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Abstract. Because of the threat posed by advanced multi-step attacks,
it is difficult for security operators to fully cover all vulnerabilities when
deploying countermeasures. Deploying sensors to monitor attacks ex-
ploiting residual vulnerabilities is not sufficient and new tools are needed
to assess the risk associated with the security events produced by these
sensors. Although attack graphs were proposed to represent known multi-
step attacks occurring in an information system, they are not directly
suited for dynamic risk assessment. In this paper, we present the Hybrid
Risk Assessment Model (HRAM), a Bayesian network-based extension to
topological attack graphs, capable of handling topological cycles, making
it fit for any information system. This hybrid model is subdivided in two
complementary models: (1) Dynamic Risk Correlation Models, correlat-
ing a chain of alerts with the knowledge on the system to analyse ongoing
attacks and provide the hosts’ compromise probabilities, and (2) Future
Risk Assessment Models, taking into account existing vulnerabilities and
current attack status to assess the most likely future attacks. We vali-
date the performance and accuracy of this model on simulated network
topologies and against diverse attack scenarios of realistic size.

1 Introduction

Information systems concentrate invaluable information resources, generally com-
posed of the computers and servers that process the data of an organisation.
Given the number and complexity of attacks, security teams need to focus their
actions on the most important attacks, in order to select the most appropriate
security controls [20]. Importance in our context is related to the risk the attack
induces on the missions of the information system. The most impacting attacks
are multi-step attacks. A multi-step attack is a complex attack composed of sev-
eral successive steps. Each step may be illegitimate (e.g., the exploitation of a
vulnerability in software) or legitimate (e.g., a user with administrators privilege
accessing sensitive data). For example, an attacker first subverts a client com-
puter using a spear-phishing email exploiting a vulnerability, then attacks the
Active Directory to get administrator privileges, and, thanks to this privilege,
accesses a database server that contains sensitive data.



In order to defend against complex attacks, we need to model them and
assess associated risks. But risk assessment, and in particular dynamic risk as-
sessment (i.e., regular update of risk assessment in operational time, according
to the occurring attacks) is not easy. Several models have been proposed in the
literature to formalise multi-step attacks, mainly tree or graph-based models.
An attack graph, for example, is a risk analysis model grouping all the paths an
attacker may follow in an information system. Several tools to generate attack
graphs exist. Their use is attractive because they leverage already available in-
formation (vulnerability scans and network topology). However, attack graphs
are static and do not contain detections or attack status and thus are not fitted
for dynamic risk assessment. Several extensions of static risk assessment models
have been proposed in the literature to accommodate dynamic risk assessment,
but they suffer from common limitations, such as existing cycles.

According to the National Information Assurance Glossary [18], a risk is “a
measure of the extent to which an entity is threatened by a potential circum-
stance or event, and typically a function of 1) the adverse impacts that would
arise if the circumstance or event occurs; and 2) the likelihood of occurrence”.
As a result, the risk is generally considered in Information Security Management
Systems (ISMS) as the combination of the likelihood of the exploitation of vul-
nerabilities and their impact on the system. Determining the risk in a system is
the result of a 5-step process detailed by the National Institute of Standards and
Technology (NIST) in [19], as shown in Figure 1. In this process, the step (2.c)
is the determination of the likelihood of occurrence of the attacks. It takes as
input the potential threat sources and the vulnerabilities and attack predispos-
ing conditions. Once the likelihood of attacks has been assessed, the next step
is to determine their magnitude of impact. Finally, from likelihood and impact,
we can compute the risk. In order to make risk assessment dynamic, the process
is maintained over time and its results have to be communicated regularly to
security management operators.

Fig. 1. Risk Assessment Process [19]
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At an organisational level, several methods help to analyse the risk of infor-
mation systems and keep those systems secure. For example, ISO/IEC 27000 [10]
is the ISMS Family of Standards providing recommendations on security, risk
and control in an information system. In particular, ISO/IEC 27005 [9] describes
a methodology to manage the risks and implement an ISMS. Another well-known
method for the analysis of risks in information systems is EBIOS (Expression
of Needs and Identification of Security Objectives) [5]. These standards present
global methodologies to manage risks in organisations. They generally combine
(1) technical tools (e.g., vulnerability scanner) to assess, for example, the vul-
nerabilities and the likelihood of attacks and (2) organisational methodologies
(e.g., stakeholder interviews) to identify the critical assets and consequences of
successful attacks.

The technical tools for dynamic risk assessment usually do not include a
model to detect the occurring multi-step attacks and assess their likely futures.
In this paper, we build such a model that aims at assessing the risk brought
by the exploitation of technical vulnerabilities in a system. This model mostly
focuses on the step (2.c) of the NIST’s risk assessment process of Figure 1: the
determination of the likelihood of occurrence of attacks. Indeed, methodologies
to estimate attacks likelihood do not depend on the system in which they are
implemented, contrary to the impact assessment which may require adaptation
for the target organisation. Thus, in our experimentations, we evaluate our risk
model only by its likelihood results, by assuming that all compromised assets
induce the same impact.

