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Introduction

This work is motivated by the segmentation problem of sets strongly elongated in some directions as, for instance, tubes or thin plates in an image of dimension n ∈ {2; 3}. In Computer Vision, the Mumford-Shah model is one of the most studied [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variationnal problems[END_REF]. It consists, for a given image g ∈ L ∞ (Ω), in finding a couple (u, K) which minimizes the following energy

E M S (u, K) = Ω\K (u -g) 2 dx + Ω\K |∇u| 2 dx + H n-1 (K), (1.1) 
where u ∈ W 1,2 (Ω \ K), K is compact and H n-1 is the (n -1)-dimensional Hausdorff measure. To minimize this energy, K must fit the set of discontinuity of the image and u must represent the regular part of the intensity. In order to adapt this model for the particular case of thin and elongated sets, we have introduced in [START_REF] Vicente | Anisotropic bimodal energy for segmentation of thin tubes and its approximation with Γ-convergence[END_REF] a Finsler metric ϕ which must fit the anisotropy of the image. At any point x ∈ Ω, ϕ(x, •) is a norm whose unit ball coincides with the elongation of the sets we want to detect. So, we set

E(u, K) = Ω\K (u -g) 2 dx + Ω\K |∇u| 2 dx + K ϕ(x, ν)dH n-1 , ( 1.2) 
where u ∈ W 1,2 (Ω \ K), K is a compact (n -1)-dimensional submanifold and ν is an unit vector orthogonal to K. This kind of model which consists in an energy with a volumic and a surfacic parts also arises in Fracture Mechanics Theory ( [START_REF] Braides | Energies in SBV and variational models in fracture mechanics[END_REF][START_REF] Chambolle | An approximation result for special functions with bounded deformation[END_REF][START_REF] Iurlano | A density result for GSBD and its application to the approximation of brittle fractures energies[END_REF] for example). In this setting, the analysis for the case where ϕ is a constant norm has been treated in [START_REF] Focardi | On the variational approximation of free-discontinuity problem in the vectorial case[END_REF]. To our knowledge, the inhomogeneous case, where ϕ also depends on x, has not been done yet.

Since the compact submanifolds of Ω cannot be endowed with a topology which ensures that the direct methods apply, a weak formulation of the problem is needed. To do this, De Giorgi and Ambrosio [START_REF] Giorgi | A new type of functional in the calculus of variations[END_REF] proposed to set this kind of problem in the space SBV of special functions with bounded variation. Thus, setting K = J u in (1.2) and defining E(u) = E(u, J u ), it gives

E(u) = Ω (u -g) 2 dx + Ω |∇u| 2 dx + Ju ϕ(x, ν u )dH n-1 , ( 1.3) 
where u ∈ SBV(Ω), ∇u is the derivative of u with respect to the Lebesgue measure, J u is its jump set and ν u is an unit vector orthogonal to J u . The abstract theory in SBV has been developed: Ambrosio established the existence result [START_REF] Ambrosio | A compactness theorem for a new class of functions of bounded variation[END_REF][START_REF] Ambrosio | A new proof of the SBV compactness theorem[END_REF], and regularity for minimizers of this kind of energy has been proved [START_REF] De Giorgi | Existence theorem for a minimum problem with free discontinuity set[END_REF][START_REF] Ambrosio | Partial regularity of free discontinuity sets i[END_REF][START_REF] Ambrosio | Partial regularity of free discontinuity sets ii[END_REF][START_REF] Bucur | Monocity formula and regularity for general free discontinuity problems[END_REF]. Those results ensure that any minimizer u of the relaxed problem in SBV provides a couple (u, J u ) which also minimizes the initial model E.

The numerical approximation for solutions is hard because of the treatment of the jump set J u . To overcome this difficulty, the idea is to perform a variational approximation of the functional E in the sense of De Giorgi Γ-convergence [START_REF] Giorgi | Su un tipo di convergenza variazonale[END_REF][START_REF] Maso | An introduction to Γ-convergence[END_REF] with Ambrosio-Tortorelli's approximation.

In order to approximate (1.3), we propose two slightly different families of functionals (E ε ) ε and ( E ε ) ε defined by

E ε (u, z) = Ω (u -g) 2 dx + Ω |∇u| 2 (1 -z 2 ) 2 dx + Ω εϕ(x, ∇z) 2 + z 2 4ε dx, (1.4 
)

E ε (u, z) = Ω (u -g) 2 dx + Ω |∇u| 2 [η ε + (1 -z 2 ) 2 ]dx + Ω εϕ(x, ∇z) 2 + z 2 4ε dx.
(1.5)

For both versions, the function z takes its values in [0; 1] and plays the role of a control on the gradient of u. In the second one, the parameter η ε is infinitesimal with respect to ε. The first functional is directly inspired by the initial Ambrosio-Tortorelli's approximation [START_REF] Ambrosio | Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence[END_REF], while the second one was introduced later in [START_REF] Ambrosio | On the approximation of free discontinuity problems[END_REF] and it was used in various papers, for example [START_REF] Focardi | On the variational approximation of free-discontinuity problem in the vectorial case[END_REF][START_REF] Focardi | Asymptotic analysis of Ambrosio-Tortorelli energies in linearized elasticity[END_REF][START_REF] Conti | Phase field approximation of cohesive fracture models[END_REF]. Those functionals are more adapted for numerics since usual finite element methods can be directly applied. They formally differ by the introduction of the term

η Ω |∇u| 2 dx. (1.6)
By this way, E ε admits as natural domain of definition the classical Sobolev space (W 1,2 (Ω)) 2 . However, this term is not strictly necessary in our study because all the results which are proven for E ε are also true for E ε . For this simplification, the cost to pay is a slightly longer analysis in order to introduce an adapted domain for E ε which ensures that its minimization is still a well-posed problem.

The Γ-convergence result when ε → 0 + will be proven for both E ε and E ε . However, in the Image Processing context, the parameter ε is devoted to be small but fixed. Indeed, for stability of the algorithms, ε has to be bounded by below by a positive constant which depends on the size of the grid (see [START_REF] Chen | Applications of semi-implicit Fourier-spectral method to phase field equations[END_REF]). As in practice we can not take the limit ε → 0, we may choose the first version in order to avoid the additional diffusion in the numerics due to the term (1.6).

One may think that such Γ-convergence result is useless for applications because of the lower bound for ε. Nevertheless, this result provides a continuous model (1.2) of the discrete energy which may be used as a mirror to understand the proper geometry of the problem. Then, an automatic determination of the (numerous) parameters of the algorithms is possible if we have an apriori on the image we want to get (see [START_REF] Bergounioux | Parameter selection in a Mumford-Shah geometrical model for the detection of thin structures[END_REF][START_REF] Vicente | Anisotropic bimodal energy for segmentation of thin tubes and its approximation with Γ-convergence[END_REF]).

In section 2, we introduce the geometric framework and we recall some results on spaces of functions with bounded variation. In section 3, we introduce the family of functionals (E ε ) ε with their domains, we give our main result and its complete proof.

Functional framework

In all the paper, Ω is an open and bounded domain with Lipschitz boundaries. We adopt the notations:

• •, • for the canonical scalar product, | • | for the euclidean norm in R n , dist for the associated distance and • for the associated matricial norm,

• B(Ω) for the Borelian functions and L n for the Lebesgue measure on Ω,

• H k for the k-dimensional Hausdorff measure,

• ūN for the truncation min(N, max(u, -N )),

• f is superadditive if f (A ∪ B) ≥ f (A) + f (B) for any disjoints sets A, B, • f is non decreasing if f (A) ≤ f (B) for any sets A, B such that A ⊂ B.
In all the paper, in order to emphasize on the 1-D specific technic, we denote ∇v by v for any function v which is defined on R.

