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David Vicente
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Abstract

A variational model is introduced for the segmentation problem of thin structures, like tubes
or thin plates, in an image. The energy is based on the Mumford-Shah model with a surfacic term
perturbed by a Finsler metric. The formulation in the special space of functions with bounded
variations is given and, in order to get an energy more adapted for numerics, a result of Γ-
convergence is proved.

1 Introduction
This work is motivated by the segmentation problem of sets strongly elongated in some directions
as, for instance, tubes or thin plates in an image of dimension n ∈ {2; 3}. In Computer Vision, the
Mumford-Shah model is one of the most studied [1]. It consists, for a given image g ∈ L∞(Ω), in
finding a couple (u,K) which minimizes the following energy

EMS(u,K) =
∫

Ω\K
(u− g)2dx+

∫
Ω\K
|∇u|2dx+Hn−1(K), (1.1)

where u ∈ W 1,2(Ω \K), K is compact and Hn−1 is the (n − 1)-dimensional Hausdorff measure. To
minimize this energy, K must fit the set of discontinuity of the image and u must represent the regular
part of the intensity. In order to adapt this model for the particular case of thin and elongated sets,
we have introduced in [2] a Finsler metric ϕ which must fit the anisotropy of the image. At any point
x ∈ Ω, ϕ(x, ·) is a norm whose unit ball coincides with the elongation of the sets we want to detect.
So, we set

E(u,K) =
∫

Ω\K
(u− g)2dx+

∫
Ω\K
|∇u|2dx+

∫
K
ϕ(x, ν)dHn−1, (1.2)

where u ∈ W 1,2(Ω \ K), K is a compact (n − 1)-dimensional submanifold and ν is an unit vector
orthogonal to K. This kind of model which consists in an energy with a volumic and a surfacic parts
also arises in Fracture Mechanics Theory ([3, 4, 5] for example). In this setting, the analysis for the
case where ϕ is a constant norm has been treated in [6]. To our knowledge, the inhomogeneous case,
where ϕ also depends on x, has not been done yet.

Since the compact submanifolds of Ω cannot be endowed with a topology which ensures that
the direct methods apply, a weak formulation of the problem is needed. To do this, De Giorgi and
Ambrosio [7] proposed to set this kind of problem in the space SBV of special functions with bounded
variation. Thus, setting K = Ju in (1.2) and defining E(u) = E(u, Ju), it gives

E(u) =
∫

Ω
(u− g)2dx+

∫
Ω
|∇u|2dx+

∫
Ju
ϕ(x, νu)dHn−1, (1.3)

where u ∈ SBV(Ω), ∇u is the derivative of u with respect to the Lebesgue measure, Ju is its jump set
and νu is an unit vector orthogonal to Ju. The abstract theory in SBV has been developed: Ambrosio
established the existence result [8, 9], and regularity for minimizers of this kind of energy has been
proved [10, 11, 12, 13]. Those results ensure that any minimizer u of the relaxed problem in SBV
provides a couple (u, Ju) which also minimizes the initial model E .
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The numerical approximation for solutions is hard because of the treatment of the jump set Ju.
To overcome this difficulty, the idea is to perform a variational approximation of the functional E in
the sense of De Giorgi Γ-convergence [14, 15] with Ambrosio-Tortorelli’s approximation.

In order to approximate (1.3), we propose two slightly different families of functionals (Eε)ε and
(Ẽε)ε defined by

Eε(u, z) =
∫

Ω
(u− g)2dx+

∫
Ω
|∇u|2(1− z2)2dx+

∫
Ω

(
εϕ(x,∇z)2 + z2

4ε

)
dx, (1.4)

Ẽε(u, z) =
∫

Ω
(u− g)2dx+

∫
Ω
|∇u|2[ηε + (1− z2)2]dx+

∫
Ω

(
εϕ(x,∇z)2 + z2

4ε

)
dx. (1.5)

For both versions, the function z takes its values in [0; 1] and plays the role of a control on the gradient
of u. In the second one, the parameter ηε is infinitesimal with respect to ε. The first functional is
directly inspired by the initial Ambrosio-Tortorelli’s approximation [16], while the second one was
introduced later in [17] and it was used in various papers, for example [6, 18, 19]. Those functionals
are more adapted for numerics since usual finite element methods can be directly applied. They
formally differ by the introduction of the term

ηε

∫
Ω
|∇u|2dx. (1.6)

By this way, Ẽε admits as natural domain of definition the classical Sobolev space (W 1,2(Ω))2. How-
ever, this term is not strictly necessary in our study because all the results which are proven for Ẽε
are also true for Eε. For this simplification, the cost to pay is a slightly longer analysis in order to
introduce an adapted domain for Eε which ensures that its minimization is still a well-posed problem.

The Γ-convergence result when ε→ 0+ will be proven for both Eε and Ẽε. However, in the Image
Processing context, the parameter ε is devoted to be small but fixed. Indeed, for stability of the
algorithms, ε has to be bounded by below by a positive constant which depends on the size of the
grid (see [20]). As in practice we can not take the limit ε → 0, we may choose the first version in
order to avoid the additional diffusion in the numerics due to the term (1.6).

One may think that such Γ-convergence result is useless for applications because of the lower
bound for ε. Nevertheless, this result provides a continuous model (1.2) of the discrete energy which
may be used as a mirror to understand the proper geometry of the problem. Then, an automatic
determination of the (numerous) parameters of the algorithms is possible if we have an apriori on the
image we want to get (see [21, 2]).

In section 2, we introduce the geometric framework and we recall some results on spaces of
functions with bounded variation. In section 3, we introduce the family of functionals (Eε)ε with
their domains, we give our main result and its complete proof.

2 Functional framework
In all the paper, Ω is an open and bounded domain with Lipschitz boundaries. We adopt the notations:

• 〈·, ·〉 for the canonical scalar product, | · | for the euclidean norm in Rn, dist for the associated
distance and ‖ · ‖ for the associated matricial norm,

• B(Ω) for the Borelian functions and Ln for the Lebesgue measure on Ω,

• Hk for the k-dimensional Hausdorff measure,

• ūN for the truncation min(N,max(u,−N)),

• f is superadditive if f(A ∪B) ≥ f(A) + f(B) for any disjoints sets A,B,
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• f is non decreasing if f(A) ≤ f(B) for any sets A,B such that A ⊂ B.

In all the paper, in order to emphasize on the 1-D specific technic, we denote ∇v by v′ for any function
v which is defined on R.

2.1 Local metrics and Minkowski content

We introduce the geometric framework adapted to the anisotropic setting.

Definition 2.1. A function ϕ defined on Ω×Rn and taking its values in [0; +∞[ belongs to M(Ω) if
it is continuous and satisfies

i) for any x ∈ Ω, ϕ(x, ·) is a norm on Rn,

ii) there exists λ > 0, Λ > 0, such that, for any (x,v) ∈ Ω× Rn, we have

λ|v| ≤ ϕ(x,v) ≤ Λ|v|. (2.1)

To any metric we may associate its dual as follows.

Definition 2.2. For ϕ ∈M(Ω), its dual metric ϕo is defined by

ϕo(x,v) = sup{〈v,v′〉 : ϕ(x,v′) ≤ 1}.

A well known consequence of the definition is the following assertion: if ϕ ∈M(Ω) then ϕo ∈M(Ω)
and ϕoo = ϕ. For S ⊂ Ω, we may consider the associated geodesic distance:

dϕo(x, y) = inf
{∫ 1

0
ϕo
(
γ, γ′

)
dt : γ ∈W 1,1([0; 1]; Ω),

γ(0) = x, γ(1) = y

}
,

dSϕo(x) = inf {dϕo(x, y) : y ∈ S} .

According to (2.1), dSϕo is Lipschitz and then it is differentiable almost everywhere. Furthermore,
we have the following (see [22])

Proposition 2.1. Let S ⊂ Ω be a closed set and ϕ ∈M(Ω). Then, we have

ϕ(x,∇dSϕo(x)) = 1

at each point x ∈ Ω \ S where dSϕo is differentiable.