The model we propose in this paper is a new hybrid model combining attack
graphs and Bayesian networks for dynamic risk assessment (DRA). This model is
subdivided into two complementary models: (1) The Dynamic Risk Correlation
Models (DRCMs) correlate a chain of alerts with the knowledge on the system
to analyse ongoing attacks and provide the probabilities of hosts being com-
promised, (2) The Future Risk Assessment Models (FRAMs) take into account
existing vulnerabilities and the current attack status to assess which potential
attacks are most likely to occur. DRCMs aim at threat likelihood assessment,
identifying where the attack comes from. It outputs probabilities that attacks
are completed and that assets of the information system are compromised. These
probabilities provide security operators with the capability to manage priorities
according to the likelihood of ongoing attacks. FRAMs aim at threat mitiga-
tion, identifying the most likely and impacting next steps for the attacker. With
respect to the current state of the art, our contributions are twofold. First, we
provide an explicit model for DRA and a process for handling cycles. Second,
our model provides a significant performance improvement in terms of number of
nodes and vulnerabilities over the existing state of the art, enabling scalability.
While classic Bayesian attack graph models are usually demonstrated over a few
nodes, we show that our model can be realistically computed at the scale of an
enterprise information system.

This paper is organised as follows: Section 2 presents the state of the art of
the multi-step attack models. Section 3 presents topological attack graphs and



expose the problem of cycles. Then, it presents the architecture of the Hybrid
Risk Assessment Model, composed of DRCMs and FRAMs. Section 4 validates
the design of the hybrid model on simulated topologies. Section 5 compares our
work with the related work, before concluding and presenting our future work,
in Section 6.

2 State of the art

Initially proposed for risk analysis, attack graphs have been extended as Bayesian
attack graphs, to include ongoing attacks probability information, which is re-
quired for dynamic risk assessment.

2.1 Attack graphs

An attack graph is a model regrouping all the paths an attacker may follow in an
information system. It has been first introduced by Phillips and Swiler in [24].
A study of the state of the art about attack graphs compiled from early liter-
ature on the subject has been carried out by Lippmann and Ingols [16], while
a more recent one was made available by Kordy et al. [14]. Topological attack
graphs are based on directed graphs. Their nodes are topological assets (hosts,
IP addresses, etc.) and their edges represent possible attack steps between such
nodes [11]. Attack graphs are generated with attack graph engines. There are
three main attack graph engines: (1) MulVAL, the Multi-host, Multi-stage Vul-
nerability Analysis Language tool created by Ou et al. [21], (2) the Topological
Vulnerability Analysis tool (TVA) presented by Jajodia et al. in [11,12] (com-
mercialised under the name Cauldron) and (3) Artz’s NetSPA [2].

Attack graphs are attractive because they leverage readily available informa-
tion (vulnerability scans and network topology). However, they are not adapted
for ongoing attacks, because they cannot represent the progression of an attacker
nor be triggered by alerts. Thus, they must be enriched to provide the function-
alities needed to perform dynamic risk assessment, for example using Bayesian
networks.

2.2 Bayesian attack graphs

A Bayesian network is a probabilistic graphical model introduced by Judea
Pearl [22]. It is based on a Directed Acyclic Graph, where nodes represent
random variables, and edges represent probabilistic dependencies between vari-
ables [3]. For discrete random variables, these dependencies can be specified
using a Conditional Probability Table associated with each child node. Bayesian
networks are particularly interesting for computing inference, i.e. calculating the
probability of each state of all nodes of the network, given evidences, i.e. nodes
that have been set to a specific state. In the general case, exact inference is
a NP-hard problem and can be done efficiently only on small networks, using
the algorithm of Lauritzen and Spiegelhalter [15]. However, if the structure of



the graph is a polytree, it can be done in quasi-linear time, using Pearl’s Belief
Propagation Algorithm [23].