Local metrics and Minkowski content

We introduce the geometric framework adapted to the anisotropic setting. 

i) for any x ∈ Ω, ϕ(x, •) is a norm on R n ,
ii) there exists λ > 0, Λ > 0, such that, for any

(x, v) ∈ Ω × R n , we have λ|v| ≤ ϕ(x, v) ≤ Λ|v|. (2.1)
To any metric we may associate its dual as follows.

Definition 2.2. For ϕ ∈ M(Ω), its dual metric ϕ o is defined by

ϕ o (x, v) = sup{ v, v : ϕ(x, v ) ≤ 1}.
A well known consequence of the definition is the following assertion: if ϕ ∈ M(Ω) then ϕ o ∈ M(Ω) and ϕ oo = ϕ. For S ⊂ Ω, we may consider the associated geodesic distance:

d ϕ o (x, y) = inf 1 0 ϕ o γ, γ dt : γ ∈ W 1,1 ([0; 1]; Ω), γ(0) = x, γ(1) = y , d S ϕ o (x) = inf {d ϕ o (x, y) : y ∈ S} .
According to (2.1), d S ϕ o is Lipschitz and then it is differentiable almost everywhere. Furthermore, we have the following (see [START_REF] Bellettini | Some results on surface measures in calculus of variations[END_REF]) Proposition 2.1. Let S ⊂ Ω be a closed set and ϕ ∈ M(Ω). Then, we have

ϕ(x, ∇d S ϕ o (x)) = 1
at each point x ∈ Ω \ S where d S ϕ o is differentiable. We recall that, for S ⊂ R n , the (n -1)-dimensional upper Minkowski content of S is defined by

M (S) = lim sup ρ→0 + L n ({x : dist(x, S) < ρ}) 2ρ .
In our anisotropic setting, the associated anisotropic Minkowski (n -1)-dimensional upper content is defined by the limit

M ϕ o (S) = lim sup ρ→0 + L n ({x ∈ Ω : d S ϕ o (x) < ρ}) 2ρ . (2.2)
In [START_REF] Federer | Geometric Measure Theory[END_REF] (Theorem 3.2.39), under regularity assumptions on S, it is proved that M (S) ≤ H n-1 (S). We need the following generalization of this result. Proposition 2.2. Let K ⊂ Ω be a finite union of (n -1)-dimensional simplexes and ϕ ∈ M(Ω). Then, we have

M ϕ o (K) ≤ K ϕ(x, ν)dH n-1 .
The proof is given in Appendix A.

BV spaces and slicing results

For the classical definitions and results on BV and SBV we refer to [START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems[END_REF]. We recall that, if u ∈ BV(Ω), then its derivative Du belongs to the space of vectorial Radon measures and, if u ∈ SBV(Ω), then the Cantor part of Du is null and we obtain

Du = ∇u • L n + (u + -u -)ν u • H n-1 J u ,
where ∇u is the density of Du with respect to the Lebesgue measure L n , u + (resp. u -) is the approximate upper (resp. lower) limit and H n-1 J u is the restriction of H n-1 to its jump set J u . The slicing results are crucial in our study. Definition 2.3. Let ν ∈ S n-1 be fixed. We denote by Π ν the hyperplane

{x ∈ R n : x, ν = 0} . If x ∈ Π ν , we set Ω x = {t ∈ R : x + tν ∈ Ω} , Ω ν = {x ∈ Π ν : Ω x = ∅} .
For any function u defined on Ω and any x ∈ Ω ν , we set

(u) x : Ω x → R t → u(x + tν).
The following Theorem is proved in [START_REF] Ambrosio | A compactness theorem for a new class of functions of bounded variation[END_REF].

Theorem 2.1. Let u ∈ L ∞ (Ω) be a function such that, for all ν ∈ S n-1 , i) (u) x ∈ SBV(Ω x ) for H n-1 a.e. x ∈ Ω ν , ii) Ων Ωx |(u) x |dt + H 0 (J (u)x ) dH n-1 (x) < +∞;
then, u ∈ SBV(Ω) and H n-1 (J u ) < +∞. Conversely, let u ∈ SBV(Ω) ∩ L ∞ (Ω) be such that H n-1 (J u ) < +∞. Then i) and ii) are satisfied. Moreover, we have iii) ∇u(x + tν), ν = (u) x (t), for a.e. t ∈ Ω x and H n-1 -a.e. x ∈ Ω ν , iv)

Ju | ν u , ν |dH n-1 (x) = Ων H 0 (J (u)x )dH n-1 (x).
We state a result (Proposition 1.16 in [START_REF] Braides | Some results on surface measures in calculus of variations[END_REF]) which will simplify the presentation of the slicing technics. Let us now introduce a sub-class of SBV functions. Definition 2.4. Let W(Ω) be the space of all u ∈ SBV(Ω) such that i)

H n-1 (J u \ J u ) = 0; ii) J u is the intersection of Ω with a finite number of (n -1)-dimensional simplexes; iii) u ∈ W k,∞ (Ω \ J u ) for every k ∈ N.
The following Theorem (see [START_REF] Cortesani | A density result in SBV with respect to non-isotropic energies[END_REF]) provides a density result which will be useful for the approximation proof.

Theorem 2.2. Let u ∈ SBV(Ω) ∩ L ∞ (Ω) be such that H n-1 (J u ) < +∞, ∇u ∈ L 2 (Ω), then there exists a sequence (u k ) k ⊂ W(Ω) such that i) u k → u strongly in L 1 (Ω); ii) ∇u k → ∇u strongly in L 2 (Ω); iii) lim sup k u k ∞ ≤ u ∞ ;
iv) for every A ⊂⊂ Ω and for every uppersemicontinuous function ϕ

: Ω × R × R × S n-1 → [0; +∞] such that ϕ(x, a, b, ν) = ϕ(x, a, b, -ν) for every x ∈ Ω, a, b ∈ R and ν ∈ S n-1 there holds lim sup k→∞ A∩Ju k ϕ(x, u - k , u + k , ν u k )dH n-1 ≤ A∩Ju ϕ(x, u -, u + , ν u )dH n-1 .

Approximate Differentiability and GSBV space

Due to the non coercivity of

Ω |∇u| 2 (1 -z 2 ) 2 dx in W 1,2
(Ω), we need to introduce a weaker definition for ∇u and a larger domain for (1.3).

Definition 2.5. Let x ∈ Ω be a Lebesgue point of u ∈ L 1 (Ω); we say that u is approximately differentiable at x if there exists L ∈ R n such that lim r→0 + L n (B(x, r)) -1 B(x,r) |u(y) -u(x) -L, y -x | r dy = 0.
If u is approximately differentiable at x then L, uniquely determined by this equality, is called the approximate differential of u at x and denoted by ∇u(x).

Remark 2.1. The concept of approximate differentiability of u at x can be rephrased as the convergence in L 1 loc (R n ) of the functions v r (y) = [u(x + ry) -u(x)]/r to the linear function Ly. As (v r ) r converges to Du in the sense of distributions, if u ∈ L 2 (Ω) and its approximate differential exists and belongs to L 2 (Ω; R n ), then u belongs to W 1,2 (Ω) and its weak derivative coincides with its approximate differential almost everywhere.

