
HAL Id: hal-01393781
https://hal.science/hal-01393781v1

Submitted on 7 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using free modeling as an Agile method for developing
domain specific modeling languages

Fahad Rafique Golra, Antoine Beugnard, Fabien Dagnat, Sylvain Guerin,
Christophe Guychard

To cite this version:
Fahad Rafique Golra, Antoine Beugnard, Fabien Dagnat, Sylvain Guerin, Christophe Guychard. Using
free modeling as an Agile method for developing domain specific modeling languages. MODELS 2016 :
ACM/IEEE 19th International Conference on Model Driven Engineering Languages and Systems, Oct
2016, Saint Malo, France. pp.24 - 34, �10.1145/2976767.2976807�. �hal-01393781�

https://hal.science/hal-01393781v1
https://hal.archives-ouvertes.fr


Using Free Modeling as an Agile Method for Developing
Domain Specific Modeling Languages

Fahad R. Golra
IRISA / Télécom Bretagne

Brest, France
fahad.golra@telecom-

bretagne.eu

Antoine Beugnard
IRISA / Télécom Bretagne

Brest, France
antoine.beugnard@irisa.fr

Fabien Dagnat
IRISA / Télécom Bretagne

Brest, France
fabien.dagnat@irisa.fr

Sylvain Guerin
Openflexo

Brest, France
sylvain@openflexo.org

Christophe Guychard
Openflexo

Brest, France
christophe@openflexo.org

ABSTRACT
Mostly the development of domain specific modeling lan-
guages (DSML) follows the traditional model driven engi-
neering practices. First the syntax and semantics of the
language are defined (at meta-level) and then it is used for
the development of user models. In certain situations, it is
hard even to conceptualize the demands of the user, let alone
the definition of the language. Agile methods for software
development suggest that the development activities should
be performed alongside a client stakeholder for incremental
development of the system. This approach helps in the elici-
tation of requirements in parallel to the actual development
of the system. We followed this approach for developing a
domain specific modeling language and its tooling for a lo-
cal government project, Brest Métropole. The project aimed
at filling the communication gap between the elected rep-
resentatives (politicians) and the bureaucracy (government
officers). We used a modeling methodology that does not
restrict a modeler’s interaction to a single abstraction level.
Thus a modeler can develop both models and metamodels at
the same time, where the definition of one helps in defining
the other. In this article, we explain our experiences from
this project and share the lessons learnt.

Keywords
Domain specific modeling; Agile methods; Free modeling;
Graphical DSML; lessons learnt

1. INTRODUCTION
A study shows a productivity increase to a factor of 5-10 in

the projects where domain specific modeling languages are
used [11]. This might explain the reason for their increasing
popularity during the last decade. The mere use of DSML
does not guarantee the success of a software development
project. Another study of 76 different domain specific mod-
eling projects shows that a whopping 42 percent in them
fail to consider real life usage of the language [10]. Such
problems arise due to insufficient communication between
the development teams and their clients. Agile development
methods tackle this issue by recommending the development
of software systems in a fashion that developers should work
together with their clients [3].

In this context, we have worked towards the definition of
an interactive methodology for the development of graphi-
cal domain specific modeling languages. In many situations,
stakeholders from the client organizations do not possess
sufficient knowledge about the principles of model driven
engineering. Working alongside a client stakeholder requires
that the development methodology should be adapted to get
the maximum input from them. They can contribute well in
the development of example models of the actual situations
that they face in the problem domain. Our methodology
focuses on the simultaneous development of such examples
models and conceptual metamodels. Graphical domain spe-
cific modeling languages deal with both the conceptual ele-
ments of the language and their graphical representation. A
modeler working in a joint development session alongside a
client stakeholder has the possibility to develop four differ-
ent models simultaneously i.e. the model (example instance)
and the metamodel for the language concepts alongside the
model and the metamodel of their graphical representations.
We experimented with a flexible approach where these four
models are loosely coupled, contrary to the traditional strict
modeling approach [16]. This allows the development of
representations without conceptual instances, concepts in-
stances without corresponding concepts in metamodels, etc.

This methodology was used for a case study of the devel-
opment of a software solution in a local government institu-
tion. This software solution aimed at bridging the communi-
cation gap between the strategic level and operational level
personnel in our client institution. The activity maps from
both these levels were modeled and mapped for a common
institution wide understanding. This project was carried
out using our agile development methodology for graphical
domain specific modeling language. The associated tool pro-
vided the necessary basis for implementing the solution. The
contribution of this article is to twofold; first to present the
free modeling methodology and its associated tooling and
second, to share our experiences and lessons learnt from the
implementation of this case study.

The rest of this paper is organized as follows. First, we
explain the context of the project in Section 2. Then, in
Section 3, we present our approach for the development
of graphical domain specific modeling languages using ag-
ile methods. Then, in Section 4 we share our experiences
from this case study, concerning the use of our methodology



to deal with the issues in problem domain. Then, we de-
scribe the outcomes of the project in Section 5. In Section 6
we share the lessons learnt from this case study. Finally, we
conclude this paper in Section 7.

2. PROJECT CONTEXT
This project was carried out for a government institution

using an agile approach for model driven engineering. We
will explain the details regarding the field of application and
the approach, in this section.