A Bayesian attack graph, introduced by Liu and Man in [17] is an extension of
an attack graph based on a Bayesian network, constituted of nodes representing a
host in a specific system state (a true state means that the host is compromised)
and edges representing possible exploits that can be instantiated from a source
host to a target host. The major concern of building such a Bayesian network
from an attack graph is due to the structure of a Bayesian network that must be
acyclic, while attack graphs almost always contain cycles. To avoid cycles, Liu
and Man assume that an attacker will never backtrack once reaching a compro-
mised state, but do not detail how such assumption is used to build the model.
In [7], Frigault and Wang use Bayesian inference in Bayesian Attack Graphs to
calculate security metrics in an information system. Xie et al. present in [27]
a Bayesian network used to model the uncertainty of occurring attacks. The
Bayesian attack graph is enhanced with three new properties: separation of the
types of uncertainty, automatic computation of its parameters and insensitivity
to perturbations in the parameters choice. This model also adds nodes dedicated
to dynamic security modelling: an attack action node models whether or not an
action of the attacker has been performed, a local observation node models inac-
curate observations (IDS alerts, logs, etc.). In [4], Cole uses a Credal network (a
Bayesian network with imprecise probabilities) to represent parameters uncer-
tainty and detect attack paths. He demonstrates that the uncertainty is too high
for single-step attacks, but for multi-step attacks, it is possible to achieve high
confidence in the detections. However, the computational costs of inferences in
a Credal network are prohibitive to use it with real network topologies.

Bayesian networks add to the advantages of direct acyclic graphs powerful
tools to compute and propagate probabilities between nodes of the graph. More-
over, the dependencies between nodes are not AND or OR relations anymore,
but are probabilities of occurrence with a set of predecessors, which is much
more expressive. It is thus a very interesting model for dynamic risk assessment.
However, two important problems arise when we want to use Bayesian networks
for modelling ongoing multi-step attacks: (1) performance, as the inference in
a Bayesian network can be very complex, and (2) a Bayesian network must be
based on an acyclic graph, which is generally not the case of attack graphs.
Heuristics allow to suppress cycles, but they also suppress paths that could be
followed by an attacker.

3 Hybrid Risk Assessment Model

Given the advantages brought by Bayesian Attack Graphs (expressiveness, dy-
namicity, powerful probability propagation tools), they provide a strong founda-
tion for dynamic security modelling. Our proposal extends Bayesian Networks
to be used for DRA with real-scale information systems.



3.1 Topological Attack Graph

We will first present the main input from which we build the HRAM: a topologi-
cal attack graph. A topological attack graph (TAG) is a directed graph consisting
of topological assets, the nodes representing the assets of an information system
(e.g., an IP address or a computer cluster), and attack steps, the edges repre-
senting an attack from the parent topological asset to the child one. A TAG is
generated with an attack graph engine such as MulVAL [21] or TVA [12] from a
vulnerability scan and a flow matrix. Each attack step features a type of attack,
describing how the attacker can move between nodes (e.g., exploitation of a vul-
nerability, credential theft). Depending on the type of attack, each attack step
is associated with a set of conditions. A condition is a fact that needs to be ver-
ified, for an attack step to be possible (e.g., “a vulnerability is exploited on the
destination host”). It is associated with a probability of successful exploitation.
For vulnerability exploitation conditions, in our experiments, we use an approx-
imation of the probability of successful exploitation using information coming
from the Exploitability Metrics of the Common Vulnerability Scoring System
(CVSS) [6]. It is deduced from (1) the Attack Complexity (AC), (2) Privileges
Required (PR), and (3) User Interaction (UI) values, as well as the Attack Vec-
tor (AV), which is taken into account when constructing the topological attack
graph. Some attack steps and topological assets are associated with a sensor, an
oracle raising an alert when the attack step has been detected as completed or
the topological asset has been detected as compromised. A sensor represents, for
example, a Host or a Network Intrusion Detection System, a Security Informa-
tion and Event Management system, or a human report.

3.2 Solution to the cycle problem

A TAG is a directed graph model defined globally for a system, containing all
potential attacks that may happen. It does not contain the position of the at-
tacker and thus almost always contains cycles, for example inside local networks
in which any host can attack any other one. A simple example of a cycle is shown
in Figure 2a.

The common assumption to break cycles in attack graphs is that an attacker
will not backtrack, i.e., attack again a node he has already successfully exploited.
This is reasonable because backtracking does not bring new attack paths. It has
been properly justified by Ammann et al. in [1] and by Liu and Man in [17].
However, the state of the art solutions for Bayesian modelling of an attack graph,
such as the ones of Liu and Man [17] and Poolsappasit et al. [25], use this
assumption to arbitrarily delete possible attack steps. In reality, in a single model
containing all potential attacks, it is impossible to delete cycles without adding
new nodes. It would require to know a priori which path the attacker will choose.
A solution to break cycles while keeping all possible paths is to enumerate them,
starting from all possible attack sources, or targeting all possible targets, keeping
in nodes a memory of the path of the attacker. Figure 2b shows an example of
such a cycle breaking process. In this figure, the node tn1tn2tn3 means that



Fig. 2. Cycles in a topological attack graph
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the attacker controls the node tn3, having first compromised tn1, then tn2. We
discuss, in Section 3.4, how we apply this process for Dynamic Risk Correlation
Models and, in Section 3.5, for Future Risk Assessment Models. Unfortunately,
this process causes a combinatorial explosion in the number of nodes of the
model. We also describe in Sections 3.4 and 3.5 how we deal with this challenge
in HRAMs, thanks to pruning functions.