We recall that, for S ⊂ Rn, the (n− 1)-dimensional upper Minkowski content of S is defined by

M?(S) = lim sup
ρ→0+

Ln({x : dist(x, S) < ρ})
2ρ .

In our anisotropic setting, the associated anisotropic Minkowski (n− 1)-dimensional upper content is
defined by the limit

M?
ϕo(S) = lim sup

ρ→0+

Ln({x ∈ Ω: dSϕo(x) < ρ})
2ρ . (2.2)

In [23] (Theorem 3.2.39), under regularity assumptions on S, it is proved thatM?(S) ≤ Hn−1(S).
We need the following generalization of this result.

Proposition 2.2. Let K ⊂ Ω be a finite union of (n − 1)-dimensional simplexes and ϕ ∈ M(Ω).
Then, we have

M?
ϕo(K) ≤

∫
K
ϕ(x, ν)dHn−1.

The proof is given in Appendix A.
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2.2 BV spaces and slicing results

For the classical definitions and results on BV and SBV we refer to [24]. We recall that, if u ∈ BV(Ω),
then its derivative Du belongs to the space of vectorial Radon measures and, if u ∈ SBV(Ω), then
the Cantor part of Du is null and we obtain

Du = ∇u · Ln + (u+ − u−)νu · Hn−1xJu,

where ∇u is the density of Du with respect to the Lebesgue measure Ln, u+ (resp. u−) is the
approximate upper (resp. lower) limit and Hn−1xJu is the restriction of Hn−1 to its jump set Ju.
The slicing results are crucial in our study.

Definition 2.3. Let ν ∈ Sn−1 be fixed. We denote by Πν the hyperplane

{x ∈ Rn : 〈x, ν〉 = 0} .

If x ∈ Πν , we set
Ωx = {t ∈ R : x+ tν ∈ Ω} ,
Ων = {x ∈ Πν : Ωx 6= ∅} .

For any function u defined on Ω and any x ∈ Ων , we set

(u)x : Ωx → R
t 7→ u(x+ tν).

The following Theorem is proved in [8].

Theorem 2.1. Let u ∈ L∞(Ω) be a function such that, for all ν ∈ Sn−1,

i) (u)x ∈ SBV(Ωx) for Hn−1 a.e. x ∈ Ων ,

ii)
∫

Ων

[∫
Ωx
|(u)′x|dt+H0(J(u)x)

]
dHn−1(x) < +∞;

then, u ∈ SBV(Ω) and Hn−1(Ju) < +∞. Conversely, let u ∈ SBV(Ω) ∩ L∞(Ω) be such that
Hn−1(Ju) < +∞. Then i) and ii) are satisfied. Moreover, we have

iii) 〈∇u(x+ tν), ν〉 = (u)′x(t), for a.e. t ∈ Ωx and Hn−1-a.e. x ∈ Ων ,

iv)
∫
Ju
|〈νu, ν〉|dHn−1(x) =

∫
Ων
H0(J(u)x)dHn−1(x).

We state a result (Proposition 1.16 in [25]) which will simplify the presentation of the slicing
technics.

Lemma 2.1. Let A(Ω) be the family of open sets of Ω, µ : A(Ω) → [0; +∞[ be a superadditive
function on disjoint open sets, λ be a positive measure on Ω and ψk : Ω → [0; +∞] be a countable
family of Borel functions such that µ(A) ≥

∫
A ψkdλ for every A ∈ A(Ω). Set ψ = supk ψk, then

µ(A) ≥
∫
A
ψdλ

for every A ∈ A(Ω).

Let us now introduce a sub-class of SBV functions.

Definition 2.4. Let W(Ω) be the space of all u ∈ SBV(Ω) such that

i) Hn−1(Ju \ Ju) = 0;

ii) Ju is the intersection of Ω with a finite number of (n− 1)-dimensional simplexes;
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iii) u ∈W k,∞(Ω \ Ju) for every k ∈ N.

The following Theorem (see [26]) provides a density result which will be useful for the approxi-
mation proof.

Theorem 2.2. Let u ∈ SBV(Ω) ∩ L∞(Ω) be such that

Hn−1(Ju) < +∞, ∇u ∈ L2(Ω),

then there exists a sequence (uk)k ⊂ W(Ω) such that

i) uk → u strongly in L1(Ω);

ii) ∇uk → ∇u strongly in L2(Ω);

iii) lim supk ‖uk‖∞ ≤ ‖u‖∞;

iv) for every A ⊂⊂ Ω and for every uppersemicontinuous function ϕ : Ω×R×R× Sn−1 → [0; +∞]
such that ϕ(x, a, b, ν) = ϕ(x, a, b,−ν) for every x ∈ Ω, a, b ∈ R and ν ∈ Sn−1 there holds

lim sup
k→∞

∫
A∩Juk

ϕ(x, u−k , u
+
k , νuk)dHn−1 ≤

∫
A∩Ju

ϕ(x, u−, u+, νu)dHn−1.

2.3 Approximate Differentiability and GSBV space

Due to the non coercivity of
∫

Ω |∇u|2(1− z2)2dx inW 1,2(Ω), we need to introduce a weaker definition
for ∇u and a larger domain for (1.3).

Definition 2.5. Let x ∈ Ω be a Lebesgue point of u ∈ L1(Ω); we say that u is approximately
differentiable at x if there exists L ∈ Rn such that

lim
r→0+

Ln(B(x, r))−1
∫
B(x,r)

|u(y)− u(x)− 〈L, y − x〉|
r

dy = 0.

If u is approximately differentiable at x then L, uniquely determined by this equality, is called the
approximate differential of u at x and denoted by ∇u(x).

Remark 2.1. The concept of approximate differentiability of u at x can be rephrased as the conver-
gence in L1

loc(Rn) of the functions vr(y) = [u(x + ry) − u(x)]/r to the linear function Ly. As (vr)r
converges to Du in the sense of distributions, if u ∈ L2(Ω) and its approximate differential exists and
belongs to L2(Ω;Rn), then u belongs to W 1,2(Ω) and its weak derivative coincides with its approximate
differential almost everywhere.

This definition of the differentiability satisfies the following result [24] (Theorem 3.83).

Theorem 2.3. If v ∈ BV(Ω), then v is approximately differentiable almost everywhere in Ω. More-
over, the approximate differential ∇v is the density of the absolutely continuous part of Dv with
respect to the Lebesgue measure.

We need the three following technical Lemmas.

Lemma 2.2. If u, v ∈ B(Ω), u is approximately differentiable at x and

lim
r→0+

Ln({y ∈ Br(x) : u(y) 6= v(y)})
rn

= 0,

then v is approximately differentiable at x and ∇u(x) = ∇v(x).
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Lemma 2.3. If u, v ∈ B(Ω) are approximately differentiable almost everywhere in Ω and u ∈ L∞(Ω),
then uv is approximately differentiable almost everywhere in Ω and we get the Leibniz rule ∇(uv) =
u∇v + v∇u almost everywhere in Ω.

Lemma 2.4. If v is approximately differentiable almost everywhere, then v−1 is also approximately
differentiable almost everywhere in {x : v(x) 6= 0}.

While the proof of Lemma 2.3 is given in Appendix B, the proofs of Lemmas 2.2 and 2.4 may be
found in [24] (Proposition 3.71 and 3.73). Eventually, as no L∞ bound is imposed by our functional
(1.3), then it is useful to consider the following wider class

GSBV(Ω) = {u ∈ B(Ω): ūN ∈ SBV(Ω) for any N ∈ N}.