2.1 Field of Application
As of today, France has 16 urban communities working as

a local government system. These urban communities work
as joint administration between the big cities and their inde-
pendent suburbs. This local government system relies on the
interaction of different kinds of stakeholders. On one hand,
the elected representatives define the guidelines and develop
a strategic vision. Their work relies on their own perception
of administrative organization. They rarely need to know
how things are actually done in the government offices. On
the other hand, bureaucracy is comprised of government of-
ficials with a precise functional hierarchy. They perform all
the tasks required by the community under the vision of the
elected representatives. For instance, the concrete tasks like
management of a waste collection scheme or registration of
births and deaths of the residents are carried out by the bu-
reaucracy. For all these activities, bureaucracy is in charge
of reporting accurate information to the elected representa-
tives in order to assist them in political decision-making.

Theoretically, this system works well. In reality, there is
a lot of resistance, information is hidden at both ends and
some power games are involved. In the current economic
context, optimization of these operations becomes crucial
for these organizations. This calls for new management tools
that can help in reducing the communication gap between
these two levels of administration. In this context, we car-
ried out a project in collaboration with the local government
of Brest, Brest Métropole, to design and develop a tool for
assisting them in the alignment of these two viewpoints of
administration. Each of these viewpoints has its own con-
ceptualization and sometimes its own tools to describe this
complexity. Our participation in the project was to develop
languages and corresponding tools for common interpreta-
tion of these viewpoints. It was unimaginable for the stake-
holders from any group to adopt the model of the other, so
finding a consensus between the both was imperative.

Interviews with the stakeholders of both these perspec-
tives led to the combination of representations developed in
form of drawing or calculation spreadsheets. Apart from
the need of communication with other stakeholders, each
of these representations responds to some specific concerns.
The primary focus of our work was the identification of con-
ceptual elements allowing common comprehension (consen-
sus) and the classification of the rest of them according to
each class of actors (concepts and written elements). Af-
ter this classification, our work involved mapping all these
concepts and their representations, constraining them, in-
terpreting them and developing tools for them.

The goal of this project was to allow different stakeholders
to have appropriate information and the ability to manipu-
late it through their own language (with different criteria).
This needed to be achieved without altering the sense of

information (conceptual conformity) based on existing data
sources like charts, mind maps, inventory of strategic guide-
lines, etc. So we developed several languages, each special-
ized in a certain domain, with shared interpretations artic-
ulated around intersections (as a set of common elements).
This guaranteed the correction of information exchange, as
no modification was required for the interpretation of shared
information between them.

2.2 Agile vs. / and Model Driven Approach
Some of the researchers in agile development community

consider model driven engineering to be a lost cause [1].
They normally argue that spending time to think about the
issues at a higher abstraction level, before coding, is a waste
of time and that this time should be spent in the devel-
opment of the artifacts that need to be delivered. We do
not agree with that point of view. However, in this arti-
cle, Scott W. Ambler himself agrees that agile model driven
development shows some prospect. Under this context, we
wanted to apply agile development methodologies for model
driven engineering for this specific project. The goal of this
experience was two-pronged; first to solve the information
interpretation problem faced by the local governments as
explain in the previous section and second, to practically
see if agile model driven methodologies can respond to the
concerns raised by such agile community members.

In order to solve the problems faced by the stakeholders
in local government institutions, we responded with a model
driven engineering solution that considers all the artifacts
involved in the project as models. For the development of
this model based solution, we followed an agile approach as
described by the Agile Manifesto [3]. We took into account
all the twelve rules of agile manifesto, but we specifically fo-
cused on two i.e. “Deliver working software frequently, from
a couple of weeks to a couple of months, with a preference to
the shorter timescale” and “Business people and developers
must work together daily throughout the project”.

Our development team responded by various iterations,
with a small working system developed and delivered after
each iteration. The development was continued in the pres-
ence of client stakeholders, in such a way that the process
itself helped in requirements elicitation. For each working
day invested in the development of this project, our mod-
elers used to carry out interviews with the stakeholders of
the client institution. The requirements gathered from that
session were implemented directly into a model, in front of
the clients. The development based on those requirements
helped the client stakeholders to conceptualize the models
involved in the development. Their feedback for the refine-
ment of models helped us gather further requirements. Our
iterations were even shorter than a week, and were averaged
at around two days.

3. INTERACTIVE MODELING APPROACH
We present a new methodology for interactive modeling.

It allows different variations of interaction modes with the
models, which is the reason we call it free modeling. In this
section, we will present this methodology and its associated
tool, the free modeling environment.

3.1 Free Modeling
The main motivations of this methodology revolve around

two ideas; first, to enable the modeler to interact with both



Diagram

Conceptual
metamodel

Diagram

Representation
metamodel

Conceptual
model

Representation
model

represents

represents

conforms? to conforms? to

Diagram

1

Figure 1: Different models in free modeling space

levels of abstraction (model and metamodel) simultaneously
and second, the development of a graphical syntax alongside
the associated conceptual model. These ideas are better
expressed through Figure 1. Amongst the four quadrants
presented in the figure, the upper two represent a higher
level of abstraction i.e. the meta-level. Whereas the bottom
two quadrants represent the concrete level of modeling i.e.
the instance models.

