assume that the faster robot discovers
all sufficiently far locations. Thus, its own progress speed is equal to the overall

1
τ∗ ≈Wdq

t′

q p

R
r

1

v

0

t

t′

τ∗dp

dq

dp

Fig. 4. Illustration of notions used in the proof of Lemma 7. The faster robot R, having
discovered at time t the target located at p, must be able to catch the slower robot r
and bring it to the target before the deadline.



progress speed w. Moreover, the trajectory of R can be interpreted as a search
algorithm for a collection R = {R} consisting of the faster robot R only. The
search time of this algorithm is T (p), and therefore Lemma 2 lets us conclude
that lim sup|p|→∞

T (p)
|p| ≥

1+3w
w−w2 = 1

W .

We choose a sufficiently far point p such that T (p)
|p| is arbitrarily close to 1

W

and set dp = |p|. By Corollary 6, we may assume that the slower robot does not
reach p on its own before the deadline. Thus, once the faster robot discovers the
target located at p, its optimal strategy is to pursue the slower robot (moving
at speed 1) and then bring it to the target (moving at speed v). We define t′
and q = r(t′) as the time and location where R catches r. The search deadline
is earlier than τ∗dp, which lets us derive a lower bound on |q|t′ and consequently
bound the progress speed of the slower robot from below. ut

Lemma 8. If v < 1
3 and τ(A) < τ∗, then w ≥ 1−v

1+3v .

Proof (sketch). We obtain vwτ∗−wv−v−w
vwτ∗+1 > vW+v+W−vWτ∗

vWτ∗+1 using Lemmas 5
and 7. Since τ∗ and W are defined using v and w only, this is an inequality on
these two variables. It yields w ≥ 1−v

1+3v after elementary calculations. ut

Lemmas 4 and 8 give conflicting constraints for any algorithm A such that
τ(A) < τ∗, which implies the following theorem.

Theorem 9. For any line search algorithm A, if v < 1
3 , then τ(A) ≥ τ∗.

4 Wireless Communication

In this model, we have only the exploration phase and the target phase. We show
that, for robots travelling at speeds with low relative difference (i.e., if v ≥ 1

6 ),
in order to achieve the optimal search time, both robots need to participate in
the exploration.

4.1 The Upper Bound

The optimal strategy for two robots travelling at the same speed [4] is very
simple: Both robots explore in opposite directions at full speeds. When a robot
learns that the other robot has found the target, it changes its direction towards
the target.

Let us analyze the performance of this strategy for robots with distinct
speeds. The total search time is a sum of three terms: the time for a robot
to discover the target, the time for the other robot to go back to the origin and
the time for that robot to reach the target. We consider two cases. First, suppose
that the faster robot R discovers the target at distance d from the origin. Then
the total search time is d+ d+ 1

vd = (2 + 1
v )d. On the other hand, if the slower

robot r discovers the target, the search time is worse: 1
vd+ 1

vd+ d = ( 2
v + 1)d.

Intuitively, the faster robot explores too fast and it thus spends too much
time going back to the origin. Hence, we limit the exploration speed of R to



t

0

r R

t

0

r R

t

0
Rr

Fig. 5. Illustration of algorithm B∗ before target discovery (left), when the target is
discovered by r (middle), and by R (right). The horizontal axis represents the line
searched and the vertical axis represents the time. The empty circle denotes the target
discovery. Double and single solid lines represent the trajectories of the faster and the
slower robot, respectively. Dashed lines correspond to the progress speeds of the two
robots and dotted lines to the search time.

Algorithm B∗ [for two robots with wireless communication]

1. Until the target is discovered, the two robots move in opposite directions. Robot
r moves with its maximal speed v and robot R with speed v′ = 1

2
(
√
v2 + 8v − v).

