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A note about the jump set of a solution of a second order PDE in BV

This paper deals with the localization of the jump set of a function with bounded variation which is also in the kernel of a second order partial differential operator. For the case where the operator is hyperbolic, this result may be interpreted as a generalization of the notion of wavefront to the space of functions with bounded variation where the classical notion of wavefront is replaced in the spatial domain by the jump set of the function and in the frequency domain by the direction of its measure theoretic normal vector.

Introduction

In this paper, we are interested in the localization of the jump set for solutions of a second order PDE which also belongs to the space of functions with bounded variation (BV). More precisely, if Ω ⊂ R d is open, A = (a i,j ) i,j is a d × d symmetric matrix and u ∈ BV(Ω) is a weak solution of the following equation where H d-1 is the d -1 dimensional Hausdorff measure, J u is the jump set of u and ν(x) is an orthonormal vector to J u at x. For the case where the matrix A is with signature (1, d -1), or equivalently if the equation (0.1) is hyperbolic, this result can be interpreted as a generalization of the notion of wavefront to the space BV. Indeed, for any x ∈ J u , it forces the surface J u to be tangent to the singular cone {x

+ v : v ∈ R d , (Av) • v = 0}.
The authors do not know if such a result is original (probably it is not). However, in the context of Inverse Problem and Image Processing such a result is needed and its proof is not so long.

Section 1 is devoted to introduce the BV framework and some useful properties of geometric measure theory. Section 2 is devoted to the statement and the proof of our result.

Notations

In all this paper, we assume that Ω ⊂ R d is an open, connected and bounded domain with Lipschitz boundaries. Moreover, we denote • the ball with center x and radius ρ by B ρ (x),

• the Lebesgue measure with dimension k by L k ,

• the Hausdorff measure with dimension k by H k ,

• the trace of a measure µ onto a set A by µ A.

Measure theory framework and fine properties on space BV

We need the following consequence of Besicovitch Covering Theorem (Theorem 2.22 in [START_REF] Fusco | Functions of Bounded Variation and Free Discontinuity Problems[END_REF]). Then, for µ-a.e. x in the support of µ the limit

f (x) = lim ρ→0 + ν(B ρ (x)) µ(B ρ (x))
exists in R d and moreover, the Radon-Nikodym decomposition of ν is given by ν = f µ + ν s , where ν s ⊥ µ.

A set E ⊂ R d is countably H d-1 rectifiable if there exists a countable family of Lipschitzian functions Ψ i : A i → R d such that, for any i, A i ⊂ R d-1 is bounded and

H d-1 E \ i Ψ i (A i ) = 0.
We need a locally univalent description of rectifiable sets. For that, we introduce the following result which may be found in [START_REF] Federer | Geometric Measure Theory[END_REF] (Lemma 3.2.18).

Lemma 1.1. If W is a countably H d-1 rectifiable and H d-1 measurable subset of R d , and if 1 < λ < ∞, then there exists compact subsets (K i ) i ⊂ R d-1 and Lipschitzian maps (Ψ i ) i of R d-1 onto R d such that (Ψ i (K i )) i are disjoints subsets of W with H d-1 W \ i Ψ i (K i ) = 0
and, for each positive integer i,

Lip(Ψ i ) ≤ λ, Ψ i |K i is univalent , Lip[(Ψ i |K i ) -1 ] ≤ λ.
Let Ψ : R d-1 → R d a Lipschtzian function. According to Rademacher Theorem, Ψ is almost everywhere differentiable. Thus, for almost every x ∈ R d-1 , one may define

J d-1 Ψ(x) = det(DΨ(x) * • DΨ(x)),
where DΨ(x) * : R d → R d-1 is the transpose of DΨ(x). So, we may introduce the Area Formula for Lipschitz functions (Theorem 3.2.3 in [START_REF] Federer | Geometric Measure Theory[END_REF]). Theorem 1.2. Let Ψ : R d-1 → R d be a Lipschtzian function. Then, if u is an integrable function with respect to the Lebesgue measure, then