In traditional model driven engineering, a model is mostly
developed or generated according to the concepts defined in
its metamodel. Thus we need to develop the metamodel first
and then afterwards, multiple models conforming to it can
be developed/generated. For example, MDA architecture
by OMG defines a four-layer hierarchy, where MOF is the
top-most layer [13]. MOF allows the development of meta-
models, which further allow the development of model and
finally their instances. An ”instance-of”relationship between
these layers restricts the instantiation of a modeling element
without a prior definition of appropriate meta-modeling el-
ement [8]. In a few modeling techniques, it is possible to
create a model and then infer the metamodel from an ex-
isting model [4, 9]. This metamodel then serves for further
development of models. Free modeling allows to interact
with models and meta-models at the same time. User mod-
els and their metamodels are shown as conceptual model and
conceptual metamodel in the left quadrants of the Figure 1
The proposed process of modeling is highly interactive where
new modeling elements, that do not conform to any of the
elements of their metamodel, can be added to the instance
model. If these elements are important enough or are fre-
quently used in the model, the modeler can choose to infer
the corresponding meta-element to be added to the meta-
model. The “conforms? to” mapping between models and
their metamodels, as shown in Figure 1, specifies that a
model tends to conform to its metamodel, but in certain
situations some elements in the model might not conform
to any of the meta-elements. Similarly, while developing a
model, a modeler can add meta-elements to the metamodel

first and then create new elements in a conforming model
that conform to the newly added meta-elements. During
model development, a modeler has the liberty to interact
with the concrete and abstract levels at the same time.

The quadrants at the right side of Figure 1 pertain to
the graphical representations of the models. Free modeling
enables a modeler to add modeling elements into the con-
ceptual models (and metamodels) either directly or through
their graphical representations. This means that graphical
representations can be added to a diagrammatic view of the
model, from where elements can be added to the concep-
tual models, subsequently. Graphical representations of the
models are also presented in two abstraction levels. A con-
crete diagram (representation model) represents a concep-
tual model and the abstract level representation metamodel
defines the graphical representations of the meta-elements.

All the four quadrants seem to be tightly integrated with
each other. However, the strength of free modeling method-
ology lies in the fact that all four modeling spaces are very
loosely bound. This means that a modeler can add modeling
elements to any of the four models without affecting other
models. The effect of a change in one model can be prop-
agated to other models, if that is intended by the modeler.
Having the possibility to interact with all four models at the
same time alongside this decoupling allows the freedom to
have multiple variations of interactions with the modeling
space. This turns modeling into a highly interactive activ-
ity that can be carried out alongside the client stakeholders,
who are more comfortable in comprehending the diagram-
matic representations of the models.

3.2 Free Modeling Environment
To validate the free modeling methodology and to put

it into practice, we developed a tool that relies on Open-
flexo [14]. Openflexo is our open source initiative that started
as a business process modeling workbench, but by integrat-
ing our recent research endeavors it has evolved into a generic
collaborative platform for multifaceted modeling. It uses the
concept of model federation [7] to deal with multi-paradigm
modeling and provides support for both graphical and tex-
tual models.

Free Modeling Editor (FME) is a prototype for testing
new modes of interaction with the models. It facilitates the
development of a conceptual metamodel for a domain spe-
cific modeling language alongside its graphical syntax. Its
interface is partitioned into five main zones, as shown in
Figure 2. The zones to the left deal with conceptual mod-
eling for the domain specific languages, whereas the cen-
tral and right zones are dedicated to a drawing tool that
deals with the graphical representations of the conceptual
models. A modeler can use the central drawing zone to de-
velop graphical representations by dragging and dropping
graphical shapes from one of the palettes provided in the
palette zone. The graphical properties zone provides the pos-
sibility to fine-tune the shapes drawn in the drawing zone.
The concept zone and the concept instance zone serve as
browsers for conceptual metamodel and conceptual model
respectively. Free modeling editor is coherent with the free
modeling methodology illustrated in Figure 1, with following
mappings:

• Concept zone ←→ Conceptual metamodel

• Concept instance zone ←→ Conceptual model



Drawing zone

Concept
instance
zone

Concept
zone

Palette
zone

Graphical
properties

zone

1
Figure 2: Free Modeling Editor

• Palette zone ←→ Representation metamodel

• Drawing zone ←→ Representation model

The graphical shapes, not yet associated with a concept,
appear under the term “None” in the conceptual model, to
decouple it from its representation. It is possible to create
a concept using a contextual menu in the conceptual zones,
so that it is not associated with any graphical shape. A
graphical shape in the drawing area can be associated to
a concept through a contextual menu. If no corresponding
concept exists, the user can create a new one.

Three kinds of palettes are available to the user for creat-
ing graphical shapes:

• Used shapes: allows the reuse of shapes already defined
in the current drawing. Using a shape from this palette
creates a shape in the representation model.

• Free shapes: provides a set of simple shapes to create
new representation. When a shape from this palette
is dropped in the drawing zone, it creates a shape in
the representation model and places that shape in the
used shapes palette.

• Concepts: offers the shapes already associated with
concepts. Dragging and dropping from this palette
triggers both the creation of a shape in the representa-
tion model and an instance of the associated concept
in the conceptual model.

If a user wants to use some shape other than the ones
provided in the Free shapes palette, it is possible to use an
image provided by the user. The properties of all the shapes
can be adjusted from the graphical properties zone. Graph-
ical shapes are loosely coupled with the concept instances.
When a concept and its graphical representation is created

through concepts palette, the designer still retains the possi-
bility to change the association between them. In this case,
the graphical shape associated with a particular concept in-
stance is changed, however the concept (in the conceptual
metamodel) retains the same graphical representation. It is
also possible to restore this shape with the one associated
with the concept, or, alternatively, replace the shape of the
concept and impose on all other instances.

Lastly, it is possible to import a diagram developed as
a part of an existing document (Microsoft Office suite files
in this case) and use it as a graphical representation. In
this case, no conceptual (meta)model is associated with the
graphical representation. However, it gives a good starting
point to develop models based on existing diagrams. This
functionality serves for requirements elicitation and model-
ing at the same time. Given the flexibility of the tool, it is
easy to experiment with different modeling situations.