This definition of the differentiability satisfies the following result [START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems[END_REF] (Theorem 3.83).

Theorem 2.3. If v ∈ BV(Ω), then v is approximately differentiable almost everywhere in Ω.

Moreover, the approximate differential ∇v is the density of the absolutely continuous part of Dv with respect to the Lebesgue measure.

We need the three following technical Lemmas. 

Lemma 2.2. If u, v ∈ B(Ω), u is approximately differentiable at x and

lim r→0 + L n ({y ∈ B r (x) : u(y) = v(y)}) r n = 0, then v is
: v(x) = 0}.
While the proof of Lemma 2.3 is given in Appendix B, the proofs of Lemmas 2.2 and 2.4 may be found in [START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems[END_REF] (Proposition 3.71 and 3.73). Eventually, as no L ∞ bound is imposed by our functional (1.3), then it is useful to consider the following wider class

GSBV(Ω) = {u ∈ B(Ω) : ūN ∈ SBV(Ω) for any N ∈ N}.
The structure of the generalized derivative of a GSBV function is similar to that of a SBV function [START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems[END_REF] (Proposition 3.73 and Theorem 4.34). In this case, we have

J u = ∞ M =1 J ūN (2.3)
and J u is also countably H n-1 -rectifiable; for any N, M ≥ 1, it satisfies

ν ūN (x) = ν ūM (x), for H n-1 -a.e. x ∈ J ūN ∩ J ūM . (2.4)
Moreover, u is also approximately differentiable L n -a.e. in Ω and

∇u(x) = ∇ū N (x), for L n -a.e. x ∈ {|u| ≤ N }, (2.5 
)

∇ū N (x) = 0, for L n -a.e. x ∈ {|u| > N }, (2.6) 
Thus, relations (2.3), (2.4) and (2.5) provide a slightly more general meaning for ∇u, J u and ν u and then it ensures that our functional (1.3) is well defined in GSBV(Ω).

Γ-convergence result

This section is entirely devoted to the approximation process. In subsection 3.1 we define the domains for both E ε and E ε . Then, we give the main Theorem of this paper. In subsection 3.2 we prove, for ε > 0 fixed, that the minimization problems admit a solution. Eventually, in subsection 3.3, we give the complete proof of Γ-convergence for both E ε and E ε .

The functionals, their domains and the main Theorem

Formally, we define

E ε (u, z) = Ω (u -g) 2 dx + Ω |∇u| 2 (1 -z 2 ) 2 dx + Ω εϕ(x, ∇z) 2 + z 2 4ε dx, E ε (u, z) = Ω (u -g) 2 dx + Ω |∇u| 2 [η ε + (1 -z 2 ) 2 ]dx + Ω εϕ(x, ∇z) 2 + z 2 4ε dx.
Both functionals E ε and E ε are well defined in

D n (Ω) = W 1,2 (Ω) × W 1,2 (Ω; [0; 1]). Contrary to E ε ,
the functional E ε is not coercice for the Sobolev norm because the coefficient (1 -z 2 ) 2 removes the coercivity with respect to u. For that, we need to introduce a specific domain for E ε that ensures the existence of a minimizer. If, in addition, u is bounded, we have

|∇(u(1 -z 2 ))| 2 = |∇u(1 -z 2 ) -2uz∇z| 2 , ≤ 2|∇u| 2 (1 -z 2 ) 2 + 4 u ∞ |∇z| 2 .
It gives

Ω |∇(u(1 -z 2 ))| 2 dx ≤ 2 + 4 u ∞ λε E ε (u, z).
So, it is natural to set

D n (Ω) = (u, z) : u ∈ B(Ω), z ∈ W 1,2 (Ω; [0; 1]), ūN (1 -z 2 ) ∈ W 1,2 (Ω) for any N ≥ 1 .
Assuming (u, z) ∈ D n (Ω) does not ensure that u ∈ W 1,2 (Ω) and ∇u can not be defined as the gradient of u in the Sobolev space. For that, the gradient of u is interpreted as in Definition 2.5 and then, the following Proposition ensures that E ε (u, z) is well defined in D n (Ω).

Proposition 3.1. If (u, z) ∈ D n (Ω), then u is approximately differentiable in {x ∈ Ω : z(x) = 1} and z is approximately differentiable in Ω.
Moreover, almost every where in {x ∈ Ω : z(x) = 1}, we have

(1 -z 2 )∇u = ∇[u(1 -z 2 )] + 2uz∇z, (3.1)
where ∇ is the approximate derivation on the left hand side and the weak derivation in W 1,2 (Ω) on the right hand side.

Proof. As Ω is bounded, then the inclusion W 

(1 -z 2 )∇ū N = ∇[ū N (1 -z 2 )] + 2ū N z∇z,
where ∇ is the approximate derivation. As z, ūN (1 -z 2 ) ∈ W 1,2 (Ω), according to Theorem 2.3, their approximate derivatives correspond to their weak derivatives almost everywhere. According to Lemma 2.2, u and u(1 -z 2 ) are a.e. approximately differentiable in {|u| < N } and we have

∇ū N (x) = ∇u(x), ∇[ū N (1 -z 2 )](x) = ∇[u(1 -z 2 )](x), ūN (x) = u(x),
for a.e. every x ∈ {|u| < N }, which concludes the proof.

We consider the following functionals:

• E : B(Ω) → [0; +∞] defined by E(u) = Ω (u -g) 2 dx + Ω |∇u| 2 dx + Ju ϕ(x, ν u )dH n-1 if u ∈ GSBV(Ω)
, and E(u) = +∞ otherwise;

• E ε : B(Ω) × B(Ω) → [0; +∞] defined by E ε (u, z) = Ω (u -g) 2 dx + Ω |∇u| 2 (1 -z 2 ) 2 dx + Ω εϕ(x, ∇z) 2 + z 2 4ε dx if (u, z) ∈ D n (Ω)
, where (1 -z 2 )∇u is defined by the right hand side of (3.1). Moreover, we set

E ε (u, z) = +∞ otherwise; • E ε : B(Ω) × B(Ω) → [0; +∞] defined by E ε (u, z) = Ω (u -g) 2 dx + Ω |∇u| 2 [η ε + (1 -z 2 ) 2 ]dx + Ω εϕ(x, ∇z) 2 + z 2 4ε dx if (u, z) ∈ D n (Ω), E ε (u, z) = +∞ otherwise.
The main result of the paper is the following Theorem 3.1. If g ∈ L ∞ (Ω) and ϕ ∈ M(Ω), then we have the following assertions.

i) For any ε > 0, E ε admits a minimizer, denoted by (u ε , z ε ). Moreover, we can assume that

u ε (x) = g(x) on {x ∈ Ω : z ε (x) = 1}.
ii) For any (ε k ) k converging to 0 + , there exists a subsequence, still denoted by (ε k ) k , and u ∈ GSBV(Ω) such that (u ε k , z ε k ) k converges to (u, 0) almost everywhere and u is a minimizer of E.

If, by addition, η ε = o(ε), the same result holds true for E ε .

We set (P) :

Min{E(u) : u ∈ B(Ω)}, (P ε ) : Min{E ε (u, z) : (u, z) ∈ B(Ω) × B(Ω)}, ( P ε ) : Min{ E ε (u, z) : (u, z) ∈ B(Ω) × B(Ω)}.
Theorem 3.1 i) implies that, for ε > 0 fixed, (P ε ) and ( P ε ) are well posed problems, its proof is given in Section 3.2. Theorem ii) implies that, up to the extraction of a subsequence, the sequence of solutions of (P ε k ) and ( P ε k ) converge to a solution of (P), its proof is given in Section 3.4.