The structure of the generalized derivative of a GSBV function is similar to that of a SBV function
[24] (Proposition 3.73 and Theorem 4.34). In this case, we have

Ju =
∞⋃

M=1
JūN (2.3)

and Ju is also countably Hn−1-rectifiable; for any N,M ≥ 1, it satisfies

νūN (x) = νūM (x), for Hn−1-a.e. x ∈ JūN ∩ JūM . (2.4)

Moreover, u is also approximately differentiable Ln-a.e. in Ω and

∇u(x) = ∇ūN (x), for Ln-a.e. x ∈ {|u| ≤ N}, (2.5)

∇ūN (x) = 0, for Ln-a.e. x ∈ {|u| > N}, (2.6)
Thus, relations (2.3), (2.4) and (2.5) provide a slightly more general meaning for ∇u, Ju and νu and
then it ensures that our functional (1.3) is well defined in GSBV(Ω).

3 Γ-convergence result
This section is entirely devoted to the approximation process. In subsection 3.1 we define the domains
for both Eε and Ẽε. Then, we give the main Theorem of this paper. In subsection 3.2 we prove, for
ε > 0 fixed, that the minimization problems admit a solution. Eventually, in subsection 3.3, we give
the complete proof of Γ-convergence for both Eε and Ẽε.

3.1 The functionals, their domains and the main Theorem

Formally, we define

Eε(u, z) =
∫

Ω
(u− g)2dx+

∫
Ω
|∇u|2(1− z2)2dx+

∫
Ω

(
εϕ(x,∇z)2 + z2

4ε

)
dx,

Ẽε(u, z) =
∫

Ω
(u− g)2dx+

∫
Ω
|∇u|2[ηε + (1− z2)2]dx+

∫
Ω

(
εϕ(x,∇z)2 + z2

4ε

)
dx.

Both functionals Eε and Ẽε are well defined in D̃n(Ω) = W1,2(Ω) ×W1,2(Ω; [0; 1]). Contrary to Ẽε,
the functional Eε is not coercice for the Sobolev norm because the coefficient (1 − z2)2 removes the
coercivity with respect to u. For that, we need to introduce a specific domain for Eε that ensures the
existence of a minimizer. If, in addition, u is bounded, we have

|∇(u(1− z2))|2 = |∇u(1− z2)− 2uz∇z|2,
≤ 2|∇u|2(1− z2)2 + 4‖u‖∞|∇z|2.
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It gives ∫
Ω
|∇(u(1− z2))|2dx ≤

(
2 + 4‖u‖∞

λε

)
Eε(u, z).

So, it is natural to set

Dn(Ω) =
{

(u, z) : u ∈ B(Ω), z ∈W1,2(Ω; [0; 1]), ūN (1− z2) ∈W1,2(Ω) for any N ≥ 1
}
.

Assuming (u, z) ∈ Dn(Ω) does not ensure that u ∈W1,2(Ω) and ∇u can not be defined as the gradient
of u in the Sobolev space. For that, the gradient of u is interpreted as in Definition 2.5 and then, the
following Proposition ensures that Eε(u, z) is well defined in Dn(Ω).

Proposition 3.1. If (u, z) ∈ Dn(Ω), then u is approximately differentiable in {x ∈ Ω: z(x) 6= 1} and
z is approximately differentiable in Ω. Moreover, almost every where in {x ∈ Ω: z(x) 6= 1}, we have

(1− z2)∇u = ∇[u(1− z2)] + 2uz∇z, (3.1)

where ∇ is the approximate derivation on the left hand side and the weak derivation in W 1,2(Ω) on
the right hand side.

Proof. As Ω is bounded, then the inclusion W1,2(Ω) ⊂ BV(Ω) is ensured. So, if (u, z) ∈ Dn(Ω),
according to Theorem 2.3, z and ūN (1 − z2) are approximately differentiable almost everywhere in
Ω. According to Lemmas 2.3 and 2.4, we deduce that ūN is approximately differentiable almost
everywhere in the set {x : z(x) 6= 1} and, according to the Leibniz rule, we have

(1− z2)∇ūN = ∇[ūN (1− z2)] + 2ūNz∇z,

where ∇ is the approximate derivation. As z, ūN (1 − z2) ∈ W 1,2(Ω), according to Theorem 2.3,
their approximate derivatives correspond to their weak derivatives almost everywhere. According to
Lemma 2.2, u and u(1− z2) are a.e. approximately differentiable in {|u| < N} and we have

∇ūN (x) = ∇u(x), ∇[ūN (1− z2)](x) = ∇[u(1− z2)](x), ūN (x) = u(x),

for a.e. every x ∈ {|u| < N}, which concludes the proof.

We consider the following functionals:

• E : B(Ω)→ [0; +∞] defined by

E(u) =
∫

Ω
(u− g)2dx+

∫
Ω
|∇u|2dx+

∫
Ju
ϕ(x, νu)dHn−1

if u ∈ GSBV(Ω), and E(u) = +∞ otherwise;

• Eε : B(Ω)× B(Ω)→ [0; +∞] defined by

Eε(u, z) =
∫

Ω
(u− g)2dx+

∫
Ω
|∇u|2(1− z2)2dx+

∫
Ω

(
εϕ(x,∇z)2 + z2

4ε

)
dx

if (u, z) ∈ Dn(Ω), where (1− z2)∇u is defined by the right hand side of (3.1). Moreover, we set
Eε(u, z) = +∞ otherwise;

• Ẽε : B(Ω)× B(Ω)→ [0; +∞] defined by

Ẽε(u, z) =
∫

Ω
(u− g)2dx+

∫
Ω
|∇u|2[ηε + (1− z2)2]dx+

∫
Ω

(
εϕ(x,∇z)2 + z2

4ε

)
dx

if (u, z) ∈ D̃n(Ω), Ẽε(u, z) = +∞ otherwise.
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The main result of the paper is the following

Theorem 3.1. If g ∈ L∞(Ω) and ϕ ∈M(Ω), then we have the following assertions.

i) For any ε > 0, Eε admits a minimizer, denoted by (uε, zε). Moreover, we can assume that
uε(x) = g(x) on {x ∈ Ω: zε(x) = 1}.

ii) For any (εk)k converging to 0+, there exists a subsequence, still denoted by (εk)k, and u ∈
GSBV(Ω) such that (uεk , zεk)k converges to (u, 0) almost everywhere and u is a minimizer of E.

If, by addition, ηε = o(ε), the same result holds true for Ẽε.

We set
(P) : Min{E(u) : u ∈ B(Ω)},

(Pε) : Min{Eε(u, z) : (u, z) ∈ B(Ω)× B(Ω)},
(P̃ε) : Min{Ẽε(u, z) : (u, z) ∈ B(Ω)× B(Ω)}.

Theorem 3.1 i) implies that, for ε > 0 fixed, (Pε) and (P̃ε) are well posed problems, its proof is
given in Section 3.2. Theorem ii) implies that, up to the extraction of a subsequence, the sequence
of solutions of (Pεk) and (P̃εk) converge to a solution of (P), its proof is given in Section 3.4.

3.2 Existence result for (Pε) and (P̃ε)
We prove Theorem 3.1 i) for Eε, which is a straightforward consequence of Propositions 3.2 and 3.3.
The arguments for Ẽε are the same, so its proof is omitted.

Proposition 3.2. Let ϕ ∈M(Ω) and ε > 0 be fixed. There exists (uk, zk)k a minimizing sequence of
Eε such that (uk)k is a bounded sequence in L∞(Ω), (zk)k weakly converges to z in W 1,2(Ω), (uk, zk)k
converges almost everywhere to (u, z) ∈ Dn(Ω) and u(x) = g(x) on {x : z(x) = 1}.

To prove it, the following Lemma is needed.

Lemma 3.1. For (u, z) ∈ Dn(Ω) and ν ∈ Sn−1 fixed, we have (ux, zx) ∈ D1(Ωx) for Hn−1-almost
every x ∈ Ων (see the notations of definition 2.3), and

u′x(t) = 〈∇u(x+ tν), ν〉,
z′x(t) = 〈∇z(x+ tν), ν〉,

for almost every t ∈ Ωx \ {s : z(x+ sν) = 1}.

The proof is given in Appendix C. Now, we prove Proposition 3.2.