4. EXPERIENCE REPORT
Our experience report concerns the application of free

modeling methodology in the context of a problem faced at
a local government institution, as described in Section 2.1.
The elected representative of this institution used a set of
vocabulary, diagrams and tools that was suitable for the
strategic vision. Their activity maps were created in terms
of objectives and targets, as shown in Figure 3. On the
other hand, the government officials working at the opera-
tional level, in charge of operationalizing the strategy, used
a completely different set of vocabulary and diagrams. They
mapped their activities using assignments and tasks. Link-
ing the operational level assignments and tasks to the strate-
gic level objectives and targets was not an easy job for them,
because of the variation in the types of vocabulary and doc-
umentation. They were using Microsoft Office suite for cre-



Objective

Target

Assignment

Task

Directorate

Operational
level

Strategic
level

Organization
chart

1

Figure 3: Concepts in the problem domain

ating different types of documents like reports, presentations
and databases (in Excel).

The project in this case study revolved around a solution
based on graphical domain specific modeling. This project
took around three months to complete in ten development
iterations. Three members of our team were involved in this
project, where two of them were actively involved in the co-
development alongside client stakeholders in each iteration.
A third one was responsible for the packaging and delivery of
the tool after each iteration. Four members from this govern-
ment institution (from both strategic and operational level)
engaged as active participants for this project. None of these
client stakeholders had any prior knowledge of model driven
engineering. Few of the stakeholders had already used basic
modeling tools (one stakeholder had used models for acoustic
treatment and another developed process models) and one
of them had worked on relational database engines. It needs
to be noted that even the model presented in Figure 3 was
not provided by the client institution, it was rather elicited
during the implementation of the project. In such an envi-
ronment, it is difficult to impose an existing modeling lan-
guage, especially when we had to consider other constraints
like: a shared (non-formal) vocabulary across the depart-
ments of the institution and the demand to reuse existing
graphical notations (diagrams). We had heterogeneous data
at our disposal, both in terms of format and source:

• a spreadsheet containing information related to the ac-
tivity maps

• a representation of the same information in the form
of a mind map

• a document presenting the strategic objectives of the
organization (unstructured information)

• some free form diagrams describing the operating en-
vironment

• example documents using this information: scoping re-
ports, activity reports, documents for disseminating
information and promoting the organization, etc.

The project management team at the client institution ex-
pressed their concerns for a maximum reuse of existing data
(both their structure and format), in order to avoid con-
siderable modifications to their existing work-flow. Several
objectives were set for the project:

• facilitating information maintenance and its ownership
by producers

• assisting in the alignment of strategic objectives (of
elected representatives) with the activities (of the bu-
reaucracy)

• producing graphical representations for different audi-
ences

• opening new possibilities by linking current informa-
tion with other data sources

We developed a set of tools using the infrastructure devel-
opment capability of Openflexo [14]. This gave us the pos-
sibility to use dynamic links between the conceptual models
and the representation models (definitions of diagrams) for
interpreting these models. So we were able to develop and
test our models, working alongside the stakeholders from
our client institution. To explain how we actually interacted
with our client stakeholders, we do not use the terms model
or metamodel in the rest of this section, we rather use the
terms examples and concepts.

During the implementation of this project, we encountered
different situations where specific modeling techniques were
needed. We present three of such example scenarios from the
analysis phase where we developed some concepts from their
activity maps (provided document). Some of the concepts
were easy to develop from the existing diagrams that our
clients used in the provided documents. This first scenario,
illustrated in Figure 4(a), describes this situation:

1. isolating a representation in the examples with a con-
sensus: From the diagrams used by the operational
level stakeholders in the institution, we isolated a spe-
cific representation for an activity “Collect recyclable
waste”. [step 1 of the figure]

2. identifying the concept: After discussions with the client
stakeholders, we realized that they define such assign-
ments to meet the targets set by the strategic level
stakeholders. [passing from steps 2 to step 3 of the
figure]

3. producing example diagrams to validate the choices:
Once we had both the concept and its representation at
our disposal, we could use it to develop instant demon-
stration examples that were validated by the stake-
holders.

Certain concepts were present in the problem domain,
but did not have their graphical representations because the
client stakeholders never used those concepts in their dia-
grams. Such concepts were usually identified from other tex-
tual documents or through interviews with the stakeholders.
Our second example, in Figure 4(b), presents this scenario.

1. identifying a new concept during the discussions on a
document: When we studied and then discussed the
organization chart provided by our client in the form of
a textual document, we identified that assignments are
allocated to different directorates in their institution.
[concept defined in step 1 of the figure]

2. defining a representation for this new concept: Once
the concept of directorate was identified, we defined a
graphical representation for this concept. This repre-
sentation was defined with the help of the stakeholders,
so that their choices can be taken into account directly
during the implementation. [representation defined in
step 2 of the figure]



Assignment

name

Conceptual
metamodel

name

Representation
metamodel

CollectRW
name = ...

Conceptual
model

Collect recyclable
waste

Representation
model

1

2

2

3

1
(a) A concept appears through abstraction

Directorate
name

Conceptual
metamodel

name

Representation
metamodel

HR
name = ...