2. When either robot finds the target, it notifies the other one using wireless commu-
nication and the other robot moves to the target using its maximal speed.

v′ < 1. When it already knows the target, the faster robot is still allowed to use
its full speed equal to 1. Now, the total search times are 1

v′ d+ 1
v′ d+ 1

vd = ( 2
v′+

1
v )d

and 1
vd+ v′

v d+d = 1+v′+v
v d, respectively. We choose v′ to minimize the maximal

of these two quantities. As they are, respectively, a decreasing and an increasing
function of v′, for the optimal value v′ these terms are equal to each other, i.e.,
v′ satisfies 1+v′+v

v = 2
v′ + 1

v or, equivalently, v′2 + v′v = 2v.
The following fact, with a simple yet technical proof deferred to the full

version of the paper, gives the right values of v′ and of the search time τ∗. This
lets us complete the description of the algorithm B∗ (see Fig. 5), whose analysis
follows immediately from the discussion above.

Fact 10. For any speed v ∈ (0, 1], define τ∗ = 2+v+
√
v2+8v

2v and v′ =
√
v2+8v−v

2 .

(a) τ∗ = 1+v+v′

v , (b) τ∗ = 1
v + 2

v′ , and (c) v′2 + v′v = 2v.

Moreover, if v ≥ 1
6 , then 3v ≥ v′ ≥ 1

2 .

Theorem 11. For the algorithm B∗ we have t(B∗, p) = τ∗|p| for every p ∈ R.

4.2 The Lower Bound

By Theorem 11, for all points p we have t(B∗, p) = τ∗|p| and thus τ(B∗) = τ∗.
We will show that for v ≥ 1

6 no algorithm B admits a smaller value of τ(B). As
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τ∗ v≈ v′ ≈ v′
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1
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t

t′

τ∗dq
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Fig. 6. Illustration of notions used in the proof of Lemma 12. The faster robot R, while
in p at time t, must know that the target is not in q or it must be able to reach q before
the deadline. For the former, either the slower robot r must have visited q prior to t,
or R must have visited q on its own and traveled all the way to p.

in Section 3.2, we impose some constraints on the hypothetical algorithms, two
of which are going to be inconsistent. Due to space restrictions, here we present
proof sketches only; full arguments are deferred to the full version.

Lemma 12. If v ≥ 1
6 and τ(B) < τ∗, then lim supt→∞

|R(t)|
t ≤ v′.

Proof (sketch). For a proof by contradiction we suppose that the progress speed
ofR exceeds v′. Then, we may choose arbitrarily large time t such that |R(t)|

t > v′.
Let p = R(t) and dp = |p|. We also consider a point q at distance dq = tv from
the origin on the opposite side of p; see Fig. 6. If the time t is chosen sufficiently
large, we may assume that t(B, q) < τ∗dq.

The distance dq is defined so that the robot R is unable to reach q prior to
the deadline starting from p at time t. Thus, some robot must visit point q at
time t′ < t. The speed restriction for the slower robot is too strong for it to arrive
at q early enough. Therefore, it must be the faster robot R which discovers q.
Consequently, t′ must be small enough for R to travel from q to p during time
t − t′. On the other hand, the progress speed gives a lower bound on t′ as t
approaches infinity. We combine these two bounds to derive a contradiction. ut

Lemma 13. If v ≥ 1
6 and τ(B) < τ∗, then the set {p : r ∈ φ(p)} of points

discovered by the slower robot r is bounded.

Proof (sketch). For a proof by contradiction, we suppose that there are arbitrar-
ily far points discovered by robot r. We choose such a point p at distance dp = |p|
from the origin. We also consider a point q at distance dq =

2dp
τ̄v−1 from the origin

on the opposite side of p. Let τ̄ be an arbitrary value such that τ(B) < τ̄ < τ∗

and 1
v < τ̄ < τ∗ = 1

v + 2
v′ . We may assume t(B, p) < τ̄dp and t(B, q) < τ̄dq if p

is chosen sufficiently far.
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Fig. 7. Illustration of notions used in the proof of Lemma 13. The slower robot r, while
discovering p at time t, must know that the target is not in q or it must be able to
reach q before the deadline. For the former, the robot discovering q at t′ prior to t,
must be able to reach p before the deadline.