Proof. Let (uk, zk)k be a minimizing sequence for Eε. We fix N ≥ ‖g‖∞ and we consider the trun-
cated functions uNk . As for the proof of Proposition 3.1, we get that uNk (1 − z2

k) and 1 − z2
k are

approximately differentiable almost everywhere and uNk is approximately differentiable almost every-
where in {x : zk(x) 6= 1}. According to relations (2.5) and (2.6), ∇uNk (x) = 0 almost everywhere in
{x : |uNk (x)| = N} and ∇uNk (x) = ∇uk(x) almost everywhere in {x : |uNk (x)| < N}. So, we get∫

Ω
|∇uNk |2(1− z2

k)2dx ≤
∫

Ω
|∇uk|2(1− z2

k)2dx. (3.2)

We deduce that Eε(uNk , zk) ≤ Eε(uk, zk) and then (uNk , zk)k is also a minimizing sequence. According
to (2.1), we have ∫

Ω
|∇zk|2dx+

∫
Ω
z2
kdx ≤

( 1
λε

+ 4ε
)
Eε(uk, zk),

8



and then (zk)k is a bounded sequence of W1,2(Ω). So, there exists a subsequence, still denoted by
(zk)k, which converges almost everywhere to z ∈ W1,2(Ω) and z takes also its values in [0; 1]. For
wk = uNk (1− z2

k), we have∫
Ω
|∇wk|2dx+

∫
Ω
w2
kdx ≤ 2

∫
Ω
|∇uNk |2(1− z2

k)2dx+ 2N2
∫

Ω
|∇zk|2dx

+N2
∫

Ω
(1− z2

k)2dx

and then (wk)k is a bounded sequence of W1,2(Ω). Then, we may extract a subsequence, still denoted
by (wk)k, which converges almost everywhere to w ∈W1,2(Ω). In particular, (uNk (x))k converges for
almost every x ∈ {y : z(y) 6= 1} to u(x). If x ∈ {y : z(y) = 1}, we set u(x) = g(x). This construction
ensures that (u, z) ∈ Dn(Ω).

Proposition 3.3. Let ϕ ∈ M(Ω) and ε > 0 be fixed. If (uk, zk)k ⊂ Dn(Ω) converges almost every-
where to (u, z) ∈ Dn(Ω), (uk)k is a bounded sequence in L∞(Ω) and (zk)k weakly converges to z in
W 1,2(Ω), then

lim inf
k→∞

Eε(uk, zk) ≥ Eε(u, z).

Proof. Fatou Lemma gives

lim inf
k→∞

∫
Ω

(uk − g)2dx ≥
∫

Ω
(u− g)2dx, lim inf

k→∞

∫
Ω

z2
k

4εdx ≥
∫

Ω

z2

4εdx. (3.3)

As ϕoo = ϕ, we have
ϕ(x,v) = sup

ν∈Sn−1

1
ϕo(x,v)〈v, ν〉.

Let ν ∈ Sn−1 be fixed and A ⊂ Ω an open set. It gives∫
A
ϕ(x,∇zk)2dx ≥

∫
A

1
ϕo(x, ν)2 〈∇zk, ν〉

2dx. (3.4)

As (zk)k weakly converges to z in W 1,2(Ω), then (〈∇zk, ν〉)k weakly converges to 〈∇z, ν〉 in L2(A).
Moreover, x→ 1/ϕo(x, ν) belongs to L∞(A), so we deduce that (〈∇zk, ν〉/ϕo(x, ν))k weakly converges
to 〈∇z, ν〉/ϕo(x, ν) in L2(A). As the L2-norm is lower semi-continuous with respect to the weak
convergence, we deduce that

lim inf
k→∞

∫
A

1
ϕo(x, ν)2 〈∇zk, ν〉

2dx ≥
∫
A

1
ϕo(x, ν)2 〈∇z, ν〉

2dx (3.5)

Let (νi)i be a countable dense family of Sn−1. We set

µ(A) = lim inf
k→∞

∫
A
ϕ(x,∇zk)2dx, ψi(x) = 1

ϕo(x, νi)
〈∇z(x), νi〉.

As supi ψi(x) = ϕ(x,∇z(x))2, according to Lemmas 2.1 and inequalities (3.4), (3.5), we deduce that

lim inf
k→∞

∫
Ω
ϕ(x,∇zk)2dx ≥

∫
Ω
ϕ(x,∇z)2dx. (3.6)

Thus, according to (3.3) and (3.6), to show Proposition 3.3, it suffices to prove that

lim inf
k→∞

∫
Ω
|∇uk|2(1− z2

k)2dx ≥
∫

Ω
|∇u|2(1− z2)2dx. (3.7)

We first consider the one-dimensional case n = 1 and then by a slicing argument we get the lower
semi-continuity for the general case n ≥ 1.
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For any δ ∈]0; 1[, we set Aδ = {x ∈ Ω: z(x) < 1− δ}. As n = 1, then z is a continuous function,
Aδ is an open set and (zk)k uniformly converges to z. In particular, we have

A ⊂ {x ∈ Ω: zk(x) ≤ 1− δ/2}

for k large enough, and so it yields∫
Aδ

|u′k|2dx ≤
1

1− (1− δ/2)2Eε(uk, zk).

With the same argument as for Remark 2.1, we deduce that (uk)k is a bounded sequence of W1,2(Aδ).
We may assume that this sequence is weakly convergent to u in W1,2(Aδ) and as (zk)k is uniformly
convergent to z, we get ∫

Aδ

|u′|2(1− z2)2dx ≤ lim inf
k→∞

∫
Aδ

|u′k|2(1− z2
k)2dx.

Passing to the limit δ → 0+ gives∫
Ω
|u′|2(1− z2)2dx ≤ lim inf

k→∞

∫
Ω
|u′k|2(1− z2

k)2dx.

Now, we generalize this result to the dimension n ≥ 1. With the notation ux introduced in
Definition 2.3, using the previous result obtained in dimension 1, Lemma 3.1 and Fatou Lemma, give∫

A
|〈∇u, ν〉|2(1− z2)2dx =

∫
Aν

∫
Ax
|u′x(t)|2(1− zx(t)2)2dtdx,

≤
∫
Aν

lim inf
k→∞

∫
Ax
|(uk)′x(t)|2(1− (zk)x(t)2)2dtdx,

≤ lim inf
k→∞

∫
Aν

∫
Ax
|(uk)′x(t)|2(1− (zk)x(t)2)2dtdx,

≤ lim inf
k→∞

∫
Aν

∫
Ax
|〈∇uk(x+ tν), ν〉|2(1− zk(x+ tν)2)2dtdx,

≤ lim inf
k→∞

∫
A
|〈∇uk, ν〉|2(1− z2

k)2dx,

≤ lim inf
k→∞

∫
A
|∇uk|2(1− z2

k)2dx,

for any open set A ⊂ Ω and every ν ∈ Sn−1. Let (νi)i be a dense and countable family of Sn−1. We
set

ψi = |〈∇u, νi〉|2(1− z2)2, ψ = |∇u|2(1− z2)2, µ(A) = lim inf
k→∞

∫
A
|∇uk|2(1− z2

k)2dx.

As µ is superadditive on A(Ω), according to Lemma 2.1, we may conclude∫
Ω
|∇u|2(1− z2)2dx ≤ lim inf

k→∞

∫
Ω
|∇uk|2(1− z2

k)2dx.

3.3 Γ-convergence result for ε→ 0+

This section is dedicated to the proof of Theorem 3.1 ii). For that, we will prove the following
Γ-convergence result.