R d-1 u(x)J d-1 Ψ(x)dx = R d x∈Ψ -1 {y} u(x)dH d-1 (y). A function u ∈ L 1 (Ω) is with bounded variation, u ∈ BV(Ω), if its derivative Du is a vectorial Radon measure, Du ∈ M(Ω; R d ).
The total variation of u is defined by the total mass of Du and is denoted by TV(u) = Du M . Definition 1.1. For u ∈ BV (Ω) and x ∈ Ω, we set i)

u + (x) = inf t : lim ε→0 + L d (B ε (x) ∩ {u > t}) ε d = 0 , ii) u -(x) = sup t : lim ε→0 + L d (B ε (x) ∩ {u < t}) ε d = 0 , iii) J u = {x ∈ Ω : u -(x) < u + (x)}.
For H d-1 almost every x ∈ J u , u has a measure theoretic jump across a hyperplane whose normal direction is yield by an unit normal vector ν u (x). Thus, the structure of the trace of the gradient of u in J u is the following (3.78 in [START_REF] Fusco | Functions of Bounded Variation and Free Discontinuity Problems[END_REF]) Theorem 1.3. For any u ∈ BV(Ω), we have

Du J u = (u + -u -)ν u H d-1 J u .
The jump set J u is rectifiable. More precisely, we have the following Theorem 1.4. There exists countably many compacts

(K k ) k , such that K k is included in a C 1 - hypersurface S k for any k and such that H d-1 J u \ k K k = 0. In particular, the set J u is countably H d-1 -rectifiable.
The previous result is a consequence of "Structure Theorem for sets with finite perimeter" and "Pointwise properties of BV functions" that may be found in [START_REF] Evans | Measure Theory and Fine Properties of Functions[END_REF], Sections 5.7 and 5.9. Moreover, the proof of this result, which uses "Whitney extension Theorem" gives us in addition that

ν u (x) = ν k (x), for H d-1 -a.e. x ∈ K k , (1.1)
where ν k is an unit normal vector to S k and ν u is the measure theoretic outer normal of J u .

Theorem 1.5. For H d-1 almost every x ∈ Ω, we have

-∞ < u -(x) ≤ u + (x) < +∞.
Definition 1.2. For ν ∈ S d-1 and x ∈ Ω, we define the hyperplane

H x,ν = {y ∈ Ω : ν • (y -x) = 0}
and the half-spaces

H + x,ν = {y ∈ Ω : ν • (y -x) ≥ 0}, H - x,ν = {y ∈ Ω : ν • (y -x) ≤ 0}.
Theorem 1.6. For H d-1 almost every x ∈ J u , there exists ν = ν u (x) such that

lim ε→0 + 1 L d (B ε (x) ∩ H + x,ν ) Bε(x)∩H + x,ν |u -u + (x)| d/(d-1) dy = 0 and lim ε→0 + 1 L d (B ε (x) ∩ H - x,ν ) Bε(x)∩H - x,ν |u -u -(x)| d/(d-1) dy = 0.

Jump set of a weak solution of second order PDE in BV

We introduce a weak definition of solution for a linear second order PDE which is adapted to functions with bounded variation and we establish our main result.

Definition 2.1. Let A = (a i,j ) i,j be a d × d symmetric matrix. We say that u ∈ BV(Ω) is a weak solution of i,j a i,j

∂ 2 u ∂x i ∂x j = 0 in Ω, if Ω (A∇ϕ) • dDu = 0, for any ϕ ∈ C ∞ c (Ω). (2.1)
As u ∈ BV(Ω), the derivative of u is a Radon measure and the integration in (2.1) is well defined.

Theorem 2.1. Let A = (a i,j ) i,j be a d × d symmetric matrix and u ∈ BV(Ω) be a weak solution of i,j a i,j ∂ 2 u ∂x i ∂x j = 0. Then, we have

(Aν u (x)) • ν u (x) = 0, for H d-1 -a.e. x ∈ J u .
Proof. We divide the proof in three steps. First, we compare the speed of decrease of |Du|(B ε (x)) with ε d-1 . Then, we introduce a blow-up process and compute its limit. Finally, we use the definition of weak solution in BV with an adapted choice of test functions.