3.3 Hybrid Risk Assessment Model Architecture

Our approach distinguishes two sub-objectives of determining the likelihood of
occurrence within dedicated models: Dynamic Risk Correlation Models (DR-
CMs) and Future Risk Assessment Models (FRAMs), combined to provide a
complete Hybrid Risk Assessment Model (HRAM), whose architecture is pre-
sented in Figure 3.

We take as input a TAG generated by an attack graph engine (e.g., Mul-
VAL [21] or TVA [12]). First, we build DRCMs from this TAG and the set of
current alerts at time t. The reconciliation of the probabilities given by the sev-
eral DRCMs gives the current attack status at time t. Then, we build FRAMs
which give the likely futures of the system, according to this current status. The
combination of these likely futures with an impact analysis results in the risk of
the system.

3.4 Dynamic Risk Correlation Model

Building process The goal of the DRCM is to provide explanations for the
alerts that have been raised by intrusion detection sensors. By explanation, we
mean the identification of the likely source nodes that have been compromised
and that have enabled the attacker to launch the detected attack. A DRCM is
built from the most recently received alert, the target, and explains why this
alert has been generated, taking into account past alerts. As soon as a new alert
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is received, a new DRCM is built. Older DRCMs are kept in parallel with the
newly generated DRCM, to manage scenarios with several distinct simultaneous
attacks (i.e., a new alert is not related to older ones). Probabilities of all kept
DRCMs are reconciliated.

Following the process described in Section 3.2, we construct each DRCM
in such a way as not to have any cycles, but to keep all possible attack paths
“directed to” the target. The DRCM is built from the latest received alert. Then,
we recursively add the attack steps and assets allowing to compromise the target.
We store, in each DRCM Topological Asset, the path from this node to the target
of the DRCM. This allows to ensure that the building process never comes back
on a previously exploited node and thus the DRCM does not have cycles, but
contains all possible causes of the latest received alert.

Moreover, we design this building process in order to generate a graph struc-
ture of the DRCM which is a polytree (i.e., directed graph with no directed
nor undirected cycles). This implies, for example, to duplicate the condition and
sensor nodes (i.e., new conditions and sensors for each added attack step). The
DRCM being a polytree satisfies the requirements of Pearl’s inference algorithm
[23], which is quasilinear in the number of nodes. Thus, the inference in such
a DRCM with a polytree structure containing duplicated nodes is much more
efficient and consume less memory, in comparison with a directed acyclic graph
structure with fewer nodes (no duplicates), for identical results.

Model nodes A DRCM is a Bayesian network with 5 types of nodes. Each
one represents a Boolean random variable and is associated with a conditional
probability table (CPT), representing its probabilistic dependency toward its
parents.



– A DRCM Topological Asset represents the random variable describing the
status of compromise of a specific asset of the TAG, in order to exploit
the DRCM Target. It has one parent (DRCM Attack Step) of each type
of attack that can be used to compromise it (i.e., there may be as many
parent nodes as there are different attack types) and a DRCM Attack Source
representing that this node may be a source of attack. Its CPT is a noisy-
OR: at least one successful attack is needed to compromise this node and
it can also be compromised if it is the source of attack itself. Even if no
parent is compromised, there is still a little chance that an unknown attack
compromises this node.

– A DRCM Attack Source represents the random variable describing that a
specific asset of the TAG is a source of attack. It is a node without parents.
As such, it does not have a complete CPT, but only an a priori probability
value. The a priori probability of having an attack coming from this asset
has to be set by the operators knowing the probability that an attack starts
from this threat source.

– A DRCM Attack Step represents the random variable describing that an
attack step has been completed by an attacker. It has two types of parents:
DRCM Conditions, and a DRCM Topological Asset. At a minimum, the
DRCM Topological Asset is required, but the exact CPT depends on the
type of attack step.

– A DRCM Condition represents the random variable describing that the con-
dition of an attack step is verified. It does not have any parent. Its a priori
probability is the probability of successful exploitation of the condition.

– A DRCM Sensor can either be attached to a DRCM Topological Asset or
to a DRCM Attack Step. It represents the random variable describing that
the sensor of an attack step or an asset has raised an alert. Its parent is
the object monitored by the sensor. Its CPT represents the false-positive
and false-negative rates of the sensor. The sensor corresponding to the latest
received alert, and from which the DRCM is built, is the target of the DRCM.

Figure 4 shows an example of a DRCM built from an alert on host h1 (the
node in dotted line on the left) in a topology of 3 hosts. DRCM Topological
Assets are represented by a rectangle shape, DRCM Attack Sources by a five-
sided shape, DRCM Attack Steps by a diamond shape, and DRCM Conditions
by an oval shape.