Theorem 3.2. Let ϕ ∈M(Ω) be fixed and (εk)k be a sequence which converges to 0+. Then, we have
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i) if u ∈ B(Ω), (uk, zk)k ⊂ Dn(Ω) and (uk, zk)k converges to (u, 0) in L1(Ω), then

lim inf
k→∞

Eεk(uk, zk) ≥ E(u); (3.8)

ii) for any u ∈ B(Ω), there exists a sequence (uk, zk)k ⊂ Dn(Ω) such that (uk, zk)k converges to (u, 0)
in L1(Ω) and

lim sup
k→∞

Eεk(uk, zk) ≤ E(u). (3.9)

If ηε = o(ε), the same result holds true for Ẽεk . Moreover, the same sequence (uk, zk)k than for Eεk
may be used for (3.9).

3.3.1 The inequality for the lower Γ-limit

We prove the first inequality of Γ-convergence (3.8). As the domain of Ẽεk is included in the domain
of Eεk , it is sufficient to prove the result only for Eεk . Moreover, it is also sufficient to prove this
result with (uk)k and u uniformely bounded in L∞(Ω). Indeed, if

lim inf
k→∞

Eεk(ūNk , zk) ≥ E(ūN )

holds true for any N ≥ 1, as Eεk(ūNk , zk) ≤ Eεk(uk, zk) for any N ≥ ‖g‖∞ and (E(ūN ))N converges to
E(u) when N converges to +∞, then we get (3.8). Let u ∈ L∞(Ω) and (uk, zk)k ⊂ Dn(Ω) such that
(uk)k is bounded in L∞(Ω) and (uk, zk)k converges to (u, 0) in L1(Ω). In the sequel, we emphasize on
the domain of the function: for U an open subset of Ω, we adopt the following notation

F (u;U) =
∫
U
|∇u|2dx+

∫
Ju∩U

ϕ(x, νu)dHn−1,

Fεk(uk, zk;U) =
∫
U
|∇uk|2(1− z2

k)2dx+
∫
U

(
εkϕ(x,∇zk)2 + z2

k

4εk

)
dx.

It is implicit that U = Ω in the previous notation if it is not mentioned. Fatou Lemma yields

lim inf
k→∞

∫
Ω

(uk − g)2dx ≥
∫

Ω
(u− g)2dx

and then it suffices to prove that lim inf Fεk(uk, zk) ≥ F (u). We perform the proof in two steps: the
first step deals with dimension 1. The second generalizes it for dimension n ≥ 2.

The one-dimensional case. We first give a lower bound for the surface term in dimension n = 1.
As we argue like in [16], [17], [25], we only mention the result. In this paragraph, we assume that
Ω = I is an open interval and that ϕ is a constant m > 0. Moreover, we assume in this section that
m is fixed. We denote the 1-D approximating functional by

Gε(u, z; I) =
∫
I
|u′(t)|2(1− z(t)2)2dt+

∫
I

(
mε|z′(t)|2 + z(t)2

4ε

)
dt, (3.10)

where the domain is

D1(I) = {(u, z) : u ∈ L∞(I), z ∈W1,2(I; [0; 1]), u(1− z2) ∈W1,2(I)}.

We denote the lower Γ-limit, by

G−(u; I) = inf
{

lim inf
k→∞

Gεk(uk, zk; I)
}
,

where the inf is taken over all sequence (uk, zk)k ⊂ D1(I) such that (uk, zk) converges almost every-
where to (u, 0) in I. We have the following
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Proposition 3.4. Let I ⊂ R be an open interval and u ∈ B(I). If G−(u; I) < ∞, then u ∈ SBV(I)
and ∫

I
|u′(t)|2dt+m1/2H0(Ju ∩ I) ≤ G−(u; I).

Generalization to dimension n ≥ 2. We give the proof of (3.8). Let u ∈ SBV(Ω) ∩ L∞(Ω) and
(uk, zk)k ⊂ Dn(Ω) converging in L1(Ω) to (u, 0) such that (uk)k is bounded in L∞(Ω). Up to the
extraction of a subsequence, we may assume that its convergence is pointwise almost everywhere. We
have to prove that

lim inf
k→∞

Fεk(uk, zk) ≥ F (u). (3.11)

We assume that lim inf Fεk(uk, zk) is finite, otherwise the result is ensured.

Claim: We denote µ(A) = lim inf Fεk(uk, zk;A). For any A ∈ A(Ω) and ν ∈ Sn−1, we have

µ(A) ≥
∫
A
〈∇u, ν〉2 dx+

∫
Ju∩A

1
ϕo(x, ν)2 |〈ν, νu〉| dH

n−1. (3.12)

Let δ > 0 be fixed. As ϕ is uniformly continuous, there exists a finite family (Ai)i ⊂ A such that
diam(Ai) ≤ δ, ∪iAi = A and, for any i ∈ I, it satisfies

|ϕ(x,v)− ϕ(y,v)| ≤ δ|v|, (3.13)

for any (x, y) ∈ A2
i and v ∈ Rn. We fix ai ∈ Ai for all i ∈ I. Let ν ∈ Sn−1 be fixed. According to

(3.13), (2.1), for any (x,v) ∈ Ai × Rn, we have

|ϕ(x,v)− ϕ(ai,v)| ≤ δ|v|,
≤ δλ−1ϕ(ai,v).

We set C(δ) = (1− δλ−1)2, then, for any x ∈ Ai, we get

ϕ(x,∇zk(x))2 ≥ C(δ)ϕ(ai,∇zk(x))2. (3.14)

As (ϕo)o = ϕ, we get
ϕ(x,v) = sup

ν∈Sn−1

1
ϕo(x, ν)〈v, ν〉

and then
ϕ(ai,∇zk(x))2 = sup

ν∈Sn−1

1
ϕo(ai, ν)2 〈∇zk(x), ν〉2 (3.15)

According to (3.14) and (3.15), Fεk(uk, zk;Ai) is greater than
∫
Ai

(
|∇uk|2(1− z2

k)2 + C(δ) 1
ϕo(ai, ν)2 εk〈∇zk, ν〉

2 + z2
k

4εk

)
dx.

With the notation introduced in Definition 2.3, (v)y is the function defined on (Ai)yν as (v)y(t) =
v(y+ tν). According to Lemma 3.1, we have (uk)′y(t) = 〈∇u(y+ tν), ν〉 and (zk)′y(t) = 〈∇z(y+ tν), ν〉,
so Fubini Theorem implies that Fεk(uk, zk;Ai) is greater than

∫
(Ai)ν

∫
(Ai)yν

(
|(uk)′y|2(1− ((zk)y)2)2 + C(δ) 1

ϕo(ai, ν)2 εk|(zk)
′
y|2 + ((zk)y)2

4εk

)
,
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where the integration is done over the product measure dt dHn−1(y). With the one-dimensional
notations (3.10), it gives

Fεk(uk, zk;Ai) ≥
∫

(Ai)ν
Gεk((uk)y, (zk)y; (Ai)yν) dHn−1(y),

where m = C(δ) 1
ϕo(ai,ν)2 . Fatou lemma yields

µ(Ai) ≥
∫
Aν

lim inf
k→∞

Gεk((uk)y, (zk)y; (Ai)yν) dHn−1(y)

and then
µ(Ai) ≥

∫
(Ai)ν

G−((u)y; (Ai)yν) dHn−1(y).

As lim inf Fεk(uk, zk;Ai) is finite, we deduce that G−((u)y; (Ai)yν) is finite for Hn−1 almost every
y ∈ (Ai)ν . We may apply Lemma 3.4, with I = (Ai)yν and u = (u)y, it gives that (u)y ∈ SBV((Ai)yν),
for Hn−1 almost every y ∈ (Ai)ν and we have

µ(Ai) ≥
∫

(Ai)ν

[∫
(Ai)yν

|(u)′y|2dt+m1/2H0(J(u)y ∩ (Ai)yν)
]

dHn−1(y).

As lim inf Fεk(uk, zk;Ai) is finite, Theorem 2.1 implies that∫
(Ai)ν

[∫
(Ai)yν

|(u)′y|2dt+m1/2H0(J(u)y ∩ (Ai)yν)
]

dHn−1(y)

is equal to ∫
Ω
〈∇u, ν〉2dx+

∫
Ju∩Ai

m1/2|〈νu, ν〉| dHn−1.