Step 1: For H d-1 -almost every x ∈ J u , we have

0 < lim inf ε→0 + |Du|(B ε (x)) ε d-1 ≤ lim sup ε→0 + |Du|(B ε (x)) ε d-1 < +∞.
According to Theorem 1.4 and Lemma 1.1, for any u ∈ BV(Ω) we get

H d-1 J u \ i Ψ i (K i ) = 0,
where (Ψ i ) i , (K i ) i satisfy the conditions of Lemma 1.1. Let i be fixed and x ∈ Ψ i (K i ). As Ψ i is Lipschitzian, we may apply to the Area Formula, it gives

H d-1 (Ψ i (K i ) ∩ B ε (x)) = R d-1 1 K i ∩Ψ -1 i (Bε(x)) J d-1 Ψ i dx. Since Ψ i |K i and (Ψ i |K i ) -1 are Lipschitz with coefficient λ we get B λ -1 ε (Ψ -1 i (x)) ⊂ Ψ -1 i (B ε (x)) ⊂ B λε (Ψ -1 i (x)).
Since J d-1 Ψ i corresponds to the area element of the surface parametrized by Ψ i :

K i → R d , we have λ -(d-1) ≤ J d-1 Ψ i (x) ≤ λ d-1 , for L d-1 almost every x ∈ K i .
Thus, it yields

λ -(d-1) B λ -1 ε (Ψ -1 i (x)) 1 K i dx ≤ R d-1 1 K i ∩Ψ -1 i (Bε(x)) J d-1 Ψ i dx ≤ λ d-1 B λε (Ψ -1 i (x)) 1 K i dx.
According to Area Formula (Theorem 1.2), we get

λ -(d-1) B λ -1 ε (Ψ -1 i (x)) 1 K i dx ≤ H d-1 (Ψ i (K i ) ∩ B ε (x)) ≤ λ d-1 B λε (Ψ -1 i (x)) 1 K i dx. F = y ∈ K i : lim ε→0 + 1 πε d-1 Bε(y) 1 K i dx = 1 .
According to Theorem 1.1, K i \ F is negligible. Then, Area Formula yields 0 = R d-1

1 K i \F dx, = R d-1 1 K i \F J d-1 Ψ i dx, = H d-1 (Ψ i (K i ) \ Ψ i (F)).
So, we deduce that, for

H d-1 almost every x ∈ Ψ i (K i ), we have 0 < lim inf ε→0 + H d-1 (Ψ i (K i ) ∩ B ε (x)) ε d-1 ≤ lim sup ε→0 + H d-1 (Ψ i (K i ) ∩ B ε (x)) ε d-1 < +∞. (2.2)
In order to conclude the proof of Step 1, we split the following ratio

|Du|(B ε (x)) ε d-1 = |Du|(B ε (x)) H d-1 (Ψ i (K i ) ∩ B ε (x)) H d-1 (Ψ i (K i ) ∩ B ε (x)) ε d-1 .
For the first factor, we recognize the density ratio of the measure |Du| with respect to the measure

H d-1 Ψ i (K i ) at x. The left-hand side of Inequalities (2.2) implies that x is a density point for H d-1 Ψ i (K i )
and then, according to Theorem 1.1 and Theorem 1.3, this ratio admits as limit

u + (x)- u -(x) > 0 for H d-1 almost every x ∈ Ψ i (K i ).
According to the right-hand side of inequalities (2.2), we deduce the result of Step 1.

Step 2: We set u ε (y) = u(x + εy). For H d-1 almost every x ∈ J u , there exists

(ε k ) k converging to 0 + such that (u ε k ) k is weak-convergent to v in BV loc (R d ). Moreover, with ν = ν u (x), we have v = u -(x)1 H - 0,ν + u + (x)1 H + 0,ν .
We fix R > 0 and x ∈ J u . For ε > 0 sufficiently small, the function

u ε is defined in B R (0 R d ). First, we verify that (u ε ) ε is bounded in BV(B R (0 R d )). For ν = ν u (x), we have B R (0 R d ) |u ε |dy ≤ B R (0 R d ) |u ε | d/(d-1) dy (d-1)/d (L d (B R (0 R d )) 1/d , ≤ 1 ε d B Rε (x) |u| d/(d-1) dx (d-1)/d (L d (B R (0 R d )) 1/d . As (a + b) d/(d-1) ≤ 2 1/(d-1) (a d/(d-1) + b d/(d-1
) ), we get

B Rε (x) |u| d/(d-1) dx ≤ 2 1/(d-1) B Rε (x)∩H + x,ν |u -u + (x)| d/(d-1) dx +2 1/(d-1) B Rε (x)∩H - x,ν |u -u -(x)| d/(d-1) dx +2 1/(d-1)-1 (u + (x)) d/(d-1) + (u -(x)) d/(d-1) L d (B Rε (x)).
According to Theorem 1.6, we deduce that (u