Conceptual
model

Human resources

Representation
model

3

2

3

1

1
(b) An instance appears through concretization

Figure 4: Example scenarios in free modeling

3. creating an example diagram for validation: Having
both the concept and representation at hand, we de-
veloped instant examples that could be validated by
our clients. [both concept instance and representation
instance, as shown in step 3 of the figure]

In our first example scenario, a concept was developed ac-
cording to the selected representation, thus at the end both
of them were synchronized. Figure 5 (section a) shows a
valid synchronization state after the execution of this sce-
nario, with a tick mark. During the implementation of the
second scenario, we came across a situation where the client
grouped certain directorates under a common concept which
was very close to directorate itself. In one of the examples,
the client changed the color of the representation for direc-
torate, thus creating a new representation without any as-
sociated concept. Thus all the representations of this model
could not be associated to their respective concepts, hence
the invalid synchronization shown at the start of Figure 5
(section b). To refine our concept metamodel accordingly,
we carried out the activities presented as scenario 3:

1. differentiating between the two representations, based
on their meaning: We discussed with our client stake-
holders, the reasons why a different color (representa-
tion) was chosen for an instance of directorate. These
discussions helped us identify a new concept, division,
which was differentiated from the original concept.

2. associating a new concept to an already existing rep-
resentation: A representation for directorate concept
was already defined in previous scenario. After the dis-
cussions, when the concept of directorate was clarified
by the stakeholders, we associated it with its already
existing representation.

3. building a new concept from the other representation:
During the implementation of previous scenario, an ad-
ditional representation was developed with the change
of color. That representation was intended for the con-
cept of division, so we linked that representation with
the concept.

Implementation of the third scenario brought us back to
the state, where both conceptual metamodel and the rep-
resentation metamodel were synchronized, as shown at the
end of Figure 5 (section b).

In addition to the development of conceptual model and
graphical representations, we also had to project the identi-
fied concepts on databases (spreadsheets) used by the client
institution. Using model federation, our tool allowed both
the manipulation of data in spreadsheets through the graph-
ical representations and the generation of diagrams from the
spreadsheets. This interactive modeling methodology used
in the implementation of this project was supported by our
tool, throughout this case study. Overall, this experience
helped us concretize our methodology and refine our devel-
opment environment as well.

5. PROJECT OUTCOMES
As a final deliverable of the project in this case study, we

had to hand over a solution that can be used as an interface
between the strategic level and operation level information
in our client institution, as described in Section 2.1. We de-
veloped a graphical domain specific language to model the
information at both these levels. Existing tools like Excel
and PowerPoint were linked with our graphical DSML ed-
itor. This way, the language concepts could be developed
from the diagrams developed at the client institution in the
tools that they commonly use in their work-flow. Once the
graphical DSML was developed, the tool could access data
about the activities from two different Excel spreadsheets
i.e. one for strategic level information and the second for
the operation level. The organization chart of the institu-
tion and other management data, developed as Excel spread-
sheets, were also linked with the tool.

Existing tools used by our client institution like Word,
Excel and PowerPoint are used to create files like .xlsx and
.pptx. We take all such files as models and use model
federation to link them to our solution. Model federation
is an approach that enables the integration of heteroge-
neous models [7]. The concept of model federation is analo-
gous to componentization of models for developing a system.



Tool co-construction with the client Tool usage by the client

Target

name

Assignment

name
from

to
name name

ATarget

name

AnAssign

name
from

to

an example
target

an example
assignment

1

sustainable
use of

resources

collect
recyclable
waste

initiate intern
awareness
campaign

1

Directorate
name name

ADirectorate
name = ... a directorate

1

Administration

Human
resources

Technical
service

1

Division

name

Directorate

name
from

to
name name

Adm

name = ...

TS

name = ...

HR

name = ...

from

to

to

Administration

Human
resources

Technical
service

Administration

Human
resources

Technical
service

1

a) Synchronization state after scenario 1

b) Synchronization state after scenario 2
unknown graphical elements

1
Figure 5: Concepts and representations synchronization in free modeling



Each model (including the model of the system under devel-
opment) is taken as a component with defined interfaces.
These interfaces are developed as model slots, which open a
view to the structure and behavior of the connected model.
We can imagine such a model slot as a mean to interpret the
model’s content. Once a model is connected to the system,
its data can be accessed and multiple operations for reading
or writing can be performed on that model.

Once our solution software was connected to the sources
of information (models), we could extract data from them.
Then the graphical DSML developed in this case study was
used to link the data from strategic level to operation level.
Our tool allowed to manipulate the data, in their source
models, from within it. Finally, we could generate multi-
ple kinds of activity reports and templates as new models
in .docx format. Thanks to model federation, our solution
worked as a central hub for all different kinds of models
(from different existing tools) used in their work-flow. So all
these models could be manipulated from a single tool.

6. LESSONS LEARNT
Our participation in this case study was a good learning

experience of working with graphical domain specific mod-
eling languages. We share some of the lessons learnt in this
endeavor. These lessons should not be taken as absolutes,
however they highlight some of the important issues faced
by the people in model driven engineering community while
opting for a graphical domain specific language solution. In-
stead of a separate section, we discuss the related works
while explaining the lessons learnt, where applicable.

Lesson 1: Graphical domain specific modeling lan-
guages offer valid and instant solutions.

Despite some unfavorable opinions about model driven en-
gineering in the agile software development community [1],
we had a very positive experience of using it in a real-life
case study. We can not contest the case for all the technolo-
gies used in model driven engineering, however the use of
graphical domain specific modeling language allowed us to
develop solutions for our client institution in an interactive
manner. The graphical aspect of models, helped in reducing
the communication gap between our team members and the
client stakeholders. We were able to interact in a way that
our clients felt actively involved in the development process.