We deduce
µ(Ai) ≥

∫
Ai

〈∇u, ν〉2dx+
∫
Ju∩Ai

m1/2|〈νu, ν〉| dHn−1.

If we replace m by its value, it gives

µ(Ai) ≥
∫
Ai

〈∇u, ν〉2 dx+ C(δ)
∫
Ju∩Ai

1
ϕo(ai, ν) |〈ν, νu〉| dH

n−1.

As the function ϕ is uniformly continuous, then ϕo is also uniformly continuous and there exits a
function, still denoted by C(δ), such that C(δ)→ 1 for δ → 0+ and which satisfies

µ(Ai) ≥
∫
Ai

〈∇u, ν〉2 dx+ C(δ)
∫
Ju∩Ai

1
ϕo(x, ν) |〈ν, νu〉| dH

n−1.

As µ is superadditive, we get

µ(A) ≥
∫
A
〈∇u, ν〉2 dx+ C(δ)

∫
Ju∩A

1
ϕo(x, ν) |〈ν, νu〉| dH

n−1.

We take δ → 0+, it concludes the proof of the Claim. Hereafter, we divide the remaining part of the
proof in two steps corresponding on the estimate on the regular part and on the jump part of u.

Step 1: Regular Part. For any open set A ⊂ Ω, we prove the following inequality

lim inf
k→∞

Fεk(uk, zk;A) ≥
∫
A
|∇u|2 dx. (3.16)

Let (νi)i ⊂ Sn−1 be a countable set of point which is dense in Sn−1. We set

µ(A) = lim inf
k→∞

Fεk(uk, zk;A), ψi(x) = 〈∇u(x), νi〉2 .
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According to Claim, µ(A) ≥
∫
A ψidx. As supi ψi(x) = |∇u(x)|2, Lemma 2.1 yields (3.16).

Step 2: Jump Part. For any A ∈ A(Ω), we prove that

lim inf
k→∞

Fεk(uk, zk;A) ≥
∫
Ju∩A

ϕ(x, νu) dHn−1. (3.17)

We consider (νi)i ⊂ Sn−1 and µ as in Step 1 and we set

ψ̃i(x) = 1
ϕo(x, νi)

|〈νu(x), νi〉|.

According to Claim, we have µ(A) ≥
∫
A ψ̃idHn−1. As supi ψ̃i(x) = ϕ(x, νu(x)), Lemma 2.1 yields

(3.17).
Conclusion: Let µ be the Borel measure on Ω defined for any Borelian A ⊂ Ω by

µ(A) =
∫
Ju∩A

ϕ(x, νu) dHn−1.

Let δ > 0 be fixed, according to the inner regularity of Borel measures (Proposition 1.43 in [24]),
there exists a compact K ⊂ Ju such that µ(Ju \K) ≤ δ, that is∫

Ju\K
ϕ(x, νu) dHn−1 ≤ δ. (3.18)

We set Kτ = {x ∈ Ω: dist(x,K) < τ}. First Step implies that
∫

Ω |∇u|2 dx is finite. As K ⊂ Ju, then
we get Hn−1(K) < +∞ and, in particular,

∫
K |∇u|2 dx = 0. Thus, there exists τ > 0 such that∫

Kτ
|∇u|2 dx ≤ δ. (3.19)

According to (3.18), (3.19), First Step and Second Step, we get

lim inf
k→∞

Fεk(uk, zk; Ω) ≥ lim inf
k→∞

Fεk(uk, zk;Kτ ) + lim inf
k→∞

Fεk(uk, zk; Ω \Kτ ),

≥
∫
Ju∩Kτ

ϕ(x, νu) dHn−1 +
∫

Ω\Kτ
|∇u|2 dx,

≥
∫
Ju
ϕ(x, νu) dHn−1 +

∫
Ω
|∇u|2 dx− 2δ.

Taking the limit δ → 0+ concludes the proof.

3.3.2 The inequality for the upper Γ-limit

In this section we prove the upper inequality of Γ-convergence, that is ii) of Theorem 3.2, for both
Eεk and Ẽεk . As for the lower inequality case, it is sufficient to prove it with u ∈ L∞(Ω). Indeed, if
for any N ≥ 1 there exists a sequence (uk,N , zk,N )k which converges to (ūN , 0) in L1(Ω) and which
satisfies

lim sup
k→∞

Eεk(uk,N , zk) ≤ E(ūN ),

then by a diagonal extraction, there exists a sequence (uk, zk)k which converges to (u, 0) in L1(Ω)
and which satisfies (3.9). So, let u ∈ B(Ω) ∩ L∞(Ω) be fixed. We prove that there exists a sequence
(uk, zk)k ⊂ D̃n(Ω) such that (uk, zk)k converges to (u, 0) almost everywhere,

lim sup
k→∞

∫
Ω
|∇uk|2(1− z2

k)2dx+
∫

Ω

(
εkϕ(x,∇zk)2 + z2

k

4εk

)
dx

is lower than ∫
Ω
|∇u|2dx+

∫
Ju
ϕ(x, νu)dHn−1
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and
lim sup
k→∞

∫
Ω
|∇uk|2ηεkdx = 0.

According to Theorem 2.2 and Proposition 2.2, with a diagonal extraction, it suffices to prove a
weaker result, where

∫
Ju
ϕ(x, νu)dHn−1 is replaced by its approximation with a Minkowski content.

More precisely, it suffices to prove the following

Proposition 3.5. Let ϕ ∈M(Ω) be fixed, (εk)k be a sequence converging to 0+ and ηk = o(εk). For
u ∈ SBV(Ω)∩L∞(Ω), there exists a sequence (uk, zk)k ⊂ D̃n(Ω) such that (uk, zk)k converges to (u, 0)
almost everywhere, (uk)k is bounded in L∞(Ω) and

lim sup
k→∞

Fεk(uk, zk) ≤
∫

Ω
|∇u|2dx+M?

ϕo(Ju), lim sup
k→∞

∫
Ω
|∇uk|2ηkdx = 0. (3.20)

Proof. Without loss of generality, we may assume that |∇u| ∈ L2(Ω) andM?
ϕo(Ju) < +∞, otherwise

the result is obvious. If u ∈ W1,2(Ω), then Ju = ∅ and the stationary sequence uk = u, zk = 0 is a
solution. If u 6∈W1,2(Ω), then Ju 6= ∅ and (1− z2

k)2 has to be infinitesimal near of Ju. For ρ > 0, we
set

(Ju)ρ = {x ∈ Ω: dJuϕo(x) < ρ}. (3.21)

We separate Ω in three parts:

(Ju)bk , (Ju)ak+bk \ (Ju)bk , Ω \ (Ju)ak+bk (3.22)

with
ak = −4εk ln(εk), bk = √εkηk. (3.23)

Let Ψk defined by

Ψk(x) =


1 ∀x ∈ (Ju)bk/2,
2− 2dJuϕo(x)/bk ∀x ∈ (Ju)bk \ (Ju)bk/2,
0 ∀x ∈ Ω \ (Ju)bk .

(3.24)

This definition ensures that Ψk is a continuous function with support in (Ju)bk , which is equal to 1
in a neighborhood (Ju)bk/2 of Ju and which shrinks to Ju when k → ∞. Ellipticity inequality (2.1)
yields

|dJuϕo(x)− dJuϕo(y)| ≤ dϕo(x, y),
≤ λ−1|x− y|.

So, dJuϕo is Lipschitzian and Rademacher Theorem ensures that ∇dJuϕo exists for almost every x ∈ Ω.
It gives

|∇Ψk| ≤
2
bkλ

.

We set uk = (1−Ψk)u and then uk ≡ u in Ω \ (Ju)bk . As (bk)k converges to 0 then uk converges to
u almost everywhere. As we have ∇uk = −∇Ψku+ (1−Ψk)∇u, we get∫

Ω
|∇uk|2ηkdx ≤ ηk

(
‖u‖∞

8
b2kλ

2L
n((Ju)bk) + 2

∫
Ω
|∇u|2dx

)
.