Existence result for (P ε ) and ( P ε )

We prove Theorem 3.1 i) for E ε , which is a straightforward consequence of Propositions 3.2 and 3.3.

The arguments for E ε are the same, so its proof is omitted.

Proposition 3.2. Let ϕ ∈ M(Ω) and ε > 0 be fixed. There exists

(u k , z k ) k a minimizing sequence of E ε such that (u k ) k is a bounded sequence in L ∞ (Ω), (z k ) k weakly converges to z in W 1,2 (Ω), (u k , z k ) k
converges almost everywhere to (u, z) ∈ D n (Ω) and u(x) = g(x) on {x : z(x) = 1}.

To prove it, the following Lemma is needed.

Lemma 3.1. For (u, z) ∈ D n (Ω) and ν ∈ S n-1 fixed, we have (u x , z x ) ∈ D 1 (Ω x ) for H n-1 -almost every x ∈ Ω ν (see the notations of definition 2.3), and

u x (t) = ∇u(x + tν), ν , z x (t) = ∇z(x + tν), ν , for almost every t ∈ Ω x \ {s : z(x + sν) = 1}.
The proof is given in Appendix C. Now, we prove Proposition 3.2.

Proof. Let (u k , z k ) k be a minimizing sequence for E ε . We fix N ≥ g ∞ and we consider the truncated functions u N k . As for the proof of Proposition 3.1, we get that u N k (1 -z 2 k ) and 1 -z 2 k are approximately differentiable almost everywhere and u N k is approximately differentiable almost everywhere in {x : z k (x) = 1}. According to relations (2.5) and (2.6), ∇u N k (x) = 0 almost everywhere in {x :

|u N k (x)| = N } and ∇u N k (x) = ∇u k (x) almost everywhere in {x : |u N k (x)| < N }. So, we get Ω |∇u N k | 2 (1 -z 2 k ) 2 dx ≤ Ω |∇u k | 2 (1 -z 2 k ) 2 dx. (3.2) We deduce that E ε (u N k , z k ) ≤ E ε (u k , z k ) and then (u N k , z k )
k is also a minimizing sequence. According to (2.1), we have

Ω |∇z k | 2 dx + Ω z 2 k dx ≤ 1 λε + 4ε E ε (u k , z k ),
and then (z k ) k is a bounded sequence of W 1,2 (Ω). So, there exists a subsequence, still denoted by (z k ) k , which converges almost everywhere to z ∈ W 1,2 (Ω) and z takes also its values in [0; 1]. For

w k = u N k (1 -z 2 k ), we have Ω |∇w k | 2 dx + Ω w 2 k dx ≤ 2 Ω |∇u N k | 2 (1 -z 2 k ) 2 dx + 2N 2 Ω |∇z k | 2 dx +N 2 Ω (1 -z 2 k ) 2 dx
and then (w k ) k is a bounded sequence of W 1,2 (Ω). Then, we may extract a subsequence, still denoted by (w k ) k , which converges almost everywhere to w ∈ W 1,2 (Ω). In particular, (u N k (x)) k converges for almost every x ∈ {y : z(y) = 1} to u(x). If x ∈ {y : z(y) = 1}, we set u(x) = g(x). This construction ensures that (u, z) ∈ D n (Ω).

Proposition 3.3. Let ϕ ∈ M(Ω) and ε > 0 be fixed. If (u k , z k ) k ⊂ D n (Ω) converges almost every- where to (u, z) ∈ D n (Ω), (u k ) k is a bounded sequence in L ∞ (Ω) and (z k ) k weakly converges to z in W 1,2 (Ω), then lim inf k→∞ E ε (u k , z k ) ≥ E ε (u, z). Proof. Fatou Lemma gives lim inf k→∞ Ω (u k -g) 2 dx ≥ Ω (u -g) 2 dx, lim inf k→∞ Ω z 2 k 4ε dx ≥ Ω z 2 4ε dx. ( 3.3) 
As ϕ oo = ϕ, we have

ϕ(x, v) = sup ν∈S n-1 1 ϕ o (x, v) v, ν .
Let ν ∈ S n-1 be fixed and A ⊂ Ω an open set. It gives

A ϕ(x, ∇z k ) 2 dx ≥ A 1 ϕ o (x, ν) 2 ∇z k , ν 2 dx. (3.4)
As (z k ) k weakly converges to z in W 1,2 (Ω), then ( ∇z k , ν ) k weakly converges to ∇z, ν in L 2 (A). Moreover, x → 1/ϕ o (x, ν) belongs to L ∞ (A), so we deduce that ( ∇z k , ν /ϕ o (x, ν)) k weakly converges to ∇z, ν /ϕ o (x, ν) in L 2 (A). As the L 2 -norm is lower semi-continuous with respect to the weak convergence, we deduce that lim inf

k→∞ A 1 ϕ o (x, ν) 2 ∇z k , ν 2 dx ≥ A 1 ϕ o (x, ν) 2 ∇z, ν 2 dx (3.5)
Let (ν i ) i be a countable dense family of S n-1 . We set

µ(A) = lim inf k→∞ A ϕ(x, ∇z k ) 2 dx, ψ i (x) = 1 ϕ o (x, ν i ) ∇z(x), ν i .
As sup i ψ i (x) = ϕ(x, ∇z(x)) 

|∇u k | 2 (1 -z 2 k ) 2 dx ≥ Ω |∇u| 2 (1 -z 2 ) 2 dx. (3.7)
We first consider the one-dimensional case n = 1 and then by a slicing argument we get the lower semi-continuity for the general case n ≥ 1.

For any δ ∈]0; 1[, we set A δ = {x ∈ Ω : z(x) < 1 -δ}. As n = 1, then z is a continuous function, A δ is an open set and (z k ) k uniformly converges to z. In particular, we have

A ⊂ {x ∈ Ω : z k (x) ≤ 1 -δ/2}
for k large enough, and so it yields

A δ |u k | 2 dx ≤ 1 1 -(1 -δ/2) 2 E ε (u k , z k ).
With the same argument as for Remark 2.1, we deduce that (u k ) k is a bounded sequence of W 1,2 (A δ ). We may assume that this sequence is weakly convergent to u in W 1,2 (A δ ) and as (z k ) k is uniformly convergent to z, we get

A δ |u | 2 (1 -z 2 ) 2 dx ≤ lim inf k→∞ A δ |u k | 2 (1 -z 2 k ) 2 dx.
Passing to the limit δ → 0 + gives

Ω |u | 2 (1 -z 2 ) 2 dx ≤ lim inf k→∞ Ω |u k | 2 (1 -z 2 k ) 2 dx.
Now, we generalize this result to the dimension n ≥ 1. With the notation u x introduced in Definition 2.3, using the previous result obtained in dimension 1, Lemma 3.1 and Fatou Lemma, give

A | ∇u, ν | 2 (1 -z 2 ) 2 dx = Aν Ax |u x (t)| 2 (1 -z x (t) 2 ) 2 dtdx, ≤ Aν lim inf k→∞ Ax |(u k ) x (t)| 2 (1 -(z k ) x (t) 2 ) 2 dtdx, ≤ lim inf k→∞ Aν Ax |(u k ) x (t)| 2 (1 -(z k ) x (t) 2 ) 2 dtdx, ≤ lim inf k→∞ Aν Ax | ∇u k (x + tν), ν | 2 (1 -z k (x + tν) 2 ) 2 dtdx, ≤ lim inf k→∞ A | ∇u k , ν | 2 (1 -z 2 k ) 2 dx, ≤ lim inf k→∞ A |∇u k | 2 (1 -z 2 k ) 2 dx,
for any open set A ⊂ Ω and every ν ∈ S n-1 . Let (ν i ) i be a dense and countable family of S n-1 . We set

ψ i = | ∇u, ν i | 2 (1 -z 2 ) 2 , ψ = |∇u| 2 (1 -z 2 ) 2 , µ(A) = lim inf k→∞ A |∇u k | 2 (1 -z 2 k ) 2 dx.
As µ is superadditive on A(Ω), according to Lemma 2.1, we may conclude

Ω |∇u| 2 (1 -z 2 ) 2 dx ≤ lim inf k→∞ Ω |∇u k | 2 (1 -z 2 k ) 2 dx.