Model usage As shown in Figure 3, we build the structure of the DRCM
according to the TAG, starting from the latest received alert. Then, we set the
states of the DRCM Sensors according to the previous security alerts received
from the sensors:

– If the sensor of an attack step or an asset exists and is deployed in the
network, as long as it has not raised any alert, all related DRCM Sensors
are set to the NoAlert state.
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Fig. 4. Dynamic Risk Correlation Model

– If the sensor has raised an alert corresponding to this attack step or asset,
the related DRCM Sensors are set to the Alert state.

– If the attack step or asset has no deployed sensor, there is NoInfo about this
sensor. So, the related DRCM Sensors cannot be set in any state and these
nodes can be safely deleted from the DRCM, with no impact on other nodes
final probabilities.

Then, we use a Bayesian network belief propagation algorithm (e.g., Pearl’s)
to update the probabilities of each state at all the nodes.

Probability reconciliation within a DRCM The outputs of a DRCM are
of two types: (1) the probabilities of attack sources, describing how likely an
asset is to be the source of the attack impacting the target of the DRCM, and
(2) the compromise probabilities, describing how likely it is that an asset has
been compromised along the path of the attacker.

As a DRCM Topological Asset contains the attack path from its related
asset to the target, many DRCM Topological Assets represent the same physical
asset. Indeed, the attacker can potentially use several different paths to reach
the target: for example, h1 ← h2 ← h4 is different from h1 ← h3 ← h4, but in
both cases, the attacker starts from the same asset h4 to attack the target h1. In
a DRCM DRCMi, we thus have many DRCM Topological Assets and DRCM
Attack Sources representing the same asset a. We chose to give the operator the
worst case for compromise probability of assets. Thus, as output of a DRCM,
we assign to an asset:

– a probability of compromise Pc that is the maximum of the probabilities of
DRCM Topological Assets related to this asset:

PcDRCMi
(a) = maxnode∈{DRCM Topological Assets(a)}PcDRCMi

(node)



– an attack source probability Ps that is the maximum of the probabilities of
DRCM Attack Sources related to this asset:

PsDRCMi
(a) = maxnode∈{DRCM Attack Source(a)}PsDRCMi

(node)

Probability reconciliation between DRCMs As described at the begin-
ning of Section 3.4, several older DRCMs are kept in parallel with the new ones
generated each time a new alert is received. They can be related to different
simultaneous attacks. These DRCMs DRCMi give different sources and com-
promise probabilities for the same asset a. Thus, the second level of probability
reconciliation is done between all kept DRCMs. Similarly to the single DRCM
case, we want to present the operator with a view of the worst case, and assign
to an asset a a probability of compromise Pc(a) and an attack source probability
Ps(a) that is the maximum of the related probabilities in all the DRCMs:

Pc(a) = maxDRCMi∈{kept DRCMs}PcDRCMi
(a)

Ps(a) = maxDRCMi∈{kept DRCMs}PsDRCMi
(a)

Pruning in a DRCM The main limitation when implementing the DRCM is
the combinatorial explosion of the number of nodes, due to the cycle breaking
process. This process introduces a lot of redundancy which increases significantly
the size of the model. In order to improve the performance and prevent this
combinatorial explosion, we provide a practical way to cut useless paths (with
extremely low probabilities) while preserving the other paths.

The probability of a DRCM Topological Asset represents the probability of
the attacker having exploited the DRCM target, by exploiting this topological
asset. As long as no attack has been detected on a path, the probability of an
asset being compromised decreases rapidly as a function of the length of the
path between the DRCM Topological Asset and the DRCM Target. Moreover,
thanks to the several DRCMs that are kept, if a detected step is discarded in a
DRCM, it will be present in another older DRCM, closer to its detection node,
thanks to the redundancy of the model. According to the state of the sensors
along a path, we have different pruning policies, summarised in Figure 5.

The rules applied when building a DRCM are the following:

– We keep exploring and memorising the path from the target asset, as long
as we find Alert sensors.

– For NoAlert sensors, when there are more than MaxNumberNegativeDetec-
tionsToExplore, we discard the path and keep only MaxNumberNegativeDe-
tectionsToKeep nodes.

– For NoInfo sensors, when there are more than MaxNumberNoInfoToExplore,
we discard the path and keep only MaxNumberNoInfoToKeep nodes, but
with values for the parameters bigger than for NoAlert sensors.
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– As soon as an Alert sensor is found on an explored path, the counters of
NoAlert and NoInfo are reset to 0.

Thus, the parameter MaxNumberNegativeDetectionsToExplore corresponds
to the maximum number of successive false-negatives (missed detections) that we
allow the model to take into account. The parameter MaxNumberNoInfoToKeep
corresponds to the maximum number of successive undetectable steps that we
allow the model to take into account.