Free modeling editor allowed us to import the diagrams
that were already developed by the client stakeholders. Once
a diagram was imported into the tool, it was considered as
a model with a graphical representation. As we used to
have discussions over each imported diagram in our tool, we
could identify the concepts from those diagrams. The iden-
tification of a concept meant that we are adding a modeling
element to the conceptual metamodel. Thus discussions on
diagrams were resulting in the creation of the conceptual
metamodel of a new graphical domain specific modeling lan-
guage. As free modeling editor does not need to restart or
recompile the complete working space after each modifica-
tion to the metamodel, we could instantly develop examples
based on the new metamodel. Even though our client stake-
holders did not have any prior experience of working with
model driven engineering, their feedback was very positive
for this style of development.

Lesson 2: Agile methods for graphical domain specific

modeling languages is a success story.

Certain approaches for the development of graphical do-
main specific languages rely on requirement models [5, 17].
These requirement models are then used to verify the DSML
between domain experts and language development experts.
The development process followed by such approaches is
somewhat traditional, where the solution is built (normally
iteratively) and then it is verified against the requirements
once it is ready.

We followed an agile development process for the develop-
ment of graphical DSML, as explained in Section 2.2. During
the development process, we worked in joint sessions with
our client stakeholders in small iterations. Each iteration
was focused on both the interviews with client stakeholders
for requirement elicitations and the solution development.
At the end of each iteration, we were able to deliver a part
of working solution that kept evolving with each session.
Active development sessions alongside client stakeholders
helped us develop a solution such that their wishes were
taken care of instantly, both for the development of concep-
tual model and the aesthetic aspects of the graphical user
interface. The use of agile methods for the development
of graphical domain specific modeling language in this case
study proved to be a success story, according to the feedback
of our client institution.

Lesson 3: The tools for the development of graphical
DSMLs need to be flexible.

In the first two lessons, we learnt that graphical DSMLs of-
fer valid and instant solutions and that agile methods should
be employed for such practices. However, these arguments
stay valid only if the supporting tool is flexible enough to

• allow inconsistencies: The tools should allow different
levels of consistency support. Starting from the one,
where it can act as a simple drawing tool with no se-
mantics. The tool should gradually build or allow the
modeler to build consistent models.

• allow instances without associated concepts: Even though
it seems counter-intuitive to have instances without
the concepts, this provision is important if concepts
need to be developed from demonstrations.

• add constraints stepwise: As said earlier, the consis-
tency support should be offered in gradual steps. Sim-
ilarly, the tool should allow to add constraints for re-
fining the graphical DSML gradually. Starting with
a complete set of constraints at once, takes away the
flexibility from the designer to interact with the stake-
holders on partially developed concepts.

• allow instances from the same concept to have differ-
ent representations: It might seem that having mul-
tiple representations for a concept instance will intro-
duce inconsistency to the diagrams. Following a free
modeling methodology, we support flexibility for the
modeler, so that he can experiment with multiple rep-
resentations. This helps a developer for requirements
elicitation at runtime. An end user might not need
multiple representations for the final solution, but a
developer can for sure exploit this capability, as we
did in our example scenarios.

Lesson 4: A balance needs to be kept between consis-
tency and flexibility.



Practices
&

Data

Models
Application-

Solution
(new tools)

Analysis,
Capitalization

Execution/
Interpretation

Usage

Existing 
Tools

Integration

Figure 6: Graphical DSML development process

Excessively consistent approaches for graphical DSML de-
velopment do not allow the possibility to execute models
that have certain instances that do not conform to their
metamodels. It is true for both conceptual model instances
and their runtime representations. Similarly, they do not al-
low instantiating representations without associated concept
instances or at times concept instances that are not repre-
sented in the diagrams. A balance needs to be found between
consistency and flexibility. We have learnt through this ex-
perience that this balance evolves during the development
process. During the elaboration (specially in incremental
approaches), the meta-model cannot always serve as a se-
mantic reference. The semantics of a meta-model is under
development at this phase. For interactive development of
DSMLs, we need to have the possibility to execute/interpret
partial and inconsistent meta-models. As the development
process advances, consistency is added to the meta-model
and between other associated models e.g. representation
models. We can inspire ourselves from textual model edi-
tors to find a good balance. We find textual editors that
do not impose any consistency check, ones that offer error
annotations for guiding the modeler and others that do not
allow any code that is not consistent with the well-defined
grammar. We can develop graphical editors that offer the
same functionality according to the development phase.

Lesson 5: Development processes need to consider the
existing tools, practices, information and models.

During the implementation of this project, we came to
realize that our client institution wants us to reuse the dia-
grams used in their official routine. They also wanted to keep
using their existing tools and resisted any considerable mod-
ification to their existing work-flow. Thanks to the model
federation capability of Openflexo, we were able to integrate
their existing models1 to our solution. Model federation also
allowed us to integrate other models (data models, applica-
tion models, rule models and the models of DSML) for the
development of a complete software solution.

In these circumstances, we followed a development process
that could take into account existing tools both for integra-
tion into the final solution and to understand the practices

1We consider all the artifacts involved in a process to be
models. In this specific case, we considered Word docu-
ments, PowerPoint slides and Excel sheets to be models.

being followed at our client institution. This process, as
illustrated in Figure 6, took existing tools to be the start-
ing point for requirements elicitation. Once the practices
of the client institution were identified and the data was
acquired, we could analyze it to develop different models.
These models were then used to develop software solutions
for the clients. As explained earlier, we used an agile ap-
proach where a deliverable software solution was developed
at each iteration. This software solution was evolved over
multiple iterations through the cycle presented in this pro-
cess. The software solution integrated the existing tools used
at the client institution.

Lesson 6: Interactive methods can exploit both the
top-down and the bottom-up approaches.