Γ-convergence result for ε → 0 +

This section is dedicated to the proof of Theorem 3.1 ii). For that, we will prove the following Γ-convergence result.

Theorem 3.2. Let ϕ ∈ M(Ω) be fixed and (ε k ) k be a sequence which converges to 0 + . Then, we have

i) if u ∈ B(Ω), (u k , z k ) k ⊂ D n (Ω) and (u k , z k ) k converges to (u, 0) in L 1 (Ω), then lim inf k→∞ E ε k (u k , z k ) ≥ E(u); (3.8)
ii) for any u ∈ B(Ω), there exists a sequence

(u k , z k ) k ⊂ D n (Ω) such that (u k , z k ) k converges to (u, 0) in L 1 (Ω) and lim sup k→∞ E ε k (u k , z k ) ≤ E(u).
(3.9)

If η ε = o(ε), the same result holds true for E ε k . Moreover, the same sequence (u k , z k ) k than for E ε k may be used for (3.9).

The inequality for the lower Γ-limit

We prove the first inequality of Γ-convergence (3.8). As the domain of 

E ε k is included in the domain of E ε k , it
E ε k (ū N k , z k ) ≥ E(ū N )
holds true for any N ≥ 1, as

E ε k (ū N k , z k ) ≤ E ε k (u k , z k ) for any N ≥ g ∞ and (E(ū N )) N converges to E(u) when N converges to +∞, then we get (3.8). Let u ∈ L ∞ (Ω) and (u k , z k ) k ⊂ D n (Ω) such that (u k ) k is bounded in L ∞ (Ω) and (u k , z k ) k converges to (u, 0) in L 1 (Ω).
In the sequel, we emphasize on the domain of the function: for U an open subset of Ω, we adopt the following notation

F (u; U ) = U |∇u| 2 dx + Ju∩U ϕ(x, ν u )dH n-1 , F ε k (u k , z k ; U ) = U |∇u k | 2 (1 -z 2 k ) 2 dx + U ε k ϕ(x, ∇z k ) 2 + z 2 k 4ε k dx.
It is implicit that U = Ω in the previous notation if it is not mentioned. Fatou Lemma yields

lim inf k→∞ Ω (u k -g) 2 dx ≥ Ω (u -g) 2 dx
and then it suffices to prove that lim inf F ε k (u k , z k ) ≥ F (u). We perform the proof in two steps: the first step deals with dimension 1. The second generalizes it for dimension n ≥ 2.

The one-dimensional case. We first give a lower bound for the surface term in dimension n = 1.

As we argue like in [START_REF] Ambrosio | Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence[END_REF], [START_REF] Ambrosio | On the approximation of free discontinuity problems[END_REF], [START_REF] Braides | Some results on surface measures in calculus of variations[END_REF], we only mention the result. In this paragraph, we assume that Ω = I is an open interval and that ϕ is a constant m > 0. Moreover, we assume in this section that m is fixed. We denote the 1-D approximating functional by

G ε (u, z; I) = I |u (t)| 2 (1 -z(t) 2 ) 2 dt + I mε|z (t)| 2 + z(t) 2 4ε dt, (3.10)
where the domain is

D 1 (I) = {(u, z) : u ∈ L ∞ (I), z ∈ W 1,2 (I; [0; 1]), u(1 -z 2 ) ∈ W 1,2 (I)}.
We denote the lower Γ-limit, by

G -(u; I) = inf lim inf k→∞ G ε k (u k , z k ; I) ,
where the inf is taken over all sequence (u k , z k ) k ⊂ D 1 (I) such that (u k , z k ) converges almost everywhere to (u, 0) in I. We have the following 

I |u (t)| 2 dt + m 1/2 H 0 (J u ∩ I) ≤ G -(u; I).
Generalization to dimension n ≥ 2. We give the proof of (3.8).

Let u ∈ SBV(Ω) ∩ L ∞ (Ω) and (u k , z k ) k ⊂ D n (Ω) converging in L 1 (Ω) to (u, 0) such that (u k ) k is bounded in L ∞ (Ω).
Up to the extraction of a subsequence, we may assume that its convergence is pointwise almost everywhere. We have to prove that lim inf k→∞

F ε k (u k , z k ) ≥ F (u). (3.11)
We assume that lim inf F ε k (u k , z k ) is finite, otherwise the result is ensured.

Claim: We denote µ(A) = lim inf F ε k (u k , z k ; A). For any A ∈ A(Ω) and ν ∈ S n-1 , we have µ(A) ≥ A ∇u, ν 2 dx + Ju∩A 1 ϕ o (x, ν) 2 | ν, ν u | dH n-1 .
(3.12)

Let δ > 0 be fixed. As ϕ is uniformly continuous, there exists a finite family

(A i ) i ⊂ A such that diam(A i ) ≤ δ, ∪ i A i = A and, for any i ∈ I, it satisfies |ϕ(x, v) -ϕ(y, v)| ≤ δ|v|, ( 3.13) 
for any (x, y) ∈ A 2 i and v ∈ R n . We fix a i ∈ A i for all i ∈ I. Let ν ∈ S n-1 be fixed. According to (3.13), (2.1), for any (x, v)

∈ A i × R n , we have |ϕ(x, v) -ϕ(a i , v)| ≤ δ|v|, ≤ δλ -1 ϕ(a i , v).
We set C(δ) = (1 -δλ -1 ) 2 , then, for any x ∈ A i , we get

ϕ(x, ∇z k (x)) 2 ≥ C(δ)ϕ(a i , ∇z k (x)) 2 . (3.14) As (ϕ o ) o = ϕ, we get ϕ(x, v) = sup ν∈S n-1 1 ϕ o (x, ν) v, ν and then ϕ(a i , ∇z k (x)) 2 = sup ν∈S n-1 1 ϕ o (a i , ν) 2 ∇z k (x), ν 2 (3.15) 
According to (3.14) and (3.15),

F ε k (u k , z k ; A i ) is greater than A i |∇u k | 2 (1 -z 2 k ) 2 + C(δ) 1 ϕ o (a i , ν) 2 ε k ∇z k , ν 2 + z 2 k 4ε k dx.
With the notation introduced in Definition 2.3, (v) y is the function defined on (A i ) y ν as (v) y (t) = v(y + tν). According to Lemma 3.1, we have (u k ) y (t) = ∇u(y + tν), ν and (z k ) y (t) = ∇z(y + tν), ν , so Fubini Theorem implies that F ε k (u k , z k ; A i ) is greater than

(A i )ν (A i ) y ν |(u k ) y | 2 (1 -((z k ) y ) 2 ) 2 + C(δ) 1 ϕ o (a i , ν) 2 ε k |(z k ) y | 2 + ((z k ) y ) 2 4ε k , According to Claim, µ(A) ≥ A ψ i dx. As sup i ψ i (x) = |∇u(x)| 2 , Lemma 2.1 yields (3.