Selection of the DRCMs to keep The last important thing about this model
is the selection of the DRCMs to keep. Indeed, as one new DRCM is generated
each time an alert is received, the number of models to keep can increase quickly.
However, when several alerts are part of the same attack, they will be part of the
DRCM whose target is the sensor that raised the latest alert. Moreover, there
will be more Alert sensors in this DRCM (increasing probabilities of all nodes
of the DRCM), and at most the same number of NoAlert sensors (decreasing
probabilities) than in all previous DRCMs related to the same attack. Thus, all
the previous DRCMs related to the same attack are useless, because they are
included in the last generated DRCM and their probabilities will be lower so they
do not change the maximum of asset compromise probabilities. The only different
DRCMs that are useful to keep are those not related to the same attacks because
they bring new information about the occurring attacks. They can be identified
by having at least one DRCM Topological Asset, with a higher probability than
all the ones of the latest DRCM, for the same asset. These attacks could be part
of a more global attack scenario, starting from different sources, that has not
yet converged or it might be distinct attacks that are happening simultaneously.
That is why we may need to keep several DRCMs in parallel.



3.5 Future Risk Assessment Model

Building process and model usage The second type of model constituting
the HRAM is the Future Risk Assessment Model (FRAM). The goal of such
model is to evaluate among all possible futures, the ones that are the most likely
to happen. As indicated by Figure 3, a FRAM is built from each attack source,
according to the DRCMs’ reconciled compromise probabilities. Then, we use a
belief propagation algorithm to update the probabilities of all the nodes. When
there is a completed attack step or a compromised asset, a FRAM taking this
node as starting point is built or updated and the branches from this attack
step are deleted in all other FRAMs. Indeed, this attack is no longer a possible
future, as it has happened and will be investigated in its own FRAM. Even
if the structure of a FRAM does not change with detections, its probabilities
of conditions and attack sources can be updated. For example, the condition
probability of a vulnerability that has already been exploited is set to ”1”.

The way FRAMs are built and cycles solved is identical to the DRCMs,
starting from an attack source rather than from a target. See Sections 3.2 and
3.4 for more details.

Model nodes A FRAM is a Bayesian Network with 5 types of nodes, each
one representing a Boolean random variable. Each node is associated with a
conditional probability table (CPT), representing its probabilistic dependency
toward its parents.

– A FRAM Topological Asset represents the random variable describing the
future status of compromise of an asset of the TAG. Its CPT is the same as
DRCM Topological Assets without the DRCM Attack Source parent.

– The FRAM Attack Source represents the random variable describing that
an asset is the source of attack. It is the root of the FRAM. It does not have
any parent and its a priori probability is provided by the reconciliation of
probability of DRCMs.

– A FRAM Attack Step represents the random variable describing that an
attack step can be successfully exploited by an attacker. Its CPT is the
same as DRCM Attack Steps.

– A FRAM Condition represents the random variable describing that the con-
dition of an attack step is verified. Its a priori probability is the same as
DRCM Conditions.

Figure 6 shows an example of a Future Risk Assessment Model starting from
host h1 in a topology of 3 hosts. The FRAM Attack Source is represented by a
five-sided shape, FRAM Topological Assets by a rectangle shape, FRAM Attack
Steps by a diamond shape, and FRAM Conditions by an oval shape.

Probability reconciliation in FRAMs Similarly to the DRCM, several
FRAM Topological Assets can represent the same topological asset, when an
attacker can use several paths. We chose to give to the operator the worst case,
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Fig. 6. Future Risk Assessment Model

for the probability of the assets being compromised in the near future, just like
in DRCMs. Thus, as output of a FRAM, we assign to an asset a probability of
compromise in the future that is the maximum of the probabilities of FRAM
Topological Assets targeting the same asset.

Pruning in a FRAM As a FRAM does not include any evidence (i.e., it does
not contain sensor nodes which are set in a specific state), the Bayesian inference
is much easier to compute. Moreover, it has fewer nodes than a DRCM, thus its
combinatorial explosion of nodes is not as important. However, the combinatorial
explosion of the number of nodes, due to the cycle breaking process is still
present. If they are not built carefully, there is a lot of useless redundancy in
all FRAMs, which increases significantly the size of the model. A major part
of this redundancy can be deleted when building a new FRAM, by deleting all
the paths started from all sources of other FRAMs. All these subtrees can be
deleted safely, as their probabilities will be less than the probabilities of the
FRAM started from the attack source. Moreover, as we only want to predict the
near future, we can limit to a small number of steps (e.g., 3) the next steps to
compute.