We analyze the discovery times t = T (p) and t′ = T (q), and distinguish two
cases depending on which is smaller. If t ≤ t′, then robot r, while in p at time t,
must be able to reach q before the deadline. The distance dq is defined so that
it is unable to do so if t ≥ dp

v , and the latter inequality easily follows from the
speed limit of the slower robot r.

On the other hand, if t′ ≤ t, then the robot which visits q at time t′ must be
able to reach p before τ̄ dp. This gives an upper bound on t′ ≤ τ̄ dq−dq−dp due to
the speed limits. Combined with the bound of Lemma 12 on the progress speed,
this yields a contradiction if the initial point p is chosen sufficiently far. ut

Lemma 14. If v ≥ 1
6 and τ(B) < τ∗, then the set {p : r ∈ φ(p)} is unbounded.

Proof (sketch). For a proof by contradiction, we suppose that the set is bounded.
Then, the faster robot cannot go to infinity in one direction only, and it must
pass the origin at arbitrarily large moments of time. Let us fix a sufficiently large
t such that R(t) = 0. Consider two points pl and pr at distance d = tv

τ̄v−1−v on
each side of the origin. Let τ̄ be an arbitrary value such that τ(B) < τ̄ < τ∗ and
1 + 1

v < τ̄ < τ∗ = 1 + 1
v + v′

v . If t is chosen large enough, we may assume that
t(B, pl) < τ̄d and t(B, pr) < τ̄d and that both points must be discovered by R.

Since R(t) = 0, points pl and pr can only be discovered no later than at time
t−d or no sooner than at time t+d. The distance d is defined so that the slower
robot r starting from any position at time t + d is either unable to reach pl or
unable to reach pr. Hence, one of these points must be discovered (by R) at time
t′ ≤ t − d. For sufficiently large t, this contradicts the bound of Lemma 12 on
the progress speed. ut

When combined, Lemmas 13 and 14 exclude any algorithm with τ(B) < τ∗.

Theorem 15. For any line search algorithm B, if 1
6 ≤ v ≤ 1, then τ(B) ≥ τ∗.
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Fig. 8. Illustration of notions used in the proof of Lemma 14. The slower robot r at
time t+d must either be able to reach both p` and pr before the deadline, or the faster
robot R must have visited one of these points prior to time t+ d, which actually could
only happen prior to time t− d.

5 Conclusions and Open Questions

Clearly, any search strategy for the communication by meeting model may also
be used in the wireless communication model. The bound of 1+3v

v−v2 obtained in
Section 3.1 outperforms 2+v+

√
v2+8v

2v from Section 4.1 for small values of v. More
precisely, an interested reader may observe that for v ≤

√
17−4 ≈ 0.123 we have

1+3v
v−v2 ≤

2+v+
√
v2+8v

2v . This immediately shows that our strategy from Section 4.1
is not optimal in general. We conjecture that for v ≤

√
17− 4 some variation of

the strategy from Section 3.1, when the faster robot is the only one responsible
for exploration, will be optimal also for the wireless communication model. (Note
that for general target points, it is not possible to improve the performance of
the algorithm from Section 3.1 for wireless communication just by making the
slower robot change direction immediately once the target is discovered by the
faster robot.) As both strategies are fundamentally different, it would also be
interesting to see what happens for the speeds

√
17− 4 < v < 1

6 .
The above fact may be viewed from another, perhaps more interesting per-

spective. Two unit-speed robots perform linear search in 9d time when communi-
cating by meeting and in 3d time for the less restrictive wireless communication.
Is it true that, for significantly different robot speeds, the wireless communica-
tion model loses its advantage over the communication by meeting model, and
the linear search takes the same time in both models?

Another possible area of research is to extend the considerations to a larger
collection of distinct-speed robots for both communication models.
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