16).

Step 2: Jump Part. For any A ∈ A(Ω), we prove that

lim inf k→∞ F ε k (u k , z k ; A) ≥ Ju∩A ϕ(x, ν u ) dH n-1 . (3.17)
We consider (ν i ) i ⊂ S n-1 and µ as in Step 1 and we set

ψ i (x) = 1 ϕ o (x, ν i ) | ν u (x), ν i |.
According to Claim, we have µ(A)

≥ A ψ i dH n-1 . As sup i ψ i (x) = ϕ(x, ν u (x)), Lemma 2.1 yields (3.

17).

Conclusion: Let µ be the Borel measure on Ω defined for any Borelian A ⊂ Ω by

µ(A) = Ju∩A ϕ(x, ν u ) dH n-1 .
Let δ > 0 be fixed, according to the inner regularity of Borel measures (Proposition 1.43 in [START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems[END_REF]), there exists a compact

K ⊂ J u such that µ(J u \ K) ≤ δ, that is Ju\K ϕ(x, ν u ) dH n-1 ≤ δ. ( 3.18) 
We set 

K τ = {x ∈ Ω : dist(x, K) < τ }. First Step implies that Ω |∇u| 2 dx is finite. As K ⊂ J u , then we get H n-1 (K) < +∞
F ε k (u k , z k ; Ω) ≥ lim inf k→∞ F ε k (u k , z k ; K τ ) + lim inf k→∞ F ε k (u k , z k ; Ω \ K τ ), ≥ Ju∩Kτ ϕ(x, ν u ) dH n-1 + Ω\Kτ |∇u| 2 dx, ≥ Ju ϕ(x, ν u ) dH n-1 + Ω |∇u| 2 dx -2δ.
Taking the limit δ → 0 + concludes the proof.

The inequality for the upper Γ-limit

In this section we prove the upper inequality of Γ-convergence, that is ii) of Theorem 3.2, for both E ε k and E ε k . As for the lower inequality case, it is sufficient to prove it with u ∈ L ∞ (Ω). Indeed, if for any N ≥ 1 there exists a sequence (u k,N , z k,N ) k which converges to (ū N , 0) in L 1 (Ω) and which satisfies lim sup

k→∞ E ε k (u k,N , z k ) ≤ E(ū N ),
then by a diagonal extraction, there exists a sequence (u k , z k ) k which converges to (u, 0) in L 1 (Ω) and which satisfies (3.9). So, let u ∈ B(Ω) ∩ L ∞ (Ω) be fixed. We prove that there exists a sequence

(u k , z k ) k ⊂ D n (Ω) such that (u k , z k ) k converges to (u, 0) almost everywhere, lim sup k→∞ Ω |∇u k | 2 (1 -z 2 k ) 2 dx + Ω ε k ϕ(x, ∇z k ) 2 + z 2 k 4ε k dx is lower than Ω |∇u| 2 dx + Ju ϕ(x, ν u )dH n-1 and lim sup k→∞ Ω |∇u k | 2 η ε k dx = 0.
According to Theorem 2.2 and Proposition 2.2, with a diagonal extraction, it suffices to prove a weaker result, where Ju ϕ(x, ν u )dH n-1 is replaced by its approximation with a Minkowski content. More precisely, it suffices to prove the following Proposition 3.5. Let ϕ ∈ M(Ω) be fixed, (ε k ) k be a sequence converging to 0 + and

η k = o(ε k ). For u ∈ SBV(Ω) ∩ L ∞ (Ω), there exists a sequence (u k , z k ) k ⊂ D n (Ω) such that (u k , z k ) k converges to (u, 0) almost everywhere, (u k ) k is bounded in L ∞ (Ω) and lim sup k→∞ F ε k (u k , z k ) ≤ Ω |∇u| 2 dx + M ϕ o (J u ), lim sup k→∞ Ω |∇u k | 2 η k dx = 0. (3.20)
Proof. Without loss of generality, we may assume that |∇u| ∈ L 2 (Ω) and M ϕ o (J u ) < +∞, otherwise the result is obvious. If u ∈ W 1,2 (Ω), then J u = ∅ and the stationary sequence

u k = u, z k = 0 is a solution. If u ∈ W 1,2 (Ω), then J u = ∅ and (1 -z 2 k ) 2 has to be infinitesimal near of J u . For ρ > 0, we set (J u ) ρ = {x ∈ Ω : d Ju ϕ o (x) < ρ}. (3.21)
We separate Ω in three parts:

(J u ) b k , (J u ) a k +b k \ (J u ) b k , Ω \ (J u ) a k +b k (3.22) with a k = -4ε k ln(ε k ), b k = √ ε k η k . ( 3.23) 
Let Ψ k defined by 

Ψ k (x) =      1 ∀x ∈ (J u ) b k /2 , 2 -2d Ju ϕ o (x)/b k ∀x ∈ (J u ) b k \ (J u ) b k /2 , 0 ∀x ∈ Ω \ (J u ) b k . ( 3 
|∇Ψ k | ≤ 2 b k λ . We set u k = (1 -Ψ k )u and then u k ≡ u in Ω \ (J u ) b k . As (b k ) k converges to 0 then u k converges to u almost everywhere. As we have ∇u k = -∇Ψ k u + (1 -Ψ k )∇u, we get Ω |∇u k | 2 η k dx ≤ η k u ∞ 8 b 2 k λ 2 L n ((J u ) b k ) + 2 Ω |∇u| 2 dx .
As M ϕ o (J u ) < +∞, there exists (ω k ) k a sequence which converges to 0 + such that

L n ((J u ) b k ) ≤ 2b k (M ϕ o (J u ) + ω k ), (3.25) 
it gives

Ω |∇u k | 2 η k dx ≤ η k u ∞ 16 b k λ 2 (M ϕ o (J u ) + ω k ) + 2 Ω |∇u| 2 dx . As η k /b k → 0 and η k → 0, we deduce that lim sup k→∞ Ω |∇u k | 2 η k dx = 0
and then the second inequality of (3.20) is proven. It remains to prove the first one. For that, we set

z k = 1 in (J u ) b k and z k = ε 2 k in Ω\(J u ) a k +b k . In (J u ) a k +b k \(J u ) b k we adopt the following construction: we introduce θ k (t) = ε 2 k exp t 2ε k and we set zk (t) =      1 ∀t ∈ [0; b k ], θ k (a k + b k -t) ∀t ∈]b k ; a k + b k ], ε 2 k ∀t ∈]a k + b k ; +∞[. (3.26)
This is a continuous and decreasing function defined on [0; +∞[, moreover, for any

t ∈]b k ; a k + b k [, it satisfies ε k (z k (t)) 2 = (z k (t)) 2 4ε k . (3.27) We set z k = zk • d Ju ϕ o . As z k is constant in (J u ) b k ∪ (Ω \ (J u ) a k +b k ), we have F ε k (u k , z k ) = Ω\(Ju) a k +b k |∇u| 2 (1 -ε 4 k ) 2 dx + (Ju) a k +b k \(Ju) b k |∇u| 2 (1 -z 2 k ) 2 dx + (Ju) a k +b k \(Ju) b k ε k ϕ(x, ∇z k ) 2 + z 2 k 4ε k dx + ε 3 k 4 L n (Ω \ (J u ) a k +b k ) + 1 4ε k L n ((J u ) b k ).
(3.28)