3.6 Impact analysis

The last component necessary to build our Hybrid Risk Assessment Model is the
impact analysis function. The goal of this function is to take the assets of the
information systems with their compromise likelihood computed by the FRAMs
and an impact score associated with each asset to give a risk score to assets. We
apply the usual equation to compute the risk R of a topological asset a, with
the probability of compromise P of the asset computed by the FRAMs, and the
impact I of its compromise:

R(a) = P (a)× I(a)

In this work we focus on the likelihood computation (P (a)), whose method-
ology is independent of the system studied, whereas the impact analysis (I(a))
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strongly depends on the organisation. Thus, we only associated with each asset
a fixed impact score. Moreover, in order to validate the probabilistic results of
the model, we assign to each asset the same impact value (I(a) = 1,∀a) for the
validation.

4 Validation

As a use case, to validate the performances and the results of the HRAM, we
simulate network topologies, as shown in Figure 7a, containing up to 120 hosts,
divided in 7 subnets. These topologies are representative of a real network in
which defence in depth is implemented: all the hosts of a subnet have access
to all the hosts of a deeper subnet. In each subnet, all accesses between hosts
are authorised. Each host has 30 random vulnerabilities for a maximum total of
around 3600 vulnerabilities.

4.1 Performances

To evaluate the performances of the model, we first generate the topological
attack graphs of the simulated topologies . Then, for each simulation, we generate
one random attack scenario of 7 successive attack steps , to which are added false
positives and steps with no sensor information. Finally, we evaluate the HRAM.

Figure 7b shows the duration in seconds of the generation of the HRAM (TAG
generation then DRCM and FRAM) on such topologies, with one scenario of 7
attack steps. This simulation shows that for medium-sized topologies (up to 120
hosts) the duration of the HRAM analysis is sufficiently small (< 35 seconds),
for the operator to be able to properly understand the risk in operational time.
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Fig. 8. Accuracy of the Hybrid Risk Assessment Model

This could be extended to bigger information systems, by clustering together
identical (in terms of vulnerabilities, roles, permissions, network accesses, etc.)
templates of servers or of client machines in one topological asset, as they possess
the same vulnerabilities and authorised accesses and thus behave in a similar
way in the HRAM. Even with 60 assets in the topological attack graph with,
for example, 20 templates of client machines, 15 of network servers, and 25 of
business application servers, it is possible to model a real world large company
information system.

4.2 Accuracy

To evaluate the accuracy of the results of the DRCMs (i.e., how close the com-
promise probabilities are from the truth), we simulate attack scenarios of up to
7 successive steps on random topologies of 70 hosts, as presented in Section 4.1
(results are identical from 10 up to 120 hosts). We add to the 7 true positive
alerts of these scenarios, 10 randomly located false positives and 10 sensors with
no information (i.e., a positive predictive value of PPV = 7

7+10 ≈ 0.4).
The results of these simulations are shown in Figure 8a. For each simulated

scenario, we compare the theoretical results known in the scenarios with the re-
sults obtained as output of the DRCM started from the lastly raised alert. In the
plot of Figure 8a, the black curve on the top represents the compromise prob-
abilities, with a confidence interval, during 10 simulations, of the hosts known
as compromised in the scenarios, according to the number of attack steps in the
scenario. The theoretical result would be a line with only ”1” probabilities. The
grey curve at the bottom represents the compromise probabilities, with a confi-
dence interval, during 10 simulations, of the hosts known as healthy, according
to the number of attack steps in the scenario. The theoretical result would be
a line with only ”0” probabilities. Note that after 3 attack steps in the scenario



for the compromised hosts, and for all values for not compromised hosts, the
confidence interval is so small that it cannot be noticed on the figure.

This experimentation shows that the greater the number of attack steps in
the scenario, the larger the recognition probability and the smaller the confidence
interval. Moreover, it shows a large free space between the curve of compromised
hosts and the curve of healthy hosts. This means that there are no false negative
and false positive introduced by the DRCM. Finally, even if there are false-
positives and sensors without information, compared to the number of successive
attack steps (up to 7), we retrieve only the real attack elements, thanks to our
model built from the latest received alert and taking into account the order and
relations between attack steps.

We use the same simulated topologies to evaluate the accuracy of the results
of the FRAMs (i.e., how close the possible futures are from the next step of
attack). The results of these simulations are shown in Figure 8b. We compare
the next attack step known in each scenario with the results obtained as output
of the FRAM started from the previous scenario (with one less attack step).
In the plot of Figure 8b, the black curve on the top represents the future risk
probability computed by the FRAM of the future attack step (known in the next
attack scenario). The grey curve on the bottom represents the average future risk
probabilities, computed by the FRAM, of all other hosts of the topology, with
confidence intervals.

This experimentation shows that the FRAM predicts quite well the next
step of attack in the simulated scenarios, because its probability is generally
much higher than the probabilities of other next steps . However, this is possible
because in these simulations, the attacker takes the easiest attack steps (i.e.,
attacks the most vulnerable machine) The FRAM is thus particularly interesting
when few future attack steps are easier than the other possible futures.