AsM?
ϕo(Ju) < +∞, there exists (ωk)k a sequence which converges to 0+ such that

Ln((Ju)bk) ≤ 2bk(M?
ϕo(Ju) + ωk), (3.25)

it gives ∫
Ω
|∇uk|2ηkdx ≤ ηk

(
‖u‖∞

16
bkλ2 (M?

ϕo(Ju) + ωk) + 2
∫

Ω
|∇u|2dx

)
.
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As ηk/bk → 0 and ηk → 0, we deduce that

lim sup
k→∞

∫
Ω
|∇uk|2ηkdx = 0

and then the second inequality of (3.20) is proven. It remains to prove the first one. For that, we set
zk = 1 in (Ju)bk and zk = ε2

k in Ω\(Ju)ak+bk . In (Ju)ak+bk \(Ju)bk we adopt the following construction:
we introduce

θk(t) = ε2
k exp

(
t

2εk

)
and we set

z̃k(t) =


1 ∀t ∈ [0; bk],
θk(ak + bk − t) ∀t ∈]bk; ak + bk],
ε2
k ∀t ∈]ak + bk; +∞[.

(3.26)

This is a continuous and decreasing function defined on [0; +∞[, moreover, for any t ∈]bk; ak + bk[, it
satisfies

εk(z̃
′
k(t))2 = (z̃k(t))2

4εk
. (3.27)

We set zk = z̃k ◦ dJuϕo . As zk is constant in (Ju)bk ∪ (Ω \ (Ju)ak+bk), we have

Fεk(uk, zk) =
∫

Ω\(Ju)ak+bk

|∇u|2(1− ε4
k)2dx

+
∫

(Ju)ak+bk\(Ju)bk
|∇u|2(1− z2

k)2dx

+
∫

(Ju)ak+bk\(Ju)bk

(
εkϕ(x,∇zk)2 + z2

k

4εk

)
dx

+ε3
k

4 L
n(Ω \ (Ju)ak+bk) + 1

4εk
Ln((Ju)bk).

(3.28)

As |∇u| ∈ L2(Ω) and (ak + bk)k converges to 0, the first term of (3.28) converges to
∫

Ω |∇u|2dx. As
‖zk‖∞ ≤ 1, the second term converges to 0. As Ω is a bounded domain, the fourth term converges to
0. According to (3.25), the fifth term is lower than 1

2εk(M?
ϕo(Ju) + ωk). So, the fifth term converges

to 0. To compute the limit of (Fεk(uk, zk))k, it remains to study the convergence of

Ak(zk) =
∫

(Ju)ak+bk\(Ju)bk

(
εkϕ(x,∇zk)2 + z2

k

4εk

)
dx.

For almost every x ∈ (Ju)ak+bk \ (Ju)bk , we have

∇zk = z̃
′
k ◦ dJuϕo ∇dJuϕo .

It gives

Ak(zk) =
∫

(Ju)ak+bk\(Ju)bk

(
εk(z̃

′
k ◦ dJuϕo)2ϕ(x,∇dJuϕo)2 +

(z̃k ◦ dJuϕo)2

4εk

)
dx.

According to Proposition 2.1, ϕ(x,∇dJuϕo(x)) = 1 for almost every x. So, we may write

Ak(zk) =
∫

(Ju)ak+bk\(Ju)bk

(
εk(z̃

′
k ◦ dJuϕo)2 +

(z̃k ◦ dJuϕo)2

4εk

)
ϕ(x,∇dJuϕo)dx.
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We may apply an anisotropic version of the coarea formula (see [27]), it gives

Ak(zk) =
∫ ak+bk

bk

(
εkz̃

′
k(t)2 + z̃k(t)2

4εk

)[∫
Ω
ϕ(x,D1(Ju)t)

]
dt. (3.29)

We set
Hϕ(t) =

∫
Ω
ϕ(x,D1(Ju)t), Aϕ(s) =

∫ s

0
Hϕ(t)dt.

Applying another time coarea formula gives

Aϕ(s2)−Aϕ(s1) =
∫ s2

s1

[∫
Ω
ϕ(x,D1(Ju)t)

]
dt,

=
∫

(Ju)s2\(Ju)s1

ϕ(x,∇dJuϕo)dx,

= Ln((Ju)s2 \ (Ju)s1).

So, Aϕ ∈ W1,1
loc(]0; +∞[) and ∇Aϕ = Hϕ almost everywhere. Using equality (3.27) and then inte-

grating by parts (3.29) gives

Ak(zk) =
∫ ak+bk

bk

(
εkz̃

′
k(t)2 + z̃k(t)2

4εk

)
Hϕ(t)dt,

=
∫ ak+bk

bk

z̃k(t)2

2εk
Hϕ(t)dt,

= z̃2
k(ak + bk)

2εk
Aϕ(ak + bk)−

z̃2
k(bk)
2εk

Aϕ(bk)−
1
εk

∫ ak+bk

bk

z̃
′
k(t)z̃k(t)Aϕ(t).

The first term obviously converges to 0. As for (3.25), we have

Aϕ(bk) ≤ 2bk(M?
ϕo(Ju) + ωk)

and then the second term converges to 0 too. As s→ Aϕ(s) is non decreasing, then

Aϕ(t) ≤ 2t(M?
ϕo(Ju) + ωk)

for any t ∈ [bk; ak + bk]. For the last term, we apply another time this inequality, it gives

− 1
εk

∫ ak+bk

bk

z̃
′
k(t)z̃k(t)Aϕ(t)dt ≤ −

(M?
ϕo(Ju) + ωk)

εk

∫ ak+bk

bk

2tz̃′k(t)z̃k(t)dt. (3.30)

Integrating by parts yields∫ ak+bk

bk

2tz̃′k(t)z̃k(t)dt = (ak + bk)z̃k(ak + bk)2 − bkz̃k(bk)2 −
∫ ak+bk

bk

z̃k(t)2dt. (3.31)

According to the definitions of (ak, bk, zk), (3.23) and (3.26), we have

(ak + bk)z̃k(ak + bk)2 − bkz̃k(bk)2 = o(εk) (3.32)

and equation (3.27) gives ∫ ak+bk

bk

z̃k(t)2dt = 2εk
∫ ak+bk

bk

|z̃′k(t)|z̃k(t)dt,

= εk(1− ε2
k).

(3.33)

From (3.30), (3.31), (3.32) and (3.33) we deduce that lim supk Ak(zk) ≤ M?
ϕo(Ju) and, according to

the decomposition (3.28), we have

lim sup
k→∞

Fεk(uk, zk) ≤
∫

Ω
|∇u|2 +M?

ϕo(Ju).

To conclude the proof, it suffices to notice that (uk, zk)k ⊂ D̃n(Ω).
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3.4 Compactness result for (Pε)ε and (P̃ε)ε
In this Section we prove Theorem 3.1, ii). As the same arguments hold for both cases, we only give
the proof for (Pε)ε. According to Theorem 3.1 i), for any ε > 0, there exists (uε, zε) a minimizer of
Eε. According to (3.2), with N ≥ ‖g‖∞, we have

Ln({x ∈ Ω: |uε(x)| > N}) > 0 ⇒ Eε(uNε , zε) < Eε(uε, zε).

We deduce that ‖uε‖∞ ≤ N for any ε > 0. For ωε = uε(1− z2
ε ), we get

∇ωε = ∇uε(1− z2
ε )− 2uεzε∇zε.

It yields ∫
Ω
|∇ωε|dx ≤ Ln(Ω)1/2

(∫
Ω
|∇uε|2(1− z2

ε )2dx
)1/2

+ 2N
∫

Ω
|∇zε|zεdx. (3.34)

Applying the inequality 2ab ≤ a2 + b2 with a = zε
2ε1/2 and b = ε1/2|∇zε| gives∫

Ω
|∇zε|zεdx ≤

∫
Ω
ε|∇zε|2dx+

∫
Ω

z2
ε

4εdx. (3.35)

According to ellipticity inequality (2.1), we get∫
Ω
ε|∇zε|2dx ≤

1
λ
Eε(uε, zε). (3.36)

By (3.34), (3.35) and (3.36), we deduce∫
Ω
|∇ωε|dx ≤ Ln(Ω)1/2 (Eε(uε, zε))1/2 +

(
1 + 1

λ

)
Eε(uε, zε).