As |∇u| ∈ L 2 (Ω) and (a k + b k ) k converges to 0, the first term of (3.28) converges to Ω |∇u| 2 dx. As z k ∞ ≤ 1, the second term converges to 0. As Ω is a bounded domain, the fourth term converges to 0. According to (3.25), the fifth term is lower than 1 2 ε k (M ϕ o (J u ) + ω k ). So, the fifth term converges to 0. To compute the limit of (F ε k (u k , z k )) k , it remains to study the convergence of

A k (z k ) = (Ju) a k +b k \(Ju) b k ε k ϕ(x, ∇z k ) 2 + z 2 k 4ε k dx.
For almost every x ∈ (J u ) a k +b k \ (J u ) b k , we have

∇z k = z k • d Ju ϕ o ∇d Ju ϕ o .
It gives

A k (z k ) = (Ju) a k +b k \(Ju) b k ε k (z k • d Ju ϕ o ) 2 ϕ(x, ∇d Ju ϕ o ) 2 + (z k • d Ju ϕ o ) 2 4ε k dx.
According to Proposition 2.1, ϕ(x, ∇d Ju ϕ o (x)) = 1 for almost every x. So, we may write

A k (z k ) = (Ju) a k +b k \(Ju) b k ε k (z k • d Ju ϕ o ) 2 + (z k • d Ju ϕ o ) 2 4ε k ϕ(x, ∇d Ju ϕ o )dx.
We may apply an anisotropic version of the coarea formula (see [START_REF] Maso | Integral representation on bounded variation spaces of Γ-limits of variational integrals[END_REF]), it gives

A k (z k ) = a k +b k b k ε k z k (t) 2 + zk (t) 2 4ε k Ω ϕ(x, D1 (Ju)t ) dt. (3.29) We set H ϕ (t) = Ω ϕ(x, D1 (Ju)t ), A ϕ (s) = s 0 H ϕ (t)dt.
Applying another time coarea formula gives 

A ϕ (s 2 ) -A ϕ (s 1 ) = s 2 s 1 Ω ϕ(x, D1 (Ju)t ) dt, = (Ju)s 2 \(Ju)s 1 ϕ(x, ∇d Ju ϕ o )dx, = L n ((J u ) s 2 \ (J u ) s 1 ). So, A ϕ ∈ W
A k (z k ) = a k +b k b k ε k z k (t) 2 + zk (t) 2 4ε k H ϕ (t)dt, = a k +b k b k zk (t) 2 2ε k H ϕ (t)dt, = z2 k (a k + b k ) 2ε k A ϕ (a k + b k ) - z2 k (b k ) 2ε k A ϕ (b k ) - 1 ε k a k +b k b k z k (t)z k (t)A ϕ (t).
The first term obviously converges to 0. As for (3.25), we have

A ϕ (b k ) ≤ 2b k (M ϕ o (J u ) + ω k )
and then the second term converges to 0 too. As s → A ϕ (s) is non decreasing, then

A ϕ (t) ≤ 2t(M ϕ o (J u ) + ω k ) for any t ∈ [b k ; a k + b k ].
For the last term, we apply another time this inequality, it gives

- 1 ε k a k +b k b k z k (t)z k (t)A ϕ (t)dt ≤ - (M ϕ o (J u ) + ω k ) ε k a k +b k b k 2tz k (t)z k (t)dt. ( 3.30) 
Integrating by parts yields 

a k +b k b k 2tz k (t)z k (t)dt = (a k + b k )z k (a k + b k ) 2 -b k zk (b k ) 2 - a k +b k b k zk (t) 2 dt. ( 3 
(a k + b k )z k (a k + b k ) 2 -b k zk (b k ) 2 = o(ε k ) (3.32)
and equation (3.27) gives 

a k +b k b k zk (t) 2 dt = 2ε k a k +b k b k |z k (t)|z k (t)dt, = ε k (1 -ε 2 k ). ( 3 
F ε k (u k , z k ) ≤ Ω |∇u| 2 + M ϕ o (J u ).
To conclude the proof, it suffices to notice that (u k , z k ) k ⊂ D n (Ω).

Compactness result for (P ε ) ε and ( P ε ) ε

In this Section we prove Theorem 3.1, ii). As the same arguments hold for both cases, we only give the proof for (P ε ) ε . According to Theorem 3.1 i), for any ε > 0, there exists (u ε , z ε ) a minimizer of E ε . According to (3.2), with N ≥ g ∞ , we have

L n ({x ∈ Ω : |u ε (x)| > N }) > 0 ⇒ E ε (u N ε , z ε ) < E ε (u ε , z ε ).
We deduce that u ε ∞ ≤ N for any ε > 0. For

ω ε = u ε (1 -z 2 ε ), we get ∇ω ε = ∇u ε (1 -z 2 ε ) -2u ε z ε ∇z ε . It yields Ω |∇ω ε |dx ≤ L n (Ω) 1/2 Ω |∇u ε | 2 (1 -z 2 ε ) 2 dx 1/2 + 2N Ω |∇z ε |z ε dx. (3.34) Applying the inequality 2ab ≤ a 2 + b 2 with a = zε 2ε 1/2 and b = ε 1/2 |∇z ε | gives Ω |∇z ε |z ε dx ≤ Ω ε|∇z ε | 2 dx + Ω z 2 ε 4ε dx. ( 3 

.35)

According to ellipticity inequality (2.1), we get 

Ω ε|∇z ε | 2 dx ≤ 1 λ E ε (u ε , z ε ). ( 3 
Ω |∇ω ε |dx ≤ L n (Ω) 1/2 (E ε (u ε , z ε )) 1/2 + 1 + 1 λ E ε (u ε , z ε ).
Let (ε k ) k be a sequence converting to 0 + . As E ≡ +∞, according to Theorem 3.2 ii), we deduce that

(E ε k (u ε k , z ε k )) k is bounded. So, (ω ε k ) k is bounded in BV(Ω)
and there exists a subsequence, still denoted by (ω ε k ) k which converges almost everywhere to ω ∈ BV(Ω). As Ω z 2 k dx ≤ ε k E ε k (u ε k , z ε k ), then (z k ) k converges to 0 in L 2 (Ω) and there exists a subsequence, still denoted by (z k ) k , which converges almost everywhere to 0. As ω ε k = u ε k (1 -z 2 ε k ), then (u ε k ) k converges almost everywhere to u ∈ L ∞ (Ω). According to Theorem 3.2, u is obviously a minimizer of E.

Conclusion

This paper is the theoretical background needed to introduce our new model. A forthcoming paper will present the numerical point of view. The main assumption of this work is the existence of an anisotropic metric ϕ which must represent the anisotropy of the image. For that, we may consider the case where ϕ is a Riemannian metric. That is, ϕ is given by a field of symmetric definite positive matrices M such that ϕ(x, v) = M(x)v, v 1/2 .