ε ) ε is bounded in L 1 (B R (0 R d ))
. Moreover, we have

|Du ε |(B R (0 R d )) = sup B R (0 R d ) u ε (y)div(ϕ)(y)dy : ϕ L ∞ ≤ 1, supp(ϕ) ⊂ B R (0 R d ) , = sup 1 ε d B Rε (x) u(x)div(ϕ) x - x ε dx : ϕ L ∞ ≤ 1, supp(ϕ) ⊂ B R (0 R d ) , = sup 1 ε d-1 B Rε (x) u(x)div(ϕ) (x) dx : ϕ L ∞ ≤ 1, supp(ϕ) ⊂ B Rε (x) , = |Du|(B Rε (x)) ε d-1 .

According to

Step 1, we deduce that, for

H d-1 almost every x ∈ J u , (Du ε ) ε is bounded in M(B R (0 R d ); R d ). So, for any R > 0, (u ε ) ε is bounded in BV(B R (0 R d )) and then (u ε ) ε is bounded in BV loc (R d ). Ac- cording to compactness property in BV loc (R d ), there exists (ε k ) k converging to 0 + such that (u ε k ) k is weak-convergent in BV loc (R d ). With ν = ν u (x), set v = u -(x)1 H - 0,ν + u + (x)1 H + 0,ν . 
Then, with R > 0 and ν = ν u (x) we have 1) dx.

B R (0 R d ) |u ε -v| d/(d-1) dy = 1 ε d B Rε (x) u(x) -v x - x ε d/(d-1) dx, ≤ 1 ε d B Rε (x)∩H + x,ν |u -u + (x)| d/(d-1) dx + 1 ε d B Rε (x)∩H - x,ν |u -u -(x)| d/(d-
According to Theorem 1.6, we deduce that, for

H d-1 almost every x ∈ J u , (u ε k ) k converges to v in L d/(d-1) loc (R d
) and then, necessary, v is the weak-limit of (u ε k ) k .

Step 3: We choose an adapted test function ϕ and we plug it in (2.1).

Let θ be a given function in

C ∞ 0 (R d ) such that θ(0 R d ) = 1, θ ≥ 0 and supp(θ) ⊂ B 1 (0 R d ). For x ∈ J u and ν = ν u (x), we set ϕ ε (x) = ν • (x -x) ε d-1 θ x - x ε .
For ε > 0 sufficiently small, we have ϕ ε ∈ C ∞ 0 (Ω) and then

Ω (A∇ϕ ε ) • dDu = 0. (2.3)
We compute

Ω (A∇ϕ ε ) • dDu = R d 1 ε d-1 θ x - x ε (Aν) • dDu + R d ν • (x -x) ε d A∇θ x - x ε • dDu
Moreover, for any Φ ∈ C ∞ 0 (B ε (x); R d ), we have As ν • y = 0 for any y ∈ H 0,ν , H 0,ν θdH d-1 > 0 and (u + -u -)(x) > 0, we may conclude that (Aν) • ν = 0, and this is true for almost every x ∈ J u .

R d Φ(y) • dDu ε (y) = - R d u ε (y)div(Φ)(y)dy, = - 1 ε d R d u(x)div(Φ) x - x ε dx, = - 1 ε d-1 R d u(x)div x → Φ x - x ε dx, = 1 ε d-1 R d Φ x - x ε • dDu.

  x)) • ν(x) = 0, for H d-1 -a.e. x ∈ J u , (0.2)

Theorem 1 . 1 .

 11 Let µ be a positive Radon measure in an open set Ω ⊂ R d and ν an R d -valued measure.

(

  A∇ϕ ε ) • dDu = R d θ(y)(Aν) • dDu ε (y) + R d ν • y(A∇θ(y)) • dDu ε (y).(2.4)According to Step 2, (Du ε k ) k is weak-convergent in M(R d ) to Dv = (u + (x) -u -(x))νH d-1 H 0,ν .According to (2.3) and passing through the limit in (2.4), we get0 = (u + -u -)(x)(Aν) • ν H 0,ν θ(y)dH d-1 (y) + (u + (x) -u -(x))H 0,ν ν • y(A∇θ(y) • ν)dH d-1 (y).
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