Let (εk)k be a sequence converting to 0+. As E 6≡ +∞, according to Theorem 3.2 ii), we deduce
that (Eεk(uεk , zεk))k is bounded. So, (ωεk)k is bounded in BV(Ω) and there exists a subsequence, still
denoted by (ωεk)k which converges almost everywhere to ω ∈ BV(Ω). As

∫
Ω z

2
kdx ≤ εkEεk(uεk , zεk),

then (zk)k converges to 0 in L2(Ω) and there exists a subsequence, still denoted by (zk)k, which
converges almost everywhere to 0. As ωεk = uεk(1 − z2

εk
), then (uεk)k converges almost everywhere

to u ∈ L∞(Ω). According to Theorem 3.2, u is obviously a minimizer of E.

Conclusion
This paper is the theoretical background needed to introduce our new model. A forthcoming paper
will present the numerical point of view. The main assumption of this work is the existence of an
anisotropic metric ϕ which must represent the anisotropy of the image. For that, we may consider
the case where ϕ is a Riemannian metric. That is, ϕ is given by a field of symmetric definite positive
matrices M such that

ϕ(x,v) = 〈M(x)v,v〉1/2.
In order to favorize elongated sets, M is constrained to take its values in a compact sub manifold of
symmetric definite positive matrices with fixed spectrum. In order to combine the segmentation task
with the computation of this metric, the couple (u,M) must minimize the functional∫

Ω
(u− g)2dx+

∫
Ω
|∇u|2dx+

∫
Ju
〈Mνu, νu〉1/2dHn−1 +

∫
Ω
‖DM‖n+αdx,

where α > 0 is fixed in order to satisfy the regularity condition ϕ ∈ M(Ω). Indded, according
to the Sobolev embedding Theorem, the finiteness of the last term ensures that the metric is uni-
formely continuous. Existence of a minimizer of this energy and approximation with Γ-convergence
are straightforward consequences of what we have presented in this article.
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A Proof of Proposition 2.2
We prove this result in two steps: we first assume that ϕ is homogeneous and after we generalize the
result in the inhomogeneous setting.

First Step: We assume that K ⊂ Ω is a (n − 1)-simplex and ϕ is homogeneous, i.e. it does not
depend on x ∈ Ω.

With the same notations as in (3.21), we set Kr = {x ∈ Ω: dKϕo(x) < r}. We separate Kr in two
parts:

Kb
r = {x ∈ Kr : ∃y ∈ ∂K,dϕo(x, y) = dKrϕo (x)}, Ki

r = Kr \K1
r .

As ϕ is an elliptic metric (ϕ is comparable to the euclidean distance) and ∂K is a finite union of
(n− 2)-dimensional simplexes, we have

Ln(Kb
r) v r2. (A.1)

As we assume that ϕ is homogeneous, Ki
r is a n-dimensional simplex whose basis is K and height is

sup{2〈ν,v〉 : ϕo(v) ≤ r},

where ν is an unitary and normal vector to K. As ϕoo = ϕ, we deduce that

Ln(Ki
r) = 2rϕ(ν)Hn−1(K). (A.2)

According to (A.1) and (A.2), we conclude thatM?
ϕo(K) ≤ ϕ(ν)Hn−1(K).

Second Step: We assume that K = ∪iKi is a finite union of (n− 1)-simplexes and that ϕ depends
on x ∈ Ω.

We may assume that
∫
K ϕ(x, ν)dHn−1 is finite, otherwise the result is ensured. As ϕ ∈ M(Ω),

there exists λ > 0 such that
λ1/2Hn−1(K) ≤

∫
K
ϕ(x, ν)dHn−1

and then Hn−1(K) is also finite. For t ∈ R and i ∈ {1, . . . , n}, we set Πi
t = {x ∈ Ω: 〈x, ei〉 = t}.

Thus, for k ∈ N fixed,
{
t ∈ R : Hn−1(K ∩Πi

t) > 1/k
}
is finite and then, for any i ∈ {1, . . . , n}, the

set
{
t ∈ R : Hn−1(K ∩Πi

t) > 0
}
is at most countable. So, if we consider the cubes whose faces are

orthogonal to the vectors of the orthogonal basis, there exists a partition C of Ω by cubes with
diameter less than η, such that for any C ∈ C, we have

Hn−1(K ∩ ∂C) = 0. (A.3)

For any C ∈ C, we fix aC ∈ C and we set

ϕC = ϕ(aC , ·). (A.4)

As ϕ ∈M(Ω), there exists ε(η) such that ε(η)→ 0 for η → 0 and

|ϕ(x,v)− ϕ(y,v)| ≤ ε(η)|v| (A.5)
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for any x, y ∈ C and v ∈ Rn. It gives

M?
ϕo(Ki) ≤

∑
C∈C
M?

ϕo(Ki ∩ C),

≤ (1 + ε(η))
∑
C∈C
M?

ϕoC
(Ki ∩ C),

≤ (1 + ε(η))
∑
C∈C

∫
Ki∩C

ϕC(ν)dHn−1,

≤ (1 + ε(η))2 ∑
C∈C

∫
Ki∩C

ϕ(x, ν)dHn−1,

≤ (1 + ε(η))2
∫
Ki

ϕ(x, ν)dHn−1.

Taking the limit η → 0+ gives the result of Second Step for each compact Ki. To conclude the proof
of Proposition 2.2, it suffices to notice that

M?
ϕo(K) ≤

∑
i

M?
ϕo(Ki).

B Proof of Lemma 2.3
Let x ∈ Ω be a point such that v1, v2 are approximatively differentiable at x. First, we remark that
x is a Lebesgue point for v1, that is

lim
r→0+

Ln(B(x, r))−1
∫
B(x,r)

|v1(y)− v1(x)|dy = 0. (B.1)

Then, we decompose

Ln(B(x, r))−1
∫
B(x,r)

|v1(y)v2(y)− v1(x)v2(x)− 〈v1(x)∇v2(x) + v2(x)∇v1(x), y − x〉|
r

dy

≤ Ln(B(x, r))−1
∫
B(x,r)

|v2(x)| |v1(y)− v1(x)− 〈∇v1(x), y − x〉|
r

dy

+Ln(B(x, r))−1
∫
B(x,r)

|v1(y)| |v2(y)− v2(x)− 〈∇v2(x), y − x〉|
r

dy

+Ln(B(x, r))−1
∫
B(x,r)

|(v1(y)− v1(x))〈∇v2(x), y − x〉|
r

dy.

As v1, V2 are approximatively differentiable at x and v1 ∈ L∞(Ω) the two first terms converge to 0.
As we have |〈∇v2(x), y − x〉|/r ≤ |∇v2(x)| for any y ∈ B(x, r), according to (B.1), the last term also
converges to 0.

C Proof of Lemma 3.1
As Ω is bounded, then W1,2(Ω) ⊂ SBV(Ω) and then, according to Calderón-Zygmund Theorem (3.83
in [24]), the derivative in the Sobolev sense is equal to the approximate differential for almost every
point in Ω. Moreover, according to Theorem 3.107 of [24], for v ∈ SBV(Ω) and ν ∈ Sn−1, we have

〈∇v(x+ tν), ν〉 = ∇vx(t) a.e. t ∈ Ωx

for almost every x ∈ Ων . According to Fubini Theorem, if v ∈ W1,2(Ω), then vx ∈ W1,2(Ωx) for
almost every x ∈ Ω. Applying this property with v = z and v = u(1 − z2) concludes the proof of
Lemma 3.1.
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