In order to favorize elongated sets, M is constrained to take its values in a compact sub manifold of symmetric definite positive matrices with fixed spectrum. In order to combine the segmentation task with the computation of this metric, the couple (u, M) must minimize the functional

Ω (u -g) 2 dx + Ω |∇u| 2 dx + Ju Mν u , ν u 1/2 dH n-1 + Ω DM n+α dx,
where α > 0 is fixed in order to satisfy the regularity condition ϕ ∈ M(Ω). Indded, according to the Sobolev embedding Theorem, the finiteness of the last term ensures that the metric is uniformely continuous. Existence of a minimizer of this energy and approximation with Γ-convergence are straightforward consequences of what we have presented in this article.

for any x, y ∈ C and v ∈ R n . It gives

M ϕ o (K i ) ≤ C∈C M ϕ o (K i ∩ C), ≤ (1 + ε(η)) C∈C M ϕ o C (K i ∩ C), ≤ (1 + ε(η)) C∈C K i ∩C ϕ C (ν)dH n-1 , ≤ (1 + ε(η)) 2 C∈C K i ∩C ϕ(x, ν)dH n-1 , ≤ (1 + ε(η)) 2 K i ϕ(x, ν)dH n-1 .
Taking the limit η → 0 + gives the result of Second Step for each compact K i . To conclude the proof of Proposition 2.2, it suffices to notice that

M ϕ o (K) ≤ i M ϕ o (K i ).

B Proof of Lemma 2.3

Let x ∈ Ω be a point such that v 1 , v 2 are approximatively differentiable at x. First, we remark that x is a Lebesgue point for v 1 , that is lim 

C Proof of Lemma 3.1

As Ω is bounded, then W 1,2 (Ω) ⊂ SBV(Ω) and then, according to Calderón-Zygmund Theorem (3.83 in [START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems[END_REF]), the derivative in the Sobolev sense is equal to the approximate differential for almost every point in Ω. Moreover, according to Theorem 3.107 of [START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems[END_REF], for v ∈ SBV(Ω) and ν ∈ S n-1 , we have ∇v(x + tν), ν = ∇v x (t) a.e. t ∈ Ω x for almost every x ∈ Ω ν . According to Fubini Theorem, if v ∈ W 1,2 (Ω), then v x ∈ W 1,2 (Ω x ) for almost every x ∈ Ω. Applying this property with v = z and v = u(1 -z 2 ) concludes the proof of Lemma 3.1.

Lemma 2 . 1 .

 21 Let A(Ω) be the family of open sets of Ω, µ : A(Ω) → [0; +∞[ be a superadditive function on disjoint open sets, λ be a positive measure on Ω and ψ k : Ω → [0; +∞] be a countable family of Borel functions such that µ(A) ≥ A ψ k dλ for every A ∈ A(Ω). Set ψ = sup k ψ k , then µ(A) ≥ A ψdλ for every A ∈ A(Ω).

Proposition 3 . 4 .

 34 Let I ⊂ R be an open interval and u ∈ B(I). If G -(u; I) < ∞, then u ∈ SBV(I) and

  .31) According to the definitions of (a k , b k , z k ), (3.23) and (3.26), we have

  r→0 + L n (B(x, r)) -1 B(x,r) |v 1 (y) -v 1 (x)|dy = 0. (B.1)Then, we decomposeL n (B(x, r)) -1 B(x,r) |v 1 (y)v 2 (y) -v 1 (x)v 2 (x) -v 1 (x)∇v 2 (x) + v 2 (x)∇v 1 (x), y -x | r dy ≤ L n (B(x, r)) -1 B(x,r) |v 2 (x)| |v 1 (y) -v 1 (x) -∇v 1 (x), y -x | r dy +L n (B(x, r)) -1 B(x,r) |v 1 (y)| |v 2 (y) -v 2 (x) -∇v 2 (x), y -x | r dy +L n (B(x, r)) -1 B(x,r) |(v 1 (y) -v 1 (x)) ∇v 2 (x), y -x | r dy.As v 1 , V 2 are approximatively differentiable at x and v 1 ∈ L ∞ (Ω) the two first terms converge to 0. As we have | ∇v 2 (x), y -x |/r ≤ |∇v 2 (x)| for any y ∈ B(x, r), according to (B.1), the last term also converges to 0.

  is sufficient to prove the result only for E ε k . Moreover, it is also sufficient to prove this result with (u k ) k and u uniformely bounded in L ∞ (Ω). Indeed, if lim inf

	k→∞

  .[START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems[END_REF] This definition ensures that Ψ k is a continuous function with support in (J u ) b k , which is equal to 1 in a neighborhood (J u ) b k /2 of J u and which shrinks to J u when k → ∞. Ellipticity inequality(2.1) yields Ju ϕ o is Lipschitzian and Rademacher Theorem ensures that ∇d Ju ϕ o exists for almost every x ∈ Ω. It gives

	|d Ju ϕ o (x) -d Ju ϕ o (y)| ≤ d ϕ o (x, y),
	≤ λ -1 |x -y|.
	So, d

  1,1 loc (]0; +∞[) and ∇A ϕ = H ϕ almost everywhere. Using equality (3.27) and then integrating by parts (3.29) gives
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where the integration is done over the product measure dt dH n-1 (y). With the one-dimensional notations (3.10), it gives

where m = C(δ)

We may apply Lemma 3.4, with I = (A i ) y ν and u = (u) y , it gives that (u) y ∈ SBV((A i ) y ν ), for H n-1 almost every y ∈ (A i ) ν and we have

We deduce µ(A

If we replace m by its value, it gives

As the function ϕ is uniformly continuous, then ϕ o is also uniformly continuous and there exits a function, still denoted by C(δ), such that C(δ) → 1 for δ → 0 + and which satisfies

As µ is superadditive, we get

We take δ → 0 + , it concludes the proof of the Claim. Hereafter, we divide the remaining part of the proof in two steps corresponding on the estimate on the regular part and on the jump part of u.

Step 1: Regular Part. For any open set A ⊂ Ω, we prove the following inequality

Let (ν i ) i ⊂ S n-1 be a countable set of point which is dense in S n-1 . We set

A Proof of Proposition 2.2

We prove this result in two steps: we first assume that ϕ is homogeneous and after we generalize the result in the inhomogeneous setting.

First

Step: We assume that K ⊂ Ω is a (n -1)-simplex and ϕ is homogeneous, i.e. it does not depend on x ∈ Ω.

With the same notations as in (3.21), we set K r = {x ∈ Ω : d K ϕ o (x) < r}. We separate K r in two parts:

As ϕ is an elliptic metric (ϕ is comparable to the euclidean distance) and ∂K is a finite union of (n -2)-dimensional simplexes, we have

As we assume that ϕ is homogeneous,

where ν is an unitary and normal vector to K. As ϕ oo = ϕ, we deduce that

According to (A.1) and (A.2), we conclude that M ϕ o (K) ≤ ϕ(ν)H n-1 (K).

Second

Step: We assume that K = ∪ i K i is a finite union of (n -1)-simplexes and that ϕ depends on x ∈ Ω.

We may assume that K ϕ(x, ν)dH n-1 is finite, otherwise the result is ensured. As ϕ ∈ M(Ω), there exists λ > 0 such that

and then H n-1 (K) is also finite. For t ∈ R and i ∈ {1, . . . , n}, we set Π i t = {x ∈ Ω : x, e i = t}. Thus, for k ∈ N fixed, t ∈ R : H n-1 (K ∩ Π i t ) > 1/k is finite and then, for any i ∈ {1, . . . , n}, the set t ∈ R : H n-1 (K ∩ Π i t ) > 0 is at most countable. So, if we consider the cubes whose faces are orthogonal to the vectors of the orthogonal basis, there exists a partition C of Ω by cubes with diameter less than η, such that for any C ∈ C, we have