We followed an interactive approach for the development
of graphical domain specific modeling languages. Integra-
tion of existing tools with the free modeling editor, allowed
us to import diagrams from the existing documents used by
our client institution. For example, we imported a diagram
from a PowerPoint presentation used by the strategic level
personnel of the institution. This diagram described actions
like “Sustainable use of resources” which were refined into
other actions like“Implement a waste reduction policy”. The
shapes of the top level actions were represented by a differ-
ent color scheme than the lower level ones. In discussions
with the client stakeholders, we identified that the top level
actions were strategic objectives and the low level actions
were strategic goals. Once the diagram was in the drawing
zone of free modeling editor, we could use the contextual
menu to define the associated concepts with these shapes.
This way we were interacting with the example models and
the conceptual models (language metamodel) at the same
time. Usual approaches for domain specific modeling follow
a top-down approach [6,15]. We, on the other hand, focused
on the bottom-up approach and found it to be useful in cer-
tain situations. However we believe that a mix of both these
approaches should be used for a graphical DSML develop-
ment project, as we did for this case study (demonstrated
through the example scenarios).

Lesson 7: Development of DSML language concepts
from domain examples is effective.

Aligned to our methodology, B ↪ak et al. suggest the use
of examples for eliciting, modeling, verifying and validating
complex business knowledge for software development [2].
Domain examples are also used by some other approaches
to develop the conceptual elements of the graphical DSML.
A. Zolotas et al. use a type inference approach for calcu-
lating the types from example models [18, 19]. They use
algorithms based on classification and regression trees for
this inference using shapes of the nodes and their context.
Another approach uses grammar inference algorithms to re-
cover metamodels for textual DSMLs [9]. H. Cho et al. use a
metamodel inference engine to infer the metamodel based on
their graph representations [4]. These approaches focus on
automatic inference of concepts from the example models.
Our focus, on the other hand, is not to infer metamodel using
some algorithm, but to develop the conceptual metamodel
alongside the client stakeholder using the example models.
We focus on a flexible style of modeling, where models are
not bound with the conformity to their metamodels, they are
rather loosely coupled. Conformity of conceptual models to



their metamodels is a target to be achieved in the process of
modeling, which marks the validation of developed models.
We also focused on interactive development of a graphical
DSML that could take diagrams from different sources al-
ready used in the work-flows of different enterprises. An-
other approach allows informal tools for the development of
examples like Dia or yED, but does not offer the possibility
of importing diagrams for office suites [12]. This approach
also uses metamodel inference capabilities, but does not al-
low the manipulation of individual models without affecting
others, as illustrated in Figure 1.

During the course of this case study, we experienced that
the development of a graphical DSML through the use of do-
main examples improves model comprehension both for de-
velopment teams and the client stakeholders. Construction
of new examples from the developed concepts allow further
discussions and eases requirements elicitation. These exam-
ples can be used to refine the DSML, hence improving the
quality of the models.

Lesson 8: It is better if the tool used for development
is based on the same principles as the solution.

Our tool is itself developed on the same principles that we
used to develop graphical DSMLs. This allowed a consistent
approach for the development of solutions in the same fash-
ion as the tool. It gave us the flexibility to modify our own
tool whenever needed during the course of this case study.
As our tool itself is not a fully functional commercial solu-
tion and is still undergoing evolution, this case study helped
us test our tool in a real-life situation. Certain functional-
ities demanded by the project and identified by the client
stakeholders guided us to evolve it. This tool is developed
using model federation and its graphical user interface uses
the same approach used for the development of graphical
DSMLs, as shown in Figure 1. This gave us the flexibility
to evolve our tool according to the situation. The language
experts, modeling the graphical DSML, were also the ex-
perts of the tool, hence this evolution was at times instantly
carried out during the joint sessions. We learnt that this
approach is highly recommendable, especially for the tools
that are still undergoing development.

Lesson 9: Further conceptual studies are needed for
graphical domain specific modeling languages.

This case study allowed us to put our methodology into
practice in a real life situation. On the one hand, we learnt
some lessons about the development methodologies for graph-
ical DSMLs. On the other hand, we also came across the lim-
itations of the common understanding of graphical DSML
development. Thus our last lesson learnt was that further
studies are needed to concretize the conceptual basis of this
domain. Some of the questions raised in this context were:

• What includes the definition of a graphical DSML; a
metamodel, a representation metamodel, both or even
more than that?

• What defines the syntax of a graphical DSML; concep-
tual metamodel or representation metamodel? If both
of them are taken as syntax (high level and low level)
then, should the end users be allowed to modify both
of them?

• To what extent, do we need a graphical representa-
tion to conform to its metamodel? Example-based ap-

proaches cannot work if a strict modeling approach is
followed. And on the other hand, excessive flexibility
requires the end user to define details that could be
included in the design as a feature of the approach.

• How can we allow the end user to define semantics for
their languages? What should be the level of abstrac-
tion that an end user can interact with?

7. CONCLUSION
Many techniques used for the development of graphical

domain specific modeling languages follow traditional soft-
ware development life cycles. They perform the require-
ments engineering activities, where requirement specifica-
tions are prepared by domain experts. Language experts
satisfy those requirements by the development of graphical
domain specific language. We used an agile process for the
development of graphical domain specific language in a case
study involving a local government institution. In this case
study, we merged the roles of domain expert and language
expert in a single role, developer. Our developers worked
alongside the client stakeholders for the development of this
graphical DSML, using an interactive modeling approach.
This approach was based on a methodology, free modeling
methodology, that focuses on two things; first, simultane-
ous development of models and metamodels for graphical
DSMLs and second, the development of conceptual models
alongside their graphical representations. This methodology
was supported by our tool, free modeling editor, for the im-
plementation of this project. In this article, we presented
our experience report and shared the lessons learnt during
the course of this case study. The modeling approach pre-
sented in this article is flexible enough to deal with differ-
ent situations, which are not common in traditional model
driven engineering. Thus this article should be considered
as a communication that opens multiple questions through
our experience rather than answering them.

8. ACKNOWLEDGMENTS
We are thankful to French national agency, Agence Na-

tionale de la Recherche (ANR), for funding this research
under FORMOSE project ANR-14-CE28-0009.

9. REFERENCES
[1] S. W. Ambler. Agile model driven development is

good enough. Software, IEEE, 20(5):71–73, 2003.

[2] K. B ↪ak, D. Zayan, K. Czarnecki, M. Antkiewicz,
Z. Diskin, A. W ↪asowski, and D. Rayside.
Example-driven modeling: model= abstractions+
examples. In Proceedings of the 2013 International
Conference on Software Engineering, pages 1273–1276.
IEEE Press, 2013.

[3] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn,
W. Cunningham, M. Fowler, J. Grenning,
J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick,
R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland,
and D. Thomas. Manifesto for agile software
development. http://agilemanifesto.org/, 2016. Online;
accessed: 2016-07-30.

[4] H. Cho, J. Gray, and E. Syriani. Creating visual
domain-specific modeling languages from end-user
demonstration. In Proceedings of the 4th International

http://agilemanifesto.org/


Workshop on Modeling in Software Engineering, pages
22–28. IEEE Press, 2012.

[5] H. Cho, J. Gray, and E. Syriani. Syntax Map: A
Modeling Language for Capturing Requirements of
Graphical DSML. In 19th Asia-Pacific Software
Engineering Conference (APSEC), 2012, volume 1,
pages 705–708. IEEE, 2012.

[6] A. Fouché, F. Noyrit, S. Gérard, and M. Elaasar.
Systematic generation of standard compliant tool
support of diagrammatic modeling languages. In
ACM/IEEE 18th International Conference on Model
Driven Engineering Languages and Systems
(MODELS), 2015, pages 348–357. IEEE, 2015.

[7] F. R. Golra, A. Beugnard, F. Dagnat, S. Guerin, and
C. Guychard. Addressing Modularity for
Heterogeneous Multi-model Systems Using Model
Federation. In Companion Proceedings of the 15th
International Conference on Modularity,
MODULARITY Companion 2016, pages 206–211,
New York, NY, USA, 2016. ACM.

[8] C. Gonzalez-Perez and B. Henderson-Sellers. A
powertype-based metamodelling framework. Software
& Systems Modeling, 5(1):72–90, 2006.

[9] F. Javed, M. Mernik, J. Gray, and B. R. Bryant.
MARS: A metamodel recovery system using grammar
inference. Information and Software Technology,
50(9):948–968, 2008.

[10] S. Kelly and R. Pohjonen. Worst practices for
domain-specific modeling. IEEE Software,
26(4):22–29, 2009.

[11] S. Kelly and J.-P. Tolvanen. Domain-specific modeling:
enabling full code generation. John Wiley & Sons,
2008.

[12] J. J. López-Fernández, J. S. Cuadrado, E. Guerra, and
J. de Lara. Example-driven meta-model development.
Software & Systems Modeling, 14(4):1323–1347, 2015.

[13] Object Management Group. MDA Guide revision 2.0.
www.omg.org/cgi-bin/doc?ormsc/14-06-01.pdf, OMG
Document ormsc/2014-06-01, june 2014. Online;
accessed: 2016-07-30.

[14] Openflexo. Openflexo project. http://openflexo.org/,
2016. Online; accessed: 2016-04-08.

[15] A. Pescador, A. Garmendia, E. Guerra,
J. Sanchez Cuadrado, and J. de Lara. Pattern-based
development of domain-specific modelling languages.
In ACM/IEEE 18th International Conference on
Model Driven Engineering Languages and Systems
(MODELS), 2015, pages 166–175. IEEE, 2015.

[16] J. Rumbaugh, I. Jacobson, and G. Booch. Unified
Modeling Language Reference Manual, The (2nd
Edition). Pearson Higher Education, 2004.

[17] F. Zalila, X. Crégut, and M. Pantel. Leveraging formal
verification tools for DSML users: a process modeling
case study. In Leveraging Applications of Formal
Methods, Verification and Validation. Applications
and Case Studies, pages 329–343. Springer, 2012.

[18] A. Zolotas, N. Matragkas, S. Devlin, D. S. Kolovos,
and R. F. Paige. Type Inference Using Concrete
Syntax Properties in Flexible Model-Driven
Engineering. In Flexible Model Driven Engineering
Proceedings (FlexMDE 2015), page 22.

[19] A. Zolotas, N. Matragkas, S. Devlin, D. S. Kolovos,

and R. F. Paige. Type inference in flexible
model-driven engineering. In Modelling Foundations
and Applications, pages 75–91. Springer, 2015.

www.omg.org/cgi-bin/doc?ormsc/14-06-01.pdf
http://openflexo.org/

	Introduction
	Project Context
	Field of Application
	Agile vs. / and Model Driven Approach

	Interactive Modeling Approach
	Free Modeling
	Free Modeling Environment

	Experience report
	Project Outcomes
	Lessons learnt
	Conclusion
	Acknowledgments
	References