5 Related Work

Many people have proposed enhancements to improve attack graphs or trees with
Bayesian networks, in order to use them for dynamic risk assessment [26,17,27].
However, they do not describe accurately how they address cycles that are in-
herent to attack graphs. For example, in [27], Xie et al. present an extension of
MulVAL attack graphs, using Bayesian networks, but they do not mention how
to manage the cycle problem, while MulVAL attack graphs frequently contain
cycles. In the same way, in [7], Frigault and Wang do not mention how they deal
with the cycle problem when constructing Bayesian attack graphs. In [17], Liu
and Man assert that to delete cycles, they assume that an attacker will never
backtrack. Poolsappasit et al. in [25] use the same hypothesis. However, as de-
tailed in Section 3.2, they do not present how they deal with this hypothesis
to keep all possible paths in the graph, while deleting cycles. We propose here
novel models exploding cycles in the building process, in order to keep all possible
paths, while deleting the cycles, to compute the Bayesian inference. Moreover,
we also add several improvements (practical pruning, polytree structure, etc.)



reducing the size of the graph structure and improving the performance of the
inference. We thus constrain the size of the graph in which we do Bayesian
inference, while conserving all paths by linearising cycles.

The model presented by Xie et al. [27] and the one of Liu and Man [17] are
made of a single model to describe the compromise status of assets of the infor-
mation system. In a single model, an increase of compromise probability of an
asset due to an already happened attack is mixed up with an increase due to a
very likely possible future. However, the distinction of these two causes is very
valuable for a security operator, for example to select where to deploy a reme-
diation. The hybrid model we propose separates the compromise information of
the past alerts from those of the likely futures. It allows a security operator to
know if a topological asset has already been compromised (thanks to DRCMs)
or if it may be compromised in the near future (FRAMs).

In this work, we focus on the likelihood component of the risk assessment.
Thus, we use a simple impact function as output of the FRAMs, matching each
compromised topological asset with a fix impact value. Other works of the state
of the art rather focus on the impact component. For example, Kheir et al. in
[13] details how to use a dependency graph to compute the impact of attacks on
Confidentiality, Integrity and Availability. This work is complementary to ours
as we could add this kind of impact function after the FRAMs to compute a
more accurate attack impact.

Models such as [8] use Dynamic Bayesian Networks to monitor and predict
the future status of the system. It uses a sequence of Bayesian networks, which
can be huge to process. The model we propose here keeps only the past in-
formation necessary to explain all alerts and to update the models to evaluate
potential futures (FRAMs). Moreover, the building process and exploitation of
DRCMs takes into account the temporality of raised alerts to determine attacks.
Finally, contrary to other models based on Bayesian attack graphs, our model
can distinguish several distinct simultaneous attacks in the alerts raised in a
system, by analysing all kept DRCMs .

Our experimental validation uses simulated topologies far bigger than the
state of the art. For example, Xie et al. assess their model on 3 hosts and 3
vulnerabilities [27], Liu and Man on 4 hosts and 8 vulnerabilities [17]. The real
world examples used by Frigault and Wang in [7] contain at most 8 vulnerabilities
on 4 hosts. The test network used by Poolsappasit et al. in [25] contains 8 hosts
in 2 subnets, but with only 13 vulnerabilities. Thanks to our polytree models,
we successfully run our HRAM efficiently on simulated topologies with up to
120 hosts for a total of more than 3600 vulnerabilities.

6 Conclusion and Future Work

We present in this paper a new Hybrid Risk Assessment Model, combining the
dynamic risk correlation and the future risk assessment analysis. This model
enables dynamic risk assessment. It is built from a topological attack graph,
using already available information. Dynamic Risk Correlation Models are built



according to dynamic security events, to update the compromise probabilities of
assets. We use these probabilities to build Future Risk Assessment Models, to
compute the most likely futures. This combination of two complementary models
separates the compromise status of assets between past attacks and likely futures.

This model handles the cycles in attack graphs and thus is applicable to any
information system, with multiple potential attack sources. The cycle breaking
process significantly increases the number of nodes in the model, but thanks to
the polytree structure of the Bayesian networks we build and practical pruning,
the inference remains efficient, for big information systems. In order to be able
to use the Hybrid Risk Assessment Model for even bigger information systems,
future work will investigate how the usage of a hierarchical topological attack
graph can be appropriate to build the Hybrid Risk Assessment Model. Another
future work will be to use the ability of Bayesian networks to learn parameters
from data, in order to update the values in the Conditional Probability Tables
after the confirmation/negation of compromise by the operators.
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5. de la Défense Nationale, S.G.: Ebios-expression des besoins et identification des
objectifs de sécurité (2